

Exposure-Related Effects of *Pseudomonas fluorescens* (*Pf-*CL145A) on Juvenile Unionid Mussels

By Kerry L. Weber, James A. Luoma, Denise A. Mayer, Doug B. Aloisi, and Nathan L. Eckert

Open-File Report 2015–1066

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior SALLY JEWELL, Secretary

U.S. Geological Survey Suzette M. Kimball, Acting Director

U.S. Geological Survey, Reston, Virginia: 2015

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS (1–888–275–8747)

For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod

To order this and other USGS information products, visit http://store.usgs.gov

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

Weber, K.L., Luoma, J.A., Mayer, D.A., Aloisi, D.B., and Eckert, N.L. 2015, Exposure-related effects of *Pseudomonas fluorescens* (*Pf*-CL145A) on juvenile unionid mussels: U.S. Geological Survey Open-File Report 2015–1066, 663 p., http://dx.doi.org/10.3133/ofr20151066.

ISSN 2331-1258 (online)

Acknowledgments

This study was funded through a combination of a U.S. Environmental Protection Agency Great Lakes Restoration Initiative grant and U.S. Geological Survey appropriated funds. The authors thank personnel from the Upper Midwest nvironmental Sciences Center, including Theresa M. Schreier, Maren Tuttle-Lau, Todd J. Severson, Jeremy K. Wise, Samuel M. Stafslien, Aaron R. Cupp, Pajtshiab L. Moua, Jonathan T. Vannata, and Daniel G. Burke, for assisting with data collection. We thank Mark Gaikowski, who assisted with study design and Brian Gray, who assisted with data analysis.

Contents

Acknowledgments	iii
Abstract	9
Introduction	
Materials and Methods	
Experimental Design	
Test Article	
Test System	
Test Animals	
Test Article Solutions	
Dosing	
Water Chemistry	
Survival Assessment	
Data Analysis	
Results	
Conclusion	
References Cited	
Appendix 1. Study Protocol With Data Forms	
Appendix 2. Deviations From the Study Protocol	
Appendix 3. Randomization Assignments	
Appendix 4. Test Article Information	
Appendix 5. Test Animal Information	
Appendix 6. Water Quality and System Conditions	
Appendix 7. Animal Feed Information	
Appendix 8. Juvenile Mussel Survival Summary and Statistical Analysis	

Figures

Figure 1.	Test system used for dosing juvenile unionid mussels	13
	Schematic of test system used for dosing juvenile unionid mussels.	
Figure 3.	Example of three-section test chambers	14
Figure 4.	Three-section test chamber schematic: inflow section (left), center section containing juvenile union	d
mussels (cen	ter), and outflow section (right).	15
Figure 5.	Representative juvenile unionid mussels displaying active foot movement. The photograph is of	
Lampsilis car	dium juvenile unionid mussels at the end of the 7-day postexposure holding period	16

Tables

Table 1.	Identification and characteristics of test animals and test articles formulations
Table 2.	Mean (standard deviation) dissolved oxygen, temperature, and pH range by treatment group during
the preexpos	ure, exposure, and holding periods19
Table 3.	Mean (standard deviation) alkalinity, water hardness, and conductivity of preexposure and exposure
termination w	ater samples
Table 4.	Mean (standard deviation) total ammonia nitrogen (TAN) and un-ionized ammonia (NH ₃) at 24 hour
during the ex	posure period
	Mean (standard deviation) recovery and percent survival of unionid mussels exposed to spray-dried) or freeze-dried powder (FDP), by formulation type and treatment group

Conversion Factors

International System of Units to Inch/Pound

Multiply	Ву	To obtain
	Length	
centimeter (cm)	0.3937	inch (in.)
micrometer (µm)	3.937×10 ⁻⁵	inch (in.)
millimeter (mm)	0.03937	inch (in.)
	Volume	
liter (L)	2.113	pint (pt)
liter (L)	1.057	quart (qt)
liter (L)	0.2642	gallon (gal)
milliliter (mL)	0.03382	ounce, fluid (fl. oz)
	Flow rate	
milliliter per minute (mL/min)	0.0002642	gallon per minute (gal/min)
	Mass	
milligram (mg)	3.527 ×10 ⁻⁵	ounce, avoirdupois (oz)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as °F = (1.8 × °C) + 32.

Conductivity is given in microsiemens per centimeter at 25 degrees Celsius (µS/cm at 25 °C).

Concentrations of chemical constituents in water are given in milligrams per liter (mg/L).

Abbreviations

AI	active ingredient of Pseudomonas fluorescens
Alk.	alkalinity as CaCO ₃
CaCO ₃	calcium carbonate
CL145A	strain of Pseudomonas fluorescens
Cond.	conductivity
DO	dissolved oxygen
EPA	U.S. Environmental Protection Agency
FDP	freeze-dried powder
Hard.	hardness as CaCO ₃
HD	heat-deactivated Pseudomonas fluorescens
$L \times W \times H$	length by width by height
NH ₃	un-ionized ammonia
NH ₃ -N/L	un-ionized ammonia nitrogen per liter
Pf-CL 145A	Pseudomonas fluorescens strain CL 145A
SDP	spray-dried powder
TAN	total ammonia nitrogen
Temp	temperature (in °C)
UMESC	Upper Midwest Environmental Sciences Center
USGS	U.S. Geological Survey

Exposure-Related Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) on Juvenile Unionid Mussels

By Kerry L. Weber,¹ James A. Luoma,¹ Denise A. Mayer,² Doug B. Aloisi,³ and Nathan L. Eckert³

Abstract

The exposure-related effects of a commercially prepared spray-dried powder (SDP) or freeze-dried powder (FDP) formulation of *Pseudomonas fluorescens* (strain CL145A) on the survival of seven species of newly metamorphosed (< 72 hours old) freshwater unionid mussels was evaluated. Forty unionid mussels of each species were randomly distributed to test chambers and each species independently exposed for 24 hours to a static dose of either SDP (four species: *Lampsilis cardium, Lampsilis siliquoidea, Lampsilis higginsii,* and *Ligumia recta*) or FDP (three species: *Obovaria olivaria, Actinonaias ligamentina,* and *Megalonaias nervosa*).

Each test chamber was assigned to one of six treatment groups (n = four chambers per group) by using a randomized block design. The six treatment groups included (1) an untreated control group, (2) groups that received applications with nominal target active ingredient (AI) concentrations of 50, 100, 200, and 300 milligrams per liter (mg/L), and (3) a group that received an application with a nominal target AI concentration of 300 mg/L of heat-deactivated test article (300 HD). After a 24-hour exposure period, water inflow to the test chambers was restored, and the unionid mussels were maintained for an additional 7 days before they were assessed for survival.

Mean survival of four unionid mussels species exposed to SDP varied among species and treatment groups when compared to the untreated control groups. The results indicate that exposure to SDP-formulated *P. fluorescens* up to the maximum label concentration (100 mg/L AI) and up to three times the maximum label exposure duration (8 hours) is not likely to affect the survival of *L. siliquoidea* and *L. higginsii*. Low mean survival in the *L. recta* control group (25.0 percent) indicates that results for *L. recta* should be interpreted with caution. Mean survival of the *L. cardium* was significantly lower in all treated groups (14.4 to 40.6 percent) compared to the control group (68.8 percent). These results indicate that further investigation on the impact of SDP-formulated *P. fluorescens* on *L. recta* and *L. cardium* is warranted.

