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Abstract

This Technical Memorandum describes four contributions made by the
authors to a larger team e↵ort toward developing a distributed system
for scheduling commercial flights at navigation fixes and/or airport run-
ways. These contributions are as follows: (1) a proof of correctness for
a scheduling algorithm published previously by Meyn [2], (2) an im-
provement of Meyn’s algorithm from quadratic to linear time, (3) two
independent implementations of the algorithm with test results identical
to those published, and (4) an extension of Meyn’s algorithm to support
minimum usable time intervals.

1 Introduction

The context of this Memorandum is a team e↵ort that is aimed at de-
scribing the development of a distributed computer system for scheduling
a number of resources for use by multiple flights. The immediate appli-
cation was scheduling arrival flights at a large airport or metroplex, but
the system is agnostic to the intrinsic nature of transportation or re-
sources. This system is called Collaborative Seamless Management of
Airspace Resources and Tra�c (CSMART).

CSMART was designed to consist of four types of web services, sum-
marized in Table 1. The system is federated: each participant (flight) or
subset of participants (e.g., an airline) is served by its own Flight Plan
Service Supplier, and the schedule for the totality of the participants is
computed by generalizations of the algorithm given in [1], which, in turn,
is based on that in [2].

Table 1. CSMART components.
service function
Directory Supplies internet addresses for Resource

Schedule, the Flight Information Management
System, and the Flight Plan Service Supplier.

Resource Schedule Keeps track, for each resource (e.g., a way-
point), of the time intervals reserved for the
use of that resource.

Flight Plan Service
Supplier

Provides operator flight schedules. An opera-
tor flight schedule is a list of desired time in-
tervals for each scheduled resource in a flight’s
route.

Flight Information
Management System

Provides flight plan information to the FAA
or a simulation of the national airspace.

This paper documents improvements to Meyn’s multi-point schedul-
ing algorithm [2] that resulted during the initial implementation of the
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CSMART Flight Plan Service Supplier. Meyn’s algorithm has previ-
ously been used as a fundamental primitive in the implementation of
an advanced first-come first-serve scheduler for flight schedules, for ex-
ample [3], and for surface movement schedules, for example [4]. This
illustrates the versatility of the algorithm.

The rest of this paper is organized as follows: we will give an overview
of the approach and implementation by Meyn [2] in Section 2. As the
algorithm in [2] outputs only the available time intervals at each resource
and stops short of computing an actual schedule using those intervals,
this opens the question whether at least one schedule exists. Section 3
documents a proof that the available time intervals computed by Meyn’s
algorithm [2] guarantee that the following schedule is viable: the one
where, at each resource, the time of use is the earliest time of the ear-
liest available interval. An improvement, in Meyn’s algorithm [2], from
quadratic to linear time is described in Section 4. The results of validat-
ing the authors’ independent implementations of Meyn’s algorithm are
presented in Section 5. An extension of Meyn’s algorithm to support
minimum usable time intervals is presented in Section 6. Concluding
remarks are presented in Section 7.

2 Meyn’s Original Approach and Implementa-
tion

Meyn [2] gives a closed-form solution for multi-point scheduling of air-
craft. This section is an overview of the algorithm. Meyn’s terminol-
ogy will be followed throughout the paper, with the following exception:
what Meyn calls a scheduling point, we have called, and will continue
to call, a resource. This preference is aimed at keeping this paper ter-
minologically consistent with the project from which it emerged as a
by-product.

In air tra�c operations, multiple aircraft must cross the same way-
point or use the same runway, termed a resource, at di↵erent times. A
resource may be unusable during a given time interval for any of multiple
reasons. These reasons include poor weather, debris on a runway, and
simply the resource having been reserved for use by another flight during
the time interval in question. Such time intervals of non-use by the given
flight will be called blocked time intervals. A time interval that fills the
gap between adjacent non-overlapping blocked time intervals, or that
fills the semi-infinite time interval after the latest blocked time interval
or before the earliest blocked time interval, is an available time interval.
Notionally, it is convenient to depict each resource as a time axis with
the blocked time intervals marked on it. Such a depiction is shown in
Fig. 1, where the resources are denoted–in keeping with Meyn’s term
scheduling point, and despite our use of a di↵erent term–by the symbol
S with a subscript, and the blocked time intervals are shown in red.
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Sk-1

Time

blocked

Sk Sk+1 Sk+2

Figure 1. The blocked time intervals (shown in red) at each resource.
The parts of the axes not covered by red are available time intervals.

It is possible that blocked time intervals provided as input to the
algorithm overlap or share endpoints. The first step of the algorithm is
therefore to join every pair of blocked time intervals that share at least
one point. The term “join” here means to replace the pair of blocked
time intervals with their union. This process is continued until there
are no overlapping or touching blocked time intervals. This property,
termed disjoint, is thereafter preserved by the algorithm. An available
time interval is the gap between two disjoint blocked time intervals or a
semi-infinite time interval after the latest blocked time interval or before
the earliest blocked time interval on the time axis. Thus, at each stage
of computation, the time intervals in a computed list of blocked
time intervals, or of available time intervals, will always be
disjoint.

Each time instant at a resource lies either in a blocked time interval
or in an available time interval. Note that the concepts of blocked and
available time intervals are defined from the viewpoint of a given flight.
What is available to one flight and reserved for it, becomes blocked to
another.

On the route of each flight, between each consecutive pair of resources
there is a travel time constraint specified as an input to the algorithm.
A travel time constraint defines a pair of bounds–the minimum and the
maximum–on the flight’s travel time between those resources. These
bounds are constant in time and apply whenever the flight happens to
travel between consecutive resources. Di↵erent flights that share pairs of
resources may have di↵erent travel time constraints, or di↵erent 3D paths
between the resources, or both. They may or may not interfere with each
other between the resources. The scheduling algorithm captures only the
interference at the resources, not between two consecutive resources.

Thus, there are two types of constraints: those binding pairs of flights
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(i.e., the time intervals blocked at a resource because another flight is
already scheduled for that resource during that interval) and binding
an individual flight (i.e., the travel time constraints and time intervals
blocked because the resource is unavailable at that time for a reason other
than a scheduling conflict with another flight; e.g., hazardous weather
conditions).

The scheduling problem is to determine the available time intervals
that satisfy all constraints at each resource for a given flight. Meyn’s
algorithm requires only two linear passes through the resources. How-
ever, the evaluation at each resource of some of the constraints requires
computations of quadratic cost, as will be shown.

The constraints on the time (i.e., specific time instant) of traversal
at each resource can be specified unambiguously by a list of blocked
time intervals or by a list of available time intervals. Each list can be
determined from the other with a single linear computational pass.

Meyn’s implementation works with the available time intervals. There
are two passes through the entire list of resources: a forward pass and a
backward pass. In the forward pass, the available time intervals are prop-
agated forward using the travel time constraints. The propagation of the
travel time constraints from the current resource to the next results in
wider available time intervals. This is because the aircraft, leaving the
current resource at a specific time t, can arrive at the next resource at
any time within the interval

[t + minimal travel time, t + maximal travel time]; (1)

this constraint is illustrated notionally in Fig. 2(A).
Therefore, during forward propagation of an available interval [start,

end] at the current resource, the start time of this interval is incremented
by the minimum travel time, and the end time by the maximum travel
time:

[start + minimal travel time, end + maximal travel time]. (2)

This available time interval at the next resource is shifted with respect
to, and longer than, the interval [start, end], as is illustrated in Fig. 2(B).

The next step is to perform an intersection operation between the
intervals from the propagated list and from the existing list at the latter
resource. In [2], this is implemented in Python with a double “for” loop
through the two lists, applying the intersection operator to each pair of
time intervals, and concatenating these results.

Note that this is an operation of quadratic cost, in the sense that
the required number of elementary computations (such as a comparison
between two numbers) is proportional to

 
the number of intervals
in the propagated list

! 
the number of intervals
in the existing list

!