Mean survival of three unionid mussels species exposed to FDP was not significantly different in the 50-, 100-, and 200-mg/L AI treatment groups and the 300 mg/L heat-deactivated treatment groups when compared to the control groups. Mean survival of *O. olivaria* and *M. nervosa* was significantly lower in the 300-mg/L AI treated groups (38.1 and 48.1 percent, respectively) compared to the control groups (71.9 and 88.1 percent, respectively). The results indicate that exposure to FDP-formulated *P. fluorescens* up to the maximum label concentration (100 mg/L AI) and up to three times the

¹ U.S. Geological Survey.

² New York State Education Department.

³ U.S. Fish and Wildlife Service.

maximum label exposure duration (8 hours) is not likely to affect the survival of *O. olivaria*, *A. ligamentina*, and *M. nervosa*.

Introduction

Freshwater unionid mussel populations of North America were historically considered the most diverse in the world, but diversity has rapidly declined and continues to decrease in response to a variety of anthropogenic influences such as habitat degradation and alteration, pollution, and overharvest (Williams and others, 1993; Strayer and others, 2004). Out of the 250 species of unionid mussels in North America listed on the International Union for Conservation Red List, 39 species have a stable or increasing population, whereas 72 percent are currently threatened, imperiled, or candidates for listing, and 12 percent are extinct (http://www.iucnredlist.org/, accessed January 7, 2015). According to Ricciardi and Rasmussen (1999), an estimated 127 unionid mussel species will be lost within the next 100 years; however, this conservative 6.4 percent decadal extinction rate does not factor in extirpations related to invasions by dreissenid mussels (zebra, *Dreissena polymorpha*, and quagga, *D. rostriformis bugensis*).

Because of their high reproductive capacity and their planktonic lifestage, dreissenid mussels can quickly disperse and inundate aquatic environments (Mackie, 1991; Birnbaum, 2011; Benson and others 2015). Since their introduction and establishment in the Great Lakes in the 1980s, zebra mussels have been documented in 680 lakes within 27 states (U.S. Geological Survey, 2014). Zebra mussels adhering to unionid mussels have been documented to contain > 10,000 individuals weighing from two to five times as much as the unionid mussel (Hebert and others, 1991; Mackie, 1991). For example, in a power plant canal in Lake Erie, Schloesser and Kovalak (1991) observed in excess of 10,000 zebra mussels colonized on unionid mussels and a mean colonization estimate of 6,800 zebra mussels per unionid.

Zebra mussel colonization may interfere with unionid mussel locomotion, feeding, reproduction, and respiration (Mackie, 1991; Schloesser and Kovalak, 1991), and it has been linked to the starvation of unionids through competition for food resources (Baker and Hornbach, 1997; Strayer and Malcom, 2007). Heavily colonized unionid mussels may lack the energy reserves required to survive winter, and their ability to burrow into the sediment to avoid environmental stressors may be impeded (Nalepa, 1994; Schloesser and Nalepa, 1994). Unionid mussel extirpations and population declines have been linked to zebra mussels (Burlakova and others, 2000); prediction models estimate that colonization by as few as 100 zebra mussels can result in unionid mussel mortality (Ricciardi and others, 1995).

Federal and state management agencies have implemented recovery and propagation programs for threatened and endangered unionid species that coincide with legislation and programs for control and removal of introduced and invasive species such as zebra mussels (Neves, 2004; Nalepa and Schloesser, 2014). There is a lack of safe and effective tools to control dreissenid mussels in open-water environments, and the impacts of zebra mussels on unionid mussels have made it clear that such tools are of utmost importance. One potential option for limited open-water control of dreissenid mussels is a commercially prepared formulation of a specific strain (CL145A) of the common soil bacterium *Pseudomonas fluorescens* (Molloy, Mayer, Gaylo, Morse, and others, 2013). *Pseudomonas fluorescens* strain CL145A was discovered to be selectively toxic to dreissenid mussels by scientists at the New York State Museum Field Research Laboratory (Cambridge, New York). Ingestion of *Pseudomonas fluorescens* strain CL145A was found to cause cell necrosis in the epithelium lining of the dreissenid mussels' digestive tract, which ultimately induces mortality (Molloy, Mayer, Gaylo, Burlakova, and others, 2013).

Newly metamorphosed unionid mussels are ecologically and physiologically different from adult unionid mussels (ASTM International, 2013). Therefore, it is critical to know the potential exposure-related effects of formulated *P. fluorescens* on the newly metamorphosed life stage of unionid mussels before *P. fluorescens* is applied to open-water environments containing unionid mussels. Recommendations in the standard guide for laboratory toxicity tests with freshwater unionid mussels include initiating tests on juvenile unionid mussels within 5 days of excysting from host fish and completing tests within 14 days because of high mortality rates observed 4 to 6 weeks after transformation (ASTM International, 2013). Consistent with these recommendations, the objective of this study was to determine the survival of newly metamorphosed unionid mussels after exposure to spray-dried powder (SDP) or freeze-dried powder (FDP) formulated *P. fluorescens* in a 24-hour exposure.

Materials and Methods

The protocol for this study entitled "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to newly metamorphosed juvenile unionid mussels from seven different unionid species" is presented in appendix 1 (item 1). All methods and materials follow the written protocol except those instances that were identified in notes to file (appendix 1, items 2–3), study protocol amendments (appendix 1, items 4–12), and study deviations (appendix 2, items 1–12).

Experimental Design

Laboratory trials were completed at the U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) in La Crosse, Wisconsin, to assess the survival of newly metamorphosed unionid mussels following exposure to commercially prepared formulations of *P. fluorescens*, strain CL145A (SDP or FDP formulation). Seven species (table 1) endemic to the Great Lakes and (or) Mississippi River Basins were evaluated in the study trials. The four species of newly metamorphosed unionid mussels exposed to SDP were *Lampsilis cardium*, *Lampsilis siliquoidea*, *Lampsilis higginsii*, and *Ligumia recta*; the three species of newly metamorphosed unionid mussels exposed to FDP were *Obovaria olivaria*, *Actinonaias ligamentina*, and *Megalonaias nervosa*. Individual juvenile unionid mussels (< 72 hours old) were assessed for viability and randomly assigned to a test chamber in equal proportions (n = 960 per species; 40 per test chamber; appendix 3, items 7–12).

Treatments were assigned to test chambers by using a randomized block design (appendix 3, items 13–18). Six treatment groups (n = 4 per treatment group) were tested and included (1) an untreated control, (2) nominal target treatment concentrations of 50, 100, 200, and 300 milligrams per liter (mg/L) based on active ingredient (AI), and (3) a nominal target treatment concentration of 300 mg/L AI of heat-deactivated SDP or FDP test article (300 HD). The experimental unit for the trial was the individual test chamber.

At the conclusion of the 24-hour exposure period, the SDP- or FDP-treated water was drained from each test chamber and each test chamber flushed with fresh water prior to resuming the chamber water inflow. The unionid mussels were maintained in the test chambers for an additional 7-day postexposure holding period. At the conclusion of the 7-day postexposure holding period, each unionid mussel was individually assessed for survival as indicated by active foot movement.

Scientific				Test artic			
name	Common name	Abbreviation	Туре	Lot number	Biological activity (percent)	Exposure date	
Obovaria olivaria	Hickorynut	HIC	FDP	110510FD	98.7 ± 2.3	July, 12 2011	
Actinonaias ligamentina	Mucket	MUC	FDP	110510FD	98.7 ± 2.3	July 14, 2011	
Megalonaias nervosa	Washboard	WAS	FDP	110928FD	96.0 ± 6.9	December 13, 2011	
Lampsilis siliquoidea	Fatmucket	FAM	SDP	MBI-401 SDP 4655-12-Mix	85.3 ± 11.5	January 27, 2012	
Ligumia recta	Black sandshell	BLS	SDP	TR4669-4-(7-8) 2nd shipment	70.7 ± 2.3	April 17, 2012	
Lampsilis cardium	Plain pocketbook	PPB	SDP	TR4669-4-(5)	76.0 ± 8.0	May 16, 2012	
Lampsilis higginsii	Higgins' eye	HGE	SDP	TR4669-4-(5)	76.0 ± 6.9	May 26, 2012	

 Table 1.
 Identification and characteristics of test animals and test articles formulations.

Test Article

The test articles, produced by Marrone Bio Innovations, Inc. (Davis, California), were a commercially prepared SDP formulation and FDP formulation of *P. fluorescens* (strain CL145A) containing 50 and 100 percent AI (weight-to-weight ratio *P. fluorescens*, strain CL145A), respectively. Multiple formulations of test article were used during the course of this study because of the withdrawal of support for the FDP formulation by Marrone Bio Innovations, Inc. Data derived with the FDP formulation are included within the report; however, the formulation is not currently being manufactured.

Test article concentrations are reported as nominal target concentrations of active ingredient. Test article use was documented in test chemical logbooks (appendix 4, items 24–28). Verification of biological activity was determined for each lot of test article after use in the study by the New York State Museum Field Research Laboratory (Cambridge, New York) using their standard dreissenid mussel bioassay (appendix 4, items 29–34). The bioassays verified retention of biological activity for each lot of test article with mean mortality rates of 70.7 to 98.7 percent for treated zebra mussels compared to 0.0 to 4.0 percent in the untreated groups (table 1; appendix 4, items 29–34).

Test System

Three independent test systems were constructed, and each system consisted of a series of 24 glass test chambers ($17.8 \times 5.1 \times 8.3$ millimeters [mm]; length by width by height [L × W × H]) separated into two blocks (n = 12 per block; figs. 1 and 2). Polycarbonate distribution boxes ($41.0 \times 26.5 \times 15.2$ centimeters [cm]; L × W × H) were mounted above the test chambers and were used to deliver water and food solution to the test chambers. Polycarbonate head boxes ($41.0 \times 26.5 \times 15.2$ cm; L × W × H) were mounted above the distribution boxes and were used to mix the food solution (similar to Meinertz and others, 2011) with the water supply and then to supply a constant flow of food-enriched

water to the distribution boxes through glass standpipes ($\approx 5 \text{ mm}$ inner diameter). Food solutions were delivered to the inflow of each headbox via a peristaltic pump (Masterflex[®] Digi-staltic drive, model 77310; Cole-Parmer, Vernon Hills, Illinois) fitted with Masterflex L/S 16 tubing (figs. 1 and 2).

Test chamber inflows were controlled through 21-gauge luer-lock dispensing needles attached to 3-milliliter (mL) syringe bodies. The syringe body tips were cut to a length of approximately 3 cm, fitted into silicone stoppers, and then positioned in 19-mm holes in the bottom of the distribution boxes. Well water (20 ± 2 degrees Celsius [°C]) inflow to each test chamber was maintained between 7.0 to 10.0 milliliters per minute to provide a minimum of one test chamber exchange per hour. During the exposure period, water inflow was interrupted and supplemental aeration was supplied to the test chambers. Indirect fluorescent lighting (85 to 405 lux) was provided on an 18 hours light: 6 hours dark cycle as in accordance with ASTM International guidelines (2013).

The test chambers (fig. 3) contained three separate sections; the center section $(7.0 \times 4.5 \times 8.0 \text{ cm}; L \times W \times H)$ was used to house the test animals, and the outer sections $(4.5 \times 4.5 \times 8.0 \text{ cm}; L \times W \times H)$ were used to isolate the water inflow and outflows (fig. 4). The center sections were separated from the outer sections by two glass partitions. Each partition consisted of two identical 0.32-cm-thick glass plates $(4.5 \times 8 \text{ cm}; \text{ width by height})$ with two 1.4-cm holes positioned in a horizontal plane approximately 0.8 cm from the bottom (inflow partitions) or 2.5 cm from the bottom (outflow partitions). Nitex[®] mesh (150 micrometers [µm]) was placed between the partition plates before bonding them with silicone sealant. The Nitex mesh retained the test animals while allowing for water inflow/outflow. Test chambers were uniquely identified to allow for identification of treatment type and replicate.

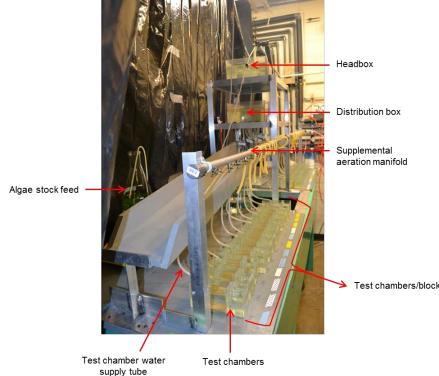


Figure 1. Test system used for dosing juvenile unionid mussels.

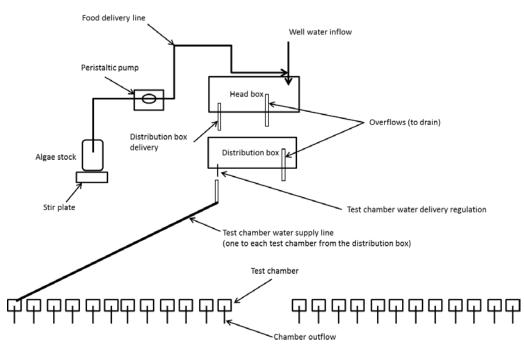


Figure 2. Schematic of test system used for dosing juvenile unionid mussels.

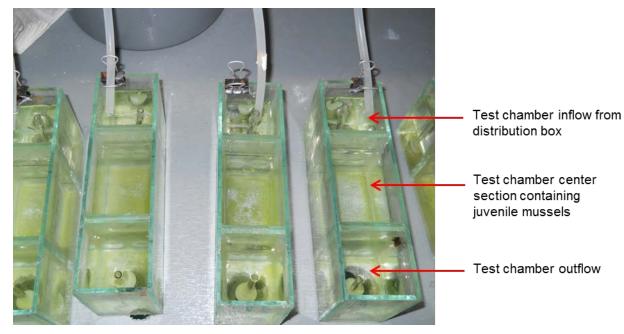


Figure 3. Example of three-section test chambers.

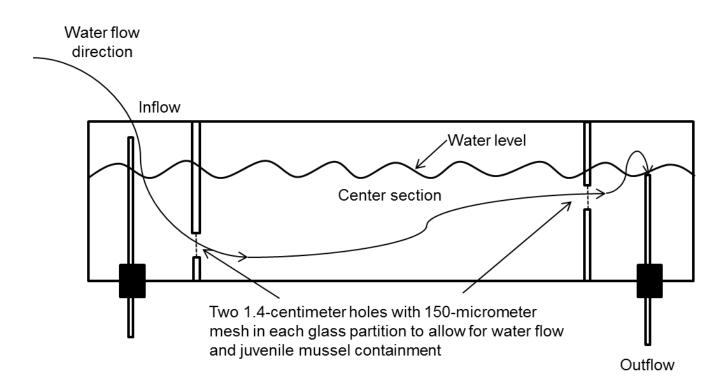


Figure 4. Three-section test chamber schematic: inflow section (left), center section containing juvenile unionid mussels (center), and outflow section (right).