.
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(A)
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Sk-1

Time
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t

t + maximal travel time

t + minimal travel time

(B)

41
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Time

Sk

start

start + 
minimal travel time

end

end + 
maximal travel time

(C)

42

Sk-1

Time
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end -
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Figure 2. (A) Leaving the current resource, Sk�1, at time t, the flight can
reach the next resource, Sk, only within time window (1). (B) Leaving
Sk�1 some time in the time interval [start, end], the flight can reach Sk

only within time window (2). (C) The times at Sk�1 from which Sk

can be reached during the interval [start, end] fill the interval [start -
maximal travel time, end - minimal travel time].
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For example, if there are 4 intervals in each constraint list, then 16
intersection operations are needed in general.

The forward pass continues until reaching the last resource. At this
stage in the algorithm, each resource has a list of disjoint available time
intervals resulting from both the existing ones at the current resource
and those propagated from the previous one.

The backward propagation starts at the last resource and propagates
the travel time constraints backward through the resources by subtract-
ing the travel times to arrive at feasible start and end times at the
previous resource (see Fig. 2(C)). Again, the travel time constraints are
used to widen the available time intervals during propagation. Therefore,
during backward propagation, the start time of an available interval sub-
tracts the maximum travel time and the end time subtracts the minimum
travel time. This produces a list of shifted time intervals at each previ-
ous resource. The same intersection operation is performed between the
backward propagated available time intervals and the existing available
time intervals from the forward pass.

At the end of the backward pass, there is a list of available time
intervals that satisfy all time constraints at each resource. These time
intervals can be used to build feasible schedules that satisfy all travel
constraints and existing blocked time intervals.

The overall algorithm is linear in the number of resources, but quadratic
when performing constraint intersection operations between lists of avail-
able time intervals.

3 How to Compute a Guaranteed Feasible Sched-
ule from an Output of Meyn’s Multi-Point
Scheduling Algorithm

As its output, the algorithm assigns to each resource a list of available
time intervals (see Section 2) that satisfy all constraints. This assignment
and these constraints were covered in the overview in Section 2. We now
discuss them in detail, together with their implications for the availability
of a given time instant at a resource. A time interval is considered
available if it satisfies two types of constraints: (i) not conflicting with
existing blocked time intervals and (ii) being consistent with the flight’s
bounds on travel time. To illustrate (ii), a resource may not be reachable
by a flight at a given time if the flight left the previous resource at
an earlier given time, simply because the flight cannot fly between the
two resources quickly enough or slowly enough. Figure 2(A) illustrates
that, on leaving the current resource at a given time t, the flight can
reach the next resource only during a certain time interval determined
by the bounds on the travel time. Figure 3–which can be thought of
as a superposition of Figs. 1 and 2(A)–illustrates a situation when, by
leaving the current resource at a certain time t, the flight cannot reach
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the next resource at any time available at that resource. This results in
the unavailability of time t at the current resource.

39

Time t

Figure 3. The flight’s inability to reach the next resource during an
available time by leaving the current resource at a given time, t.

As a result of these constraints, not all of the available time interval
pairs at two consecutive resources are reachable one from the other.
Whereas the causes of such unreachability are illustrated in Fig. 3, a
notional example of such unreachability is shown in Fig. 4.

A schedule requires such a sequence of available time windows, one
window per resource, that for every two time windows at two consecutive
resources, the later one be reachable from the earlier one. Two such
sequences of available time windows satisfying this requirement (hence
each capable of being converted into a schedule) are shown notionally in
Fig. 4, one using brown curves, the other purple curves.

The occurrences of unreachability, illustrated above, lead to the fol-
lowing concern:

Is Meyn’s algorithm guaranteed to give a sequence of available time
intervals, one per resource, from which a feasible schedule can be com-
puted for the flight by picking a time instant in each time interval?

The rest of this section addresses this concern by computing such a
schedule and proving its feasibility. Following the notation of [1], denote

by f the flight for which a schedule is sought, and let Ak,j
f denote the

j-th earliest time window available to flight f at resource Sk; refer to
Fig. 51.

Index k is used to number the scheduled resources along the flight’s
route. Thus, two resources whose indices di↵er by 1 appear on the route
consecutively.