Test Animals

Seven species of newly metamorphosed unionid mussels (excysted < 72 hours) were acquired from the U.S. Fish and Wildlife Service Genoa National Fish Hatchery and used as the test animals (table 1; appendix 5, items 1–15). The unionid mussels were acclimated to test dilution water and temperature through periodic water exchanges prior to transport and upon arrival at UMESC. Unionid mussels were observed under a dissecting microscope (model SMZ745; Nikon Instruments, Melville, New York), and those actively displaying foot movement (fig. 5; n = 960 per species [40 unionid mussels per replicate × 4 replicates × 6 treatment groups]) were randomly distributed to test chambers in groups of 20 until each chamber received a total of 40 unionid mussels. The unionid mussels were distributed to the test chambers ≤ 12 hours prior to exposure initiation by using a pipette with a widebore pipette tip to lessen the chances of injury to the animals.

The newly metamorphosed unionid mussels were provided a diet consisting of *Chlorella sorokiniana*, *Tetraselmis*, and *Nannochloropsis* at a nominal target concentration of 2.0 mg/L (algae dry weight). The diet used similar species and quantities that were to be successful for rearing newly metamorphosed juvenile mussels in a continuous flow-through system (Meinertz and others, 2011). A continuous supply of 20 ± 2 °C well water containing the algae food solution was provided to the test chambers during the acclimation and 7-day postexposure holding periods. Algae solutions (3.6 liters [L]) were prepared daily in a 4-L Erlenmeyer flasks. The algae solution contained a 1:1:1 (dry weight) mixture of live chlorella algae (Kentucky Department of Fish and Wildlife Resources, Center for Mollusk Conservation, Frankfort, Kentucky), *Tetraselmis* Instant Algae[®], and *Nannochloropsis* Instant Algae[®]. Instant algae pastes were obtained from Reed Mariculture (Campbell, Calif.). The algae

solutions were continuously mixed on stir plates and delivered via a peristaltic pump directly into the water inflow stream for the headboxes at 2.0 ± 0.2 mL/minute. Airstones were placed in the headboxes to assure thorough mixing of the algae solutions with the well-water inflow before delivery to the distribution boxes and test chambers. The resulting algae-enriched water delivered to the test chambers contained the nominal target concentration of 2.0 mg/L (algae dry weight).

Figure 5. Representative juvenile unionid mussels displaying active foot movement. The photograph is of *Lampsilis cardium* juvenile unionid mussels at the end of the 7-day postexposure holding period.

Test Article Solutions

For each species tested, a 10,000-mg/L AI treatment stock solution was prepared by placing either 10 grams SDP or 5 grams FDP in a 500-mL volumetric flask containing well water. A 5-L batch exposure solution was prepared immediately prior to exposure for each treatment group by adding the appropriate amount of the treatment stock solution to well water (appendix 4, items 17–23). The nominal target concentrations of the batch exposure solutions were 50, 100, 200, and 300 mg/L of active ingredient.

On each exposure day, a 10,000-mg/L AI heat-deactivated treatment stock solution was prepared by placing either 10 grams SDP or 5 grams FDP in a 500-mL volumetric flask containing approximately 300 mL of well water. The solution was placed in a 70 °C water bath for 45 minutes to degrade the active components of the *P. fluorescens*, according to the methods developed at the New York State Museum Field Research Laboratory (D. Mayer, Director of the New York State Museum Field Research Laboratory, oral commun., 2010). After cooling, the solution was brought to a final volume of 500 mL with well water. A 5-L batch deactivated exposure solution was prepared for each species by adding 150 mL of the stock solution to 4,850 mL of well water (appendix 4, items 17–23). The nominal target concentration of the batch heat-deactivated exposure solutions was 300 mg/L of active ingredient.

Dosing

Batch exposure solutions were prepared and immediately applied to test chamber replicates in a sequence. Exposures commenced with control treatments followed by the 300 mg/L heat-deactivated

(positive control) treatment, then the treatments of 50, 100, 200, and 300 mg/L. Treatments were initiated by interrupting water inflows and then removing the inflow and outflow standpipes to drain the water. After draining, residual water in the test chambers (≈ 25 mL) was replaced with exposure solution by flushing ≈ 300 mL of exposure solution through the test chambers. After test-chamber flushing, the standpipes were seated, and the test chambers were filled with exposure solution. Test chambers were supplied with supplemental aeration through disposable glass pipets placed near the bottom center of the test chamber.

At the conclusion of the 24-hour exposure period, the standpipes were removed from the test chambers and the exposure water drained. The chambers were flushed with well water (20 ± 2 °C), and water inflow was restored.

Water Chemistry

Water hardness, alkalinity, conductivity, and total ammonia nitrogen (TAN) were measured prior to exposure on water samples collected from each distribution box. Dissolved oxygen (DO), pH, and temperature also were measured prior to exposure in each distribution box and in two indiscriminately selected test chambers for each species.

Dissolved oxygen, pH, and temperature were measured in the center section of each test chamber at 6, 12, and 24 hours after application of the test article. Immediately after measurement of the water chemistry parameters, water samples (\approx 5 mL) were collected from the center section of the test chambers for determination of TAN. The samples were filtered through a 0.45-µm syringe filter, acidified to pH \leq 2.5 with 10 percent sulfuric acid, and stored at \approx 4 °C until analyzed for TAN by using the automated phenate method (Standard Method 4500G in American Public Health Association and others, 2012). Upon exposure termination, water hardness, alkalinity, and conductivity were measured in pooled water samples obtained from the center sections of test chamber replicates for each species.

Dissolved oxygen, pH, and temperature were measured daily throughout the 7-day postexposure holding period in two representative test chambers for each species. Water hardness, alkalinity, conductivity, and TAN were measured once during the 7-day postexposure holding period on a representative test chamber for each species.

Survival Assessment

Seven days after exposure, the contents of each test chamber were drained and rinsed through a 150- μ m sieve with well water (20 ± 2 °C) to collect the unionid mussels. The contents retained on the sieve were backwashed into a petri dish (100 mm × 150 mm) and viewed under a dissecting microscope to ascertain survival of the mussels. Survival of the recovered unionid mussels was indicated by observation of foot movement. Unrecovered unionid mussels were treated as mortalities within the data analysis.

Data Analysis

Water chemistry (DO, pH, temperature, water alkalinity, water hardness, conductivity, and ammonia) data analyses were limited to simple descriptive statistics calculated by using SAS[®] software version 9.4 (SAS Institute, Inc., Cary, North Carolina). Un-ionized ammonia fractions were calculated by using the pH and temperature measured at the time of sample collection according to the formula of Emerson and others (1975).

Statistical comparisons of zebra mussel survival also were completed by using SAS[®] software version 9.4. Significance was declared at $\alpha \le 0.05$. A generalized linear mixed model was used to

analyze the survival of unionid mussels in each treatment group (appendix 8, item 3). The proportion of mortalities ([number of dead + number of unrecovered unionid mussels at the end of postexposure period] compared to the original number of unionid mussels present) was modeled with a binomial distribution and a logit link function. A scale parameter was added to the model by using the random_residual statement. Unionid mussel survival in each treatment group was individually compared to the survival in the untreated control group by using a two-sided means comparison test.

Results

Preexposure water chemistry parameters (DO, pH, and temperature) are summarized in table 2 and in appendix 6 (items 1–8). Dissolved oxygen ranged from 8.33 to 8.79 mg/L, temperature ranged from 19.9 to 21.0 °C, pH ranged from 7.7 to 8.3, water hardness ranged from 172 to 180 mg/L as calcium carbonate (CaCO₃), alkalinity ranged from 118 to 130 mg/L as CaCO₃, and conductivity ranged from 370 to 396 microsiemens (μ S)/cm. The TAN remained \leq 0.18 mg as NH₃-N/L, and un-ionized ammonia remained \leq 0.01 mg as NH₃/L.

Exposure period water chemistry parameters (DO, pH, and temperature) are summarized in table 2 and in appendix 6 (items 1–4). Dissolved oxygen remained above the ASTM International (2013) criterion of 4 mg/L throughout the entire testing period. Water hardness, water alkalinity, and conductivity are summarized in table 3 and in appendix 6 (items 1–4). Water chemistry values for pooled exposure termination included water hardness ranges from 178 to 192 mg/L as CaCO₃, alkalinity ranges from 141 to 149 mg/L as CaCO₃, and conductivity ranges from 382 to 444 μ S/cm.

The TAN and un-ionized ammonia from samples collected during the exposure period are summarized in table 4 and in appendix 6 (items 5–8). The TAN remained below the 2013 U.S. Environmental Protection Agency (EPA) criterion of 17 mg/L TAN at pH 7 and 20 °C for acute exposure through 12 hours of the exposure period for all species and treatment groups and through the 24-hour exposure period for all control animals (tables 5b and 6 in EPA, 2013). The TAN in the *L. recta* 300 mg/L heat-deactivated treatment group (4.99 mg/L as NH₃/L; table 4) was the only SDP-treatment group that exceeded the acute criterion. The TAN observed in the *O. olivaria* and *A. ligamentina* 100, 200, 300 mg/L FDP-treatment groups and 300 mg/L heat-deactivated FDP-treatment group (range from 3.50 to 11.66 mg/L as NH₃/L, table 4) exceeded the acute criterion at 24 hours. In addition, the TAN observed in the *M. nervosa* 200 and 300 mg/L FDP-treatment groups and 300 mg/L as NH₃/L; table 4) also exceeded the acute criterion.

The 7-day postexposure holding period water chemistry parameters are summarized in tables 2 and 3 and in appendix 6 (items 9–12). Dissolved oxygen ranged from 7.93 to 8.41 mg/L, temperature ranged from 19.6 to 20.4 °C, pH ranged from 8.0 to 8.2, water hardness ranged from 174 to 178 mg/L as CaCO₃, alkalinity ranged from 121 to 131 mg/L as CaCO₃, and conductivity ranged from 363 to 402 μ S/cm. The TAN remained \leq 0.10 mg as NH₃-N/L, and un-ionized ammonia remained \leq 0.01 mg as NH₃/L.

Unionid mussel recovery and survival are summarized in table 5 and in appendix 8 (items 1–4). The recovery of unionid mussels from individual test chambers ranged from 70 to 100 percent. Multiple factors may have been responsible for unionid mussel recoveries of < 100 percent. First, unionid mussels may have been injured in the initial handling and placement process, during which unionid mussels were handled with a disposable pipet at least twice. If the injury resulted in mortality, then the valves may have degraded to the point of being indiscernible during the survival assessment. Secondly, the valves of newly metamorphosed unionid mussels are very fragile, and they may have been damaged during the collection process when they were rinsed on a sieve before being rinsed into a petri dish.

Mean survival of the SDP-control groups ranged from 25.0 percent (L. recta) to 87.5 percent (L. siliquoidea). Survival of the SDP-treated groups varied between species; however, exposures up to the maximum label concentration of SDP-formulated P. fluorescens (100 mg/L AI) for up to three times the labeled exposure duration (8 hours) resulted in significant differences in survival for only L. cardium and L. recta. Significant differences in L. cardium survival were detected between the control group and all treatment groups. A significant difference in L. recta survival was detected between the control group and the 100-mg/L treatment group. Although no other differences were detected in mean survival of L. recta treated groups compared to the control group, the low survival of the control group (25.0 percent) indicates that the results should be interpreted with caution. Mean survival of L. siliquoidea in the 200 AI, 300 AI, and 300-mg/L heat-deactivated treatment groups was significantly lower than that of the control group. Differences were detected in the mean survival between the 200and 300-mg/L SDP-treatment and control treatment groups for L. higginsii.

Mean survival of the FDP control groups ranged from 71.9 percent (O. olivaria) to 88.1 percent (M. nervosa). With the exception of the O. olivaria and M. nervosa 300-mg/L FDP-treatment groups, mean survival in all of the M. nervosa, O. olivaria, and A. ligamentina FDP-treated groups did not significantly differ from the control groups. Mean survival of the O. olivaria 300-mg/L FDP-treated group was significantly lower (p = 0.01) than the control group. Mean survival in the O. olivaria 50-, 100-, and 200-mg/L FDP-treatment groups and the 300-mg/L heat-deactivated FDP-treatment group did not differ from that of the control group. The mean survival of the M. nervosa 300-mg/L FDP-treated group was significantly lower (p < 0.01) than that of the control group.

Sampling period	Water quality	Treatment group	FD)P formulat	ion	SDP formulation				
	parameter	(mg/Ĺ)	HIC	MUC	WAS	PPB	FAM	HGE	BLS	
Pre– exposure	DO (mg/L)		8.33	8.77	8.70	8.33	8.50	8.79	8.77	
	pН		8.21	8.24	8.20	8.10	7.68	8.22	8.32	
	Temp (°C)		21.0	20.6	20.1	20.7	20.8	20.5	19.9	
Eurocuro		$\mathbf{DO}(\mathbf{u},\mathbf{v}/\mathbf{I})$	Control	8.6	8.7	8.5	8.7	8.7	8.5	8.7
Exposure	DO (mg/L)	Control	(0.2)	(0.3)	(0.2)	(0.1)	(0.1)	(0.1)	(0.2)	
		50	8.3	8.5	8.3	8.6	8.5	8.3	8.8	
		50	(0.3)	(0.1)	(0.3)	(0.2)	(0.2)	(0.2)	(0.1)	
		100	7.9	8.5	8.3	8.4	8.5	8.3	8.5	
		100	(0.9)	(0.2)	(0.2)	(0.5)	(0.1)	(0.3)	(0.4)	

Table 2.	Mean (standard deviation) dissolved oxygen, temperature, and pH range by treatment group
during the	preexposure, exposure, and holding periods.