The available time windows, shown in green in Figs. 4 and 5, are

1
In the paper [1], the k-th resource is denoted simply by k, not by Sk.
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Sk-1 Sk Sk+1 Sk+2

minimal travel 
time

Time

Figure 4. Pairings of intervals by reachability. The available time in-
tervals are shown in green. The time interval shown as a thick green
segment at resource Sk+1 is unreachable from the thick green interval at
resource Sk because the flight could not fly quickly enough. The lower
bound on the flight’s travel time between these two resources is notion-
ally shown as the yellow segment. The pairs of time intervals satisfying
reachability are connected with curves of the color brown, purple, and
blue.

Sk-1

Time

Sk Sk+1

Af
k-1, 1

Af
k, 1

Af
k, 2

Af
k+1, 2

Figure 5. A sample output of Meyn’s algorithm for a flight denoted f :
the available time intervals at each resource are shown in green.
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computed using the algorithm in [2]. We will show here that choosing

the earliest time in the earliest time window, Ak,1
f , at each resource Sk

produces a feasible schedule for the flight.

To show this, consider the earliest available time windows available to
flight f at two consecutive resources: Ak�1,1

f , Ak,1
f . Denote earliest times

in these intervals by tk�1 and tk. If flight f could not reach resource Sk

at time tk by leaving resource Sk�1 at time tk�1, then tk could not be
the earliest time in an available time window at resource Sk. If flight f
could not depart from resource Sk�1 at time tk�1, then tk�1 could not
be the earliest time in an available time window at resource Sk�1.

4 Improvement of E�ciency for Meyn’s Closed-
Form Algorithm

In this section, we will describe performance improvements to the algo-
rithm in [2].

Recall from Section 2 that Meyn’s algorithm [2] works with the avail-
able time intervals. An alternative implementation, complementary to
Meyn’s, is to propagate the blocked time intervals instead of the avail-
able time intervals. Then at each resource the blocked time intervals are
combined using union instead of intersection (see Fig. 6).

Figure 6. Propagation of blocked time intervals. The points on the
horizontal axes, denoted by an S with an index, are the resources.

In Fig. 6, the left hand side shows the first propagation of the forward
pass, whereas the right hand side (after the break line) shows the first
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propagation of the backward pass. The thick vertical segments repre-
sent blocked time intervals. The thick lines with arrowheads represent
the propagation of travel time constraints. The vertical gaps between
blocked time intervals are the available time intervals.

The dashed vertical lines represent the resources (labeled S1, S2, etc.)
with time increasing vertically up. In the forward pass, the intervals
just to the right of the resource line are the existing input blocked time
intervals. The blocked time intervals just to the left of a resource (see S2)
are the propagated blocked time intervals. The existing and propagated
blocked time intervals are combined with a union operation shown under
the “union” label. These are then propagated forward and the process
repeats until reaching Sn.

In the backward pass, the intervals just to the left of the resource line
are the blocked time intervals from the forward pass. These are prop-
agated backwards and placed just to the right of the previous resource
(see Sn�1). The existing and propagated blocked time intervals are com-
bined with a union operation shown under the “union” label. These are
then propagated backward and the process repeats until reaching S1.

Once S1 is reached, each resource has a stack of blocked time intervals
between which are feasible available time intervals satisfying all schedule
constraints. It takes a linear pass through the blocked time intervals to
collect the available time intervals.

For airline scheduling, it is common to prohibit starting the flight
earlier than the scheduled departure time (origin of the vertical axis).
This implies a semi-infinite blocked time interval from �1 to 0. During
the forward propagation, the semi-infinite blocked time interval end time
grows by the minimum travel time between resources. During the back-
ward propagation, the existing blocked time interval from the forward
propagation dominates, as shown on the lower right hand side of Fig. 6.

Examining the forward pass side of Fig. 6, we see characteristic trape-
zoids formed by propagating the existing blocked time intervals forward.
The lower edges have steeper slopes, corresponding to the maximum
travel time. The upper edges have gradual slopes, corresponding to the
minimum travel time.