[mg/L, milligrams per liter; FDP, freeze-dried powder; SDP, spray-dried powder; HIC, hickorynut; MUC, mucket;
WAS, washboard; PPB, plain pocketbook; FAM, fatmucket; HGE, Higgins' eye; BLS, black sandshell; DO
dissolved oxygen; Temp, temperature; °C, degrees Celsius; 300 HD, 300 mg/L of heat-deactivated product]

Sampling period	Water quality	Treatment group (mg/L)	FD	P formulat	ion	SDP formulation			
period	parameter		HIC	MUC	WAS	PPB	FAM	HGE	BLS
		200	8.0	8.4	8.1	8.0	8.2	7.9	8.1
		200	(0.8)	(0.1)	(0.4)	(0.8)	(0.6)	(0.7)	(0.7)
		300	7.4	8.2	7.8	8.0	7.8	7.7	7.8
		300	(1.2)	(0.4)	(0.6)	(0.8)	(1.0)	(0.9)	(1.2)
		300 HD	7.7	8.0	8.1	8.1	7.8	8.0	8.0
		300 HD	(1.0)	(0.4)	(0.6)	(0.8)	(1.0)	0.6)	1.0)
	pН	Control	8.20-8.35	8.12-8.3	58.05-8.27	8.28-8.38	7.98–8.35	8.13-8.40	8.02-8.43
		50	8.19-8.27	8.14-8.20	67.96–8.23	8.21-8.36	7.99–8.28	8.10-8.28	8.04-8.33
		100	8.06-8.20	8.09-8.30	07.99–8.20	8.00-8.34	7.98-8.23	8.15-8.30	7.99–8.32
		200	8.08-8.21	8.04-8.2	37.93-8.08	7.96–8.31	7.92–8.17	7.91–8.11	7.95–8.07
		300	7.95–8.11	7.98-8.12	27.85–7.99	7.97–8.34	7.81–8.03	7.81-8.13	7.84-8.05
		300 HD	7.97-8.06	7.93-8.0	17.82-8.01	7.88-8.37	7.80–8.12	7.97–8.14	7.85-8.15
	Temp (°C)	Control	19.2	19.1	19.6	19.9	19.1	19.8	19.5
	1 emp (e)	Connor	(0.9)	(0.8)	(0.3)	(0.2)	(0.2)	(0.3)	(0.2)
		50	19.3	19.1	19.6	19.7	19.1	19.9	19.6
		50	(0.9)	(0.8)	(0.2)	(0.1)	(0.1)	(0.2)	(0.2)
		100	19.2	19.1	19.7	19.6	19.1	19.9	19.6
		100	(0.9)	(0.7)	(0.2)	(0.1)	(0.1)	(0.2)	(0.3)
		200	19.2	19.2	19.6	19.8	19.0	19.9	19.7
		200	(0.9)	(0.6)	(0.2)	(0.2)	(0.3)	(0.2)	(0.3)
		200	19.1	19.1	19.6	19.8	19.0	20.0	19.5
		300	(0.8)	(0.6)	(0.3)	(0.2)	(0.3)	(0.3)	(0.2)
		200 110	19.3	19.0	19.6	19.7	19.0	20.0	19.6
		300 HD	(0.9)	(0.7)	(0.2)	(0.1)	(0.2)	(0.1)	(0.2)
Holding	DO (mg/L)		7.93	7.93	8.19	8.28	8.09	8.16	8.41
	рН		8.22	8.24	8.13	8.12	8.01	8.20	8.20
	Temp (°C)		19.6	19.8	19.9	20.4	20.3	20.4	20.0

Table 3. Mean (standard deviation) alkalinity, water hardness, and conductivity of preexposure and exposure termination water samples.

	F	reexposu	ire	Expos	sure term	ination ¹	Но	Holding period		
Species	Alk. (mg/L)	Hard. (mg/L)	Cond. (µS/cm)	Alk. (mg/L)	Hard. (mg/L)	Cond. (µS/cm)	Alk. (mg/L)	Hard. (mg/L)	Cond. (µS/cm)	
HIC	118	172	374	147	180	427	129	178	386	
me				(15)	(4)	(35)	129	170	380	
MUC	130	179	371	149	179	444	121	170	200	
MUC				(15)	(3)	(37)	131	178	390	
WAG	125	178	387	148	189	429	101	178	402	
WAS				(12)	(2)	(29)	121			
	128	172	372	143	181	382	10.6	174	364	
PPB				(10)	(2)	(5)	126			
	126	180	396	148	192	430		175	383	
FAM				(12)	(7)	(24)	123			
	128	174	370	141	178	390				
HGE				(8)	(2)	(18)	121	178	363	
	125	180	376	146	183	409				
BLS				(13)	(1)	(18)	121	176	378	

[Alk., alkalinity as CaCO₃; Hard., hardness as CaCO₃; CaCO₃, calcium carbonate; Cond., conductivity; mg/L, milligrams per liter; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; HIC, hickorynut; MUC, mucket; WAS, washboard; PPB, plain pocketbook; FAM, fatmucket; HGE, Higgins' eye; BLS, black sandshell]

¹ Exposure termination parameters were measured on pooled water samples for each treatment group.

Table 4. Mean (standard deviation) total ammonia nitrogen (TAN) and un-ionized ammonia (NH₃) at 24 hour during the exposure period.

[FDP, freeze-dried powder; SDP, spray-dried powder; HIC, hickorynut; MUC, mucket; WAS, washboard; PPB, plain pocketbook; FAM, fatmucket; HGE, Higgins' eye; BLS, black sandshell; TAN, total ammonia nitrogen; < , less than; mg NH₃-N/L, milligrams un-ionized ammonia nitrogen per liter; 300 HD, 300 mg/L of heat-deactivated product; NH₃, un-ionized ammonia; mg/L milligrams per liter]

Water quality	Treatment	FD	P formula	tion		SDP formulation				
parameter	group (mg/L)	HIC	MUC	WAS	PPB	FAM	HGE	BLS		
TAN	0	0.02	0.01	0.03	0.08	0.08	0.06	0.07		
(mg NH ₃ -N/L)	0	(0.01)	(<0.01)	(0.02)	(0.03)	(0.02)	(<0.01)	(0.01)		
	50	1.26	1.36	1.32	0.29	0.72	0.21	0.19		
	50	(0.08)	(0.11)	(0.38)	(0.10)	(0.15)	(0.10)	(0.02)		
	100	3.50 ^a	3.71 ^a	2.56	0.66	1.47	1.22	2.16		
	100	(0.26)	(0.82)	(0.19)	(0.35)	(0.12)	(0.54)	(1.21)		
	200	7.80 ^a	8.30 ^a	5.39 ^a	1.06	3.15	2.22	3.13		
	200	(0.72)	(1.47)	(1.02)	(0.79)	(0.42)	(0.51)	(1.90)		
	300	10.50 ^a	11.45 ^a	6.81 ^a	1.30	4.23	2.50	4.26		
		(1.12)	(1.21)	(1.32)	(0.93)	(0.72)	(0.82)	(0.51)		
	300 HD	11.66 ^a	10.67 ^a	7.09 ^a	1.29	4.15	3.53	4.99 ^a		
		(0.26)	(0.43)	(2.04)	(0.96)	(0.68)	(0.44)	(0.13)		
NH ₃	0	< 0.01	< 0.01	< 0.01	0.01	0.01	0.01	0.01		
(mg/L)	0	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)		
	50	0.07	0.08	0.07	0.02	0.04	0.01	0.01		
	50	(0.01)	(0.01)	(0.03)	(0.01)	(0.01)	(0.01)	(<0.01)		
	100	0.16	0.22	0.11	0.04	0.08	0.08	0.13		
	100	(0.02)	(0.04)	(0.03)	(0.02)	(0.01)	(0.04)	(0.08)		
	200	0.37	0.41	0.19	0.04	0.13	0.08	0.13		
	200	(0.07)	(0.10)	(0.05)	(0.03)	(0.04)	(0.03)	(0.08)		
	300	0.36	0.46	0.19	0.05	0.13	0.08	0.15		
	300	(0.07)	(0.09)	(0.03)	(0.03)	(0.05)	(0.05)	(0.04)		
	200 115	0.40	0.35	0.22	0.06	0.14	0.15	0.21		
	300 HD	(0.03)	(0.01)	(0.02)	(0.05)	(0.03)	(0.02)	(0.06)		

^a TAN values exceed the acute exposure criterion (tables 5b and 6, U.S. Environmental Protection Agency, 2013).