These trapezoids always taper increasing the gaps at the next re-
source. The blocked time intervals always decrease or remain the same
in size and shift by the same amount. This means that if the existing
blocked time intervals are sorted and disjoint (as noted in Section 2, re-
call that at each stage of computation, the time intervals in a computed
list of blocked time intervals, or of available time intervals, will always
be disjoint), then the propagated blocked time intervals are also sorted
and disjoint. We would not have this guarantee if we propagated the
available time intervals, because they can increase in size.

In the special case where the minimum travel time equals the maxi-
mum travel time, the trapezoids turn into parallelograms, and the orig-
inal blocked time intervals are simply shifted downstream.
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With the guarantee that both lists of blocked time intervals to be
combined are sorted and disjoint, the union operation can be performed
using a linear process similar to the merge in merge sort (see Fig. 7). Two
examples of merging are shown in Fig. 7. The first example (left hand
side) shows a case where the two lists do not intersect at all. The second
example (right hand side) shows a more complicated case where some
intervals between the two lists intersect. The preconditions for merging
are that each list is sorted and disjoint. Once these two invariants are
established with the initial blocked time intervals, the lists never need to
be sorted again. Both propagation and merge preserve these invariants
with a linear algorithm.

Figure 7. Merging lists of blocked time intervals.

For the distributed airline scheduling algorithm, a separate process
provides the currently reserved intervals already sorted and disjoint to
the scheduling algorithm. So the scheduling algorithm never has to sort
the intervals at all. In any event, the scheduler would only have to sort
and join the input lists of blocked time intervals once at the start and this
would be the most expensive operation in terms of order of magnitude.
Sorting lists in the worst case is linearithmic (n log n).
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The meaning of < for blocked time intervals is that all times in one
interval are strictly less than all times in the other interval. The lists
could therefore be sorted using any time in the interval but it will be
convenient to use start time. It is not necessary to consider both start
time and end time for the purpose of this algorithm.

The basic idea of the merge algorithm is to alternate comparing seg-
ments between lists in sorted order. If they intersect, combine them.
Otherwise, add the earliest one to the output list (it must be disjoint).

In the example on the left hand side of Fig. 7 none of the intervals
intersect. The algorithm simplifies to exactly the merge in Merge Sort.
We could use just two indices to keep track of the earliest unprocessed
interval in each list. At each step, we output the earliest interval and
increment the index for that list. So we would compare 1 to 3, output
1, then compare 2 to 3, output 2, then compare 3 to 4, output 3, then
compare 4 to 5, and output 4. Since the first list is complete, we can
output the rest of the second list, which in this case is just interval 5.

The right hand side shows a more complex case where some of the in-
tervals intersect between the two lists. The full algorithm, which handles
combining intervals, if necessary, is shown in three pseudocode sections
(see Algorithm 1, Algorithm 2, Algorithm 3).

Algorithm 1 Merge algorithm initialization

Require: L1, L2 : sorted and disjoint; n1 = |L1| , n2 = |L2|
1: if n1 = 0 then
2: return L2

3: else if n2 = 0 then
4: return L1

5: end if
6: i1  0
7: i2  0
8: if L1 [i1] .start < L2 [i2] .start then
9: C = L1 [i1]

10: i1  i1 + 1
11: else
12: C = L2 [i2]
13: i2  i2 + 1
14: end if

The input to the merge algorithm is two lists of blocked time intervals:
L1 and L2. The merge algorithm keeps track of the earliest unprocessed
interval in each list using indices: i1 and i2. It also tracks two intervals:
the current interval, C, and the next interval, N . C is used to accumulate
intervals as they overlap. It is only output to the merged list, M , when
the next interval is disjoint from it.

The steps to initialize the merge algorithm are shown in Algorithm 1.
The preconditions are that the two input blocked time interval lists, L1
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and L2, are sorted by start time and disjoint. Disjoint means that the
intervals within each list do not overlap each other.

If one of the lists is empty, simply return the other one. This also
handles the case when both lists are empty.

Initialize the list indices with the earliest interval in each list, then
initialize C with the earliest interval from both lists (line 9 or 12) and
increment by 1 (line 10 or 13) the index for the list which contains this
earliest interval.

The merge algorithm main loop is shown in Algorithm 2.

Algorithm 2 Merge algorithm main loop
1: while i1 < n1 and i2 < n2 do
2: if L1 [i1] .start < L2 [i2] .start then
3: N = L1 [i1]
4: i1  i1 + 1
5: else
6: N = L2 [i2]
7: i2  i2 + 1
8: end if
9: if C < N then

10: M.append (C)
11: C = N
12: else
13: C = C [N
14: end if
15: end while

The first step is to compare the start times of the indexed intervals.
The earliest of these is assigned to the next interval (line 3 or 6). Its
start time is guaranteed to be equal or greater than the start time of the
current interval.

The next step is to determine if the two intervals intersect. This can
be done with just one time comparison. If the next interval’s start time
is strictly greater than the current interval’s end time, that means all
times in the current interval are less than all times in the next interval
and the two intervals are disjoint. In this case, save the current interval
to the output list, M , (line 10) and assign the next interval to the current
interval (line 11). Otherwise, the two intervals must touch or intersect.
In that case, combine the two intervals and save the combination as the
current interval (line 13).

Combining is defined as creating the shortest interval that contains
both intervals. In general, this would require two comparisons: mini-
mum of the start times and maximum of the end times. But we already
know that the current interval’s start time is the minimum of start times
because the two lists are sorted by start times. So we only have to com-
pare the end times to create the combined interval. Since the intervals

13



intersect, combining is technically a union.
The main loop uses just two time comparisons if current and next

are disjoint and only one additional time comparison if they intersect.
We are taking advantage of the two invariants we maintain: the lists are
always sorted and disjoint.

The maximum number of passes through the main loop is the sum
of the two list sizes minus one. The minimum number of passes through
the main loop is the size of the shorter list. This is exactly the same as
the merge in Merge Sort. For example, if each list contains 4 items, the
maximum and minimum number of passes through the main loop is 7
and 4, respectively.

Algorithm 3 Merge algorithm completion
1: if i1 = n1 then
2: while i2 < n2 do
3: if C < L2 [i2] then
4: break
5: end if
6: C = C [ L2 [i2]
7: i2  i2 + 1
8: end while
9: M.append (C)

10: M.append (L2 [i2 : n2])
11: else
12: while i1 < n1 do
13: if C < L1 [i1] then
14: break
15: end if
16: C = C [ L1 [i1]
17: i1  i1 + 1
18: end while
19: M.append (C)
20: M.append (L1 [i1 : n1])
21: end if
22: return M
Ensure: M is sorted and disjoint

Recall that the original algorithm would take 16 times through its
loops for this same example (see Section 2). That is more than a factor
of 2 for relatively short lists.

The main loop always finishes by reaching the end of one of the
lists. This leaves the last value of the current interval unassigned to the
output list and possibly many intervals unprocessed in the other list.
Algorithm 3 shows the handling of the last interval after the main loop
is exited.

The current accumulated interval may overlap with the remaining
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intervals in the other list. We need to loop through those remaining
intervals until the accumulated interval is disjoint from the next interval
or we reach the end of the other list. At that point we can add the rest
of the other list because we know those remaining intervals are sorted
and disjoint.

In the example on the right hand side of Fig. 7, some of the intervals
intersect. The algorithm proceeds as follows:

1. Compare 1 to 2. Initialize current to 1.

2. Compare 2 to 3. Choose 2 as next.

3. Compare current to next. Since they intersect, combine current
and next (1 and 2) and save as current.

4. Compare 3 to 4. Choose 3 as next.

5. Compare current to next. They are disjoint so output current
(which is the combination of 1 and 2) and save next (which is 3)
as current.

This process continues, outputting the combination of 3 and 4 and
saving 5 as current. Once this is done, the main loop terminates because
we have reached the end of the left hand side list. The completion
algorithm must handle the remaining intervals in the right hand side list
which in this case is just interval 6. Since the first list finished first, this
corresponds to lines 2 through 10 in Algorithm 3.