Table 5. Mean (standard deviation) recovery and percent survival of unionid muss	els
exposed to spray-dried powder (SDP) or freeze-dried powder (FDP), by formulation treatment group.	ype and

[Survival treatment means within the same column with letters are significantly different ($p > 0.05$)
from the control means; mg/L, milligrams per liter; FDP, freeze-dried powder; SDP, spray-dried
powder; HIC, hickorynut; MUC, mucket; WAS, washboard; PPB, plain pocketbook; FAM, fatmucket;
HGE, Higgins' eye; BLS, black sandshell]

	Treatment	FDP formulation				SDP formulation			
	group (mg/L)	HIC	MUC	WAS	PPB	FAM	HGE	BLS	
Recovery		88.1	89.4	96.9	91.3	91.3	93.1	93.1	
Recovery	Control	(4.7)	(10.1)	(1.3)	(5.2)	(2.5)	(5.5)	(5.5)	
	50	88.8	93.8	92.5	90.6	91.3	88.1	93.1	
	30	(12.7)	(4.3)	(5.4)	(5.2)	(5.2)	(8.8)	(2.4)	
	100	90.0	90.0	94.4	91.3	96.3	92.5	92.5	
	100	(8.4)	(10.2)	(3.8)	(7.5)	(3.2)	(6.5)	(5.4)	
	200	90.6	94.4	96.3	91.9	91.9	86.3	93.8	
	200	(5.2)	(4.7)	(6.0)	(3.8)	(2.4)	(13.8)	(6.0)	
	300	94.4	93.8	96.3	90.0	91.9	87.5	93.1	
	300	(8.3)	(1.4)	(1.4)	(7.4)	(2.4)	(9.4)	(5.5)	
	300HD	88.1	94.4	94.4	90.0	91.3	94.4	95.0	
	300HD	(5.9)	(2.4)	(5.2)	(3.5)	(4.3)	(3.1)	(0.0)	
Comprised1	Control	71.9	78.8	88.1	68.8	87.5	88.1	25.0	
Survival	Control	(9.4)	(10.3)	(5.9)	(9.7)	(3.5)	(9.7)	(13.4)	
	50	65.0	78.1	77.5	14.4 ^a	75.6	79.4	21.3	
	50	(20.3)	(6.3)	(6.1)	(7.7)	(13.8)	(9.0)	(18.1)	
	100	67.5	75.0	86.3	18.8 ^a	86.3	78.8	6.3 ^a	
	100	(15.9)	(11.5)	(6.6)	(10.1)	(6.0)	(4.8)	(2.5)	
	200	52.5	70.0	80.0	26.9 ^a	50.6 ^a	65.6 ^a	8.1	
	200	(23.0)	(10.2)	(9.6)	(20.9)	(21.2)	(13.8)	(6.3)	
	200	38.1 ^a	73.8	48.1 ^a	18.8 ^a	3.8 ^a	61.9 ^a	13.8	
	300	(14.0)	(10.3)	(11.3)	(14.2)	(3.2)	(6.6)	(4.8)	
	20011D	53.1	81.9	76.3	40.6 ^a	30.0 ^a	75.6	6.9	
	300HD	(11.8)	(3.1)	(10.3)	(20.0)	(35.5)	(12.3)	(12.1)	

Conclusion

The study results indicate that exposure to spray-dried powder formulated *Pseudomonas fluorescens* at the maximum-labeled concentration (100 milligrams per liter [mg/L] active ingredient [AI]) and up to three times the maximum-labeled exposure duration (8 hours) is not likely to affect the

survival of newly metamorphosed *Lampsilis siliquoidea* and *Lampsilis higginsii*. The low mean survival of the *Ligumia recta* control group (25.0 percent) indicates that results for *L. recta* should be interpreted with caution. Significant differences were detected in the mean survival of the *Lampsilis cardium* treated groups (14.4 to 40.6 percent) compared to the control group (68.8 percent). The results indicate that further investigation on the effects of spray-dried powder formulated *P. fluorescens* exposure on *L. recta* and *L. cardium* is warranted.

Mean survival of three unionid mussels species exposed to the freeze-dried powder formulated *Pseudomonas fluorescens* was not significantly different in the 50-, 100-, and 200-mg/L AI treatment groups and the 300-mg/L heat-deactivated treatment groups when compared to the control groups. The study results indicate that exposure to freeze-dried powder formulated *Pseudomonas fluorescens* up to 200 mg/L AI and up to 24 hours is not likely to impact the survival of newly metamorphosed *Obovaria olivaria, Actinonaias ligamentina*, and *Megalonaias nervosa*.

References Cited

- American Public Health Association, American Water Works Association, and Water Environment Federation, 2012, Standard methods for examination of water and wastewater (22d ed.): Washington, D.C., American Public Health Association, 1,360 p.
- ASTM International, 2013, ASTM Standard E2455-06 (2013)—Standard guide for conducting laboratory toxicity tests with freshwater mussels: West Conshohocken, Pa., ASTM International, 52 p.
- Baker, S.M., and Hornbach, D.J., 1997, Acute physiological effects of zebra mussel (*Dreissena polymorpha*) infestation on two unionid mussels, *Actinonaias ligamentina* and *Amblema plicata*: Canadian Journal of Fisheries and Aquatic Sciences, v. 54, p. 512–519.
- Benson, A.J., Raikow, D., Larson, J., Fusaro, A., and Bogdanoff, A.K., 2015, *Dreissena polymorpha* (fact sheet, revision date June 26, 2014): Gainesville, Fla., USGS Nonindigenous Aquatic Species Database, accessed February 25, 2015 at http://nas.er.usgs.gov/queries/factsheet.aspx?speciesid=5.
- Birnbaum, Christina, 2011, NOBANIS—Invasive alien species fact sheet—*Dreissena polymorpha*: Online Database of the European Network on Invasive Alien Species, accessed February 13, 2014, at http://www.nobanis.org/files/factsheets/Dreissena polymorpha.pdf.
- Burlakova, L.E., Karatayev, A.Y., and Padilla, D.K., 2000, The impact of *Dreissena polymorpha* (PALLAS) invasion on unionid bivalves: International Review of Hydrobiology, v. 85, no. 5–6, p. 529–541.
- Emerson, K., Russo, R.C., Lund, R.E., and Thurston, R.V., 1975, Aqueous ammonia equilibrium calculations—Effect of pH and temperature: Journal of the Fisheries Research Board of Canada, v. 32, p. 2379–2383.
- Hebert, P.D.N., Wilson, C.C., Murdoch, M.H., and Lazar, R., 1991, Demography and ecological impacts of the invading mollusc *Dreissena polymorpha*: Canadian Journal of Zoology, v. 69, p. 405–409.
- Mackie, G.L., 1991, Biology of the exotic zebra mussel, *Dreissena polymorpha*, in relation to native bivalves and its potential impact in Lake St. Clair: Hydrobiologia, v. 219, p. 251–268.
- Meinertz, J.R., Schreier, T.M., Hess, K.R., and Bartsch, M.R., 2011, Survival and growth of newly transformed *Lampsilis cardium* and *Lampsilis siliquoidea* in a flow-through, continuous feeding test system: American Malacological Bulletin, v. 29, p. 69–75.
- Molloy, D.P., Mayer, D.A., Gaylo, M.J., Burlakova, L.E., Karatayev, A.Y., Presti, K.T., Sawyko, P.M., and Morse, J.T., 2013, Non-target trials with *Pseudomonas fluorescens* strain CL145A, a lethal control agent of dreissenid mussels (Bivalvia: Dreissenidae): Management of Biological Invasions, v. 4, p. 71–79.

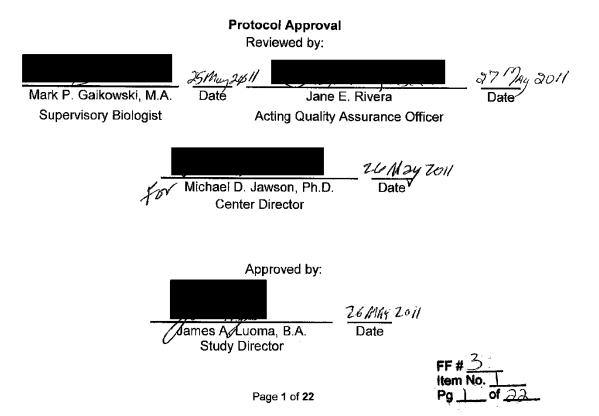
- Molloy, D.P., Mayer, D.A., Gaylo, M.J., Morse, J.T., Presti, K.T., Sawyko, P.M., Karatayev, A.Y., Burlakova, L.E., Laruelle, F., Nishikawa, K.C., and Griffin, B.H., 2013, *Pseudomonas fluorescens* strain CL145A—A biopesticide for the control of zebra and quagga mussels (Bivalvia: Dreissenidae): Journal for Invertebrate Pathology, v. 113, p. 104–114.
- Nalepa, T. F., 1994, Decline of native unionid bivalves in Lake St. Clair after infestation by the zebra mussel, *Dreissena polymorpha*: Canadian Journal of Fisheries and Aquatic Sciences, v. 51, p. 2227–2233.
- Nalepa, T.F., and Schloesser D.W., eds., 2014, Response, management, and mitigation, *Part III of* Quagga and zebra mussels—Biology, impacts, and control (2d ed.): Boca Raton, Fla., CRC Press, Taylor & Francis Group, p. 116–284.
- Neves, R.J., 2004, Propagation of endangered freshwater mussels in North America: Journal of Conchology, Special Publication, 3, p. 69–80.
- Ricciardi, A., and Rasmussen, J.B., 1999, Extinction rates of North American freshwater fauna: Conservation Biology, v. 13, no. 5, p. 1220–1222.
- Ricciardi, A., Whoriskey, F.G., and Rasmussen, J.B., 1995, Predicting the intensity and impact of *Dreissena* infestation on native unionid bivalves from *Dreissena* field density: Canadian Journal of Fisheries and Aquatic Sciences, v. 52, p. 1449–1461.
- Schloesser, D.W., and Kovalak, W.P., 1991, Infestation of unionids by *Dreissena polymorpha* in a power plant canal in Lake Erie: Journal of Shellfish Research, v. 10, no. 2, p. 355–359.
- Schloesser, D.W., and Nalepa, T.F., 1994, Dramatic decline of unionid bivalves in offshore waters of western Lake Erie after infestation by the zebra mussel, *Dreissena polymorpha*: Canadian Journal of Fisheries and Aquatic Sciences, v. 51, p. 2234–2242.
- Strayer, D.L., and Malcom, H.M., 2007, Effects of zebra mussels (*Dreissena polymorpha*) on native bivalves—The beginning of the end or the end of the beginning?: Journal of the North American Benthological Society, v. 26, no. 1, p. 111–122.
- Strayer, D.L., Downing, J.A., Haag, W.R., King, T.L., Layzer, J.B., Newton, T.J., and Nichols, J.S., 2004, Changing perspectives on pearly mussels, North America's most imperiled animals: BioScience, v. 54, no. 5, p. 429–439.
- U.S. Environmental Protection Agency, 2013, Ambient water quality criteria for ammonia—Freshwater 2013: Washington, D.C., Office of Water, EPA 822–R–13–001, 242 p.
- U.S. Geological Survey, 2014, Zebra and quagga mussel distribution in U.S. lakes: USGS Web page, accessed on March 27, 2014, at http://fl.biology.usgs.gov/Nonindigenous_Species/Zebra_mussel_distribution/zebra_mussel_distribution.html.
- Williams, J.D., Warren Jr., M.L., Cummings, K.S., Harris, J.L., and Neves, R.J., 1993, Conservation status of freshwater mussels of the United States and Canada: Fisheries, v. 18, no. 9, p. 6–22.

Appendix 1. Study Protocol With Data Forms

Item number	Item description	Number of pages	Report page number
1	Protocol: "Effects of <i>Pseudomonas fluorescens</i> (<i>Pf</i> –CL145A) to newly metamorphosed juvenile mussel from seven different unionid species"	22	28
2	Note to File 1: Clarification of pH and temperature data collected for un-ionized ammonia	1	50
3	Note to File 2: Clarify use of two Water Quality Form 2 datasheets for Hickorynut mussel test	1	51
4	Amendment 1: Initiating feed to exposure chambers during the pre-exposure period	2	52
5	Amendment 2: Alkalinity and hardness measurements collected during exposure period termination from each exposure concentration	2	54
6	Amendment 3: Reduces feeding rate during the holding period	2	56
7	Amendment 4: Changes software used to capture, record, and analyze photomicrographs to Nikon Elements BR [®] software	2	58
8	Amendment 5: Changes ammonia sampling regime to include LTRMP using the automated phenate method of analysis to provide information regarding the accumulation rate of ammonia	2	60
9	Amendment 6: Alters pre–exposure feeding regime, removes use of substrate, and reduces holding period to 7 days	5	62
10	Amendment 7: Eliminates use of YSI 9000 Spectrophotometer for ammonia analysis	2	67
11	Amendment 8: Amends test material from freeze dried powder (FDP) to spray dried powder (SDP)	7	69
12	Amendment 9: Status of study changed to non-regulated	2	76
13	Newly Metamorphosed Juvenile Mussel Test Organism UMESC Lot Number Assignment Form	1	78
14	Newly Metamorphosed Juvenile Mussel Distribution Form	1	79
15	Newly Metamorphosed Mussel Exposure Dosing Form	1	80
16	Test Chemical Stock Preparation Data Form	1	81
17	Chemical Stock Solution Determination and Preparation – Copy (original misplaced)	1	82
18	Water Quality – Form 1: Pre-exposure	1	83
19	Water Quality – Form 2: Exposure Period Dissolved Oxygen, pH, Temperature	1	84
20	Water Quality – Form 2a: Exposure Period pH and Temperature for Ammonia Analysis	1	85
21	Water Quality - Form 3: Exposure Termination Hardness, Alkalinity and Conductivity	1	86
22	Daily Water Quality – Form 4: Dissolved Oxygen, pH, and Temperature	1	87
23	Weekly Water Quality - Form 5: Hardness, Alkalinity and Conductivity	1	88
24	System Conditions – Form 1: Light Intensity	1	89
25	System Condition – Form 3: Daily Flow Rates (mL/minute)	1	90
26	Individual Algae Product Dry Weight Determination Datasheet	1	91
27	Algae Stock Solution Preparation	1	92
28	Algae Stock Solution Dry Weight Determination	1	93

29	Juvenile Mussel Recovery Datasheet	1	94
30	Juvenile Mussel Micropictograph Datasheet	1	95
31	Juvenile Mussel Measurement Datasheet	1	96
32	Pipette Calibration