The first comparison in the while loop (line 3 in Algorithm 3) com-
pares current (which is 5) to 6. Since they intersect, combine current and
6 and save as current. We have now reached the end of the right-hand
side list. So output current (combination of 5 and 6) and the rest of the
right hand list (which is now empty). That completes the algorithm for
the right hand side example of Fig. 7.

In summary, the new blocked time interval merge algorithm reduces
the order of magnitude from quadratic to linear over the original imple-
mentation. This di↵erence will be noticeable even for relatively short
blocked time interval lists. Note that the overall algorithm is still linear
in the number of resources, just like the original algorithm.

5 Testing the Consistency of Outputs from Two
Independent Implementations of Meyn’s Al-
gorithm

The algorithm given in [2] was implemented independently by each au-
thor of the present paper, in two di↵erent programming languages, Java
and Python. In what follows, the following parameters and notation are
used:
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Table 2. The parameters used in the software implementations described
in Section 5.

notation value definition
MAX 9223372036854775807 The maximal integer value used

in Java.

TOL 1.0⇥ 10�7 The tolerance for floating point
arithmetic used in Python.

Phillips chose Java because the CSMART software is implemented
in Java. Sadovsky chose Python because the original implementation
by Meyn is in Python and the simulation supporting [1] was also im-
plemented in Python. Each of these implementations was run on the
two examples presented in Section B and in Figure 4 of Ref. [2]. The
computed results matched each other and those in [2]. These results
are shown in Tables 3 and 4. In Table 4, the last two time windows
computed by the Python implementation as e↵ectively available at the
last resources, I, are the open intervals (26.0, 28.0) and (28.0, inf). By
contrast, for the same resource, the Java implementation reports the in-
terval [26.0, MAX]. The reason for this di↵erence is that, unlike the Java
implementation, the Python one treats the available time intervals as
open intervals and does not post-process the available intervals to make
their list disjoint (see the third paragraph of Section 2).

6 Modification to Support Minimum Usable Time
Intervals

Meyn’s algorithm finds feasible intervals of time to form a schedule be-
tween multiple resources. The size of these intervals is strictly greater
than zero, but can be arbitrarily small. Very small intervals do not allow
for uncertainty, even if feedback control is somehow used to implement
the schedules. The spacing between scheduled intervals is also arbitrarily
small.

If only an approximate schedule is desired, then a single time at each
resource is adequate. However, if the schedule is being used to separate
aircraft in time, then the presence of wind, if nothing else, can introduce
some uncertainty. Realistically, a contracted trajectory should therefore
specify time intervals, not single time points.

In the context of separating aircraft landing on a runway, there are
required separations related to wake turbulence that are specified as dis-
tances. The required separation is a function of both aircraft types.
These separation distances can be approximately converted to the re-
quired time separation using the approach speed of each aircraft.
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Table 3. The e↵ectively available time windows that result in the exam-
ple in Section B of [2]. Parameters MAX and TOL are defined in Table
Table 2.
author Phillips Sadovsky

language Java Python

units milliseconds seconds

data type long float

re
so

u
rc
e

A [0, 0] [(-TOL, TOL)]

B [3000, 5000], [6000, 7000],
[9000, MAX]

[(3.0, 5.0), (6.0, 7.0), (9.0,
inf)]

C [6000, 7000], [9000, 10000],
[11000, MAX]

[(6.0, 7.0), (9.0, 10.0),
(11.0, inf)]

D [8000, 9000], [10000,
11000], [13000, MAX]

[(8.0, 9.0), (10.0, 11.0),
(13.0, inf)]
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Table 4. The e↵ectively available time windows that result in the exam-
ple in Figure 4 of [2]. Parameters MAX and TOL are defined in Table
Table 2.
author Phillips Sadovsky

language Java Python

units milliseconds seconds

data type long float

re
so

u
rc
e

A [0, 0] [(-TOL, TOL)]

B [3000, 5000], [6000, 7000],
[9000, 12000], [13000,
MAX]

[(3.0, 5.0), (6.0, 7.0), (9.0,
12.0), (13.0, inf)]

C [6000, 7000], [9000, 10000],
[12000, 14000], [16000,
MAX]

[(6.0, 7.0), (9.0, 10.0),
(12.0, 14.0), (16.0, inf)]

D [8000, 8200], [10000,
11000], [14000, 16000],
[17500, MAX]

[(8.0, 8.2), (10.0, 11.0),
(14.0, 16.0), (17.5, inf)]

E [10000, 10200], [13000,
14000], [17000, 18500],
[20500, MAX]

[(10.0, 10.2), (13.0, 14.0),
(17.0, 18.5), (20.5, inf)]

F [11000, 12200], [15000,
16000], [19000, 20500],
[22000, MAX]

[(11.0, 12.2), (15.0, 16.0),
(19.0, 20.5), (22.0, inf)]

G [13000, 15000], [17000,
19000], [21000, 23000],
[25000, MAX]

[(13.0, 15.0), (17.0, 19.0),
(21.0, 23.0), (25.0, inf)]

H [15000, 16000], [19000,
21000], [23000, 25000],
[26000, MAX]

[(15.0, 16.0), (19.0, 21.0),
(23.0, 25.0), (26.0, inf)]

I [18000, 19000], [22000,
24000], [26000, MAX]

[(18.0, 19.0), (22.0, 24.0),
(26.0, 28.0), (28.0, inf)]
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There are also separation requirements specified in nautical miles
under the FAA visual flight rules. These can also be approximately con-
verted to the required time separation using the airspeed of the aircraft.

Figure 8. Uncertainty and separation.

These separation requirements are not related to uncertainty. In
order to guarantee the required separation and allow for uncertainty,
the two must be summed. Figure 8 illustrates the relationship between
uncertainty, separation, and blocked time intervals.

Figure 8 shows two blocked time intervals corresponding to di↵erent
flights. The intervals can be contiguous because the required separa-
tion is incorporated into the interval as shown. The black portion of
the blocked time intervals is the required time of arrival: the contracted
interval that must contain the actual crossing time. It represents the
uncertainty in the trajectory. The aircraft may cross at any time dur-
ing the black interval but not outside. The diagonal hatched segments
correspond to the required time separation to the next flight. Note that
the two flights can di↵er in the amount of separation and in the amount
of uncertainty.

The algorithm described in this paper can be easily modified to en-
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force a minimum time interval. Line 9 in Algorithm 2 and lines 3 and 13
in Algorithm 3 determine whether one interval is disjoint from another.
If not, the intervals are combined. This is done by determining if the
end of the earlier interval is strictly less than the start of the later inter-
val. All we need to do is modify this definition to include the minimum
time interval. Then if the time gap between intervals is too small, the
intervals will be combined and the scheduler will naturally not schedule
in the small gap.

7 Concluding Remarks

In support of a distributed system for scheduling flights, we have made
algorithmic improvements to a closed-form multi-point scheduling al-
gorithm by Meyn [2]. One of those improvements allows enforcing a
minimum time interval. This is useful for modeling uncertainty.

We have also proved that the earliest times in the output from the
scheduler must be a feasible schedule. This is also a useful schedule since
it represents the earliest possible arrival times at each resource.

We have verified for consistent outputs two independent implemen-
tations of Meyn’s algorithm using examples from his paper.

This work contributes to solving the general problem of scheduling
flights that must share airspace resources in a collaborative manner. [3,4]
describe two such applications of the original algorithm in [2]. The
more recent projects at NASA, e.g. [5], require scheduling flights col-
laboratively. For example, a recent research goal is the development of
a distributed system where multiple participants must share the same
resources to schedule their operations. Such is also the project that gave
rise to the present work. This work is relevant to all contexts in which
vehicles must share resources and are constrained as to how they can
move.

The general problem of fitting a finite number of flights into a set
of resources with limited capacity is a problem of high computational
complexity, akin to the job-shop problem. In this context, studies of
simplifying assumptions and improvements to the e�ciency of schedule
computation add value to flight scheduling research.
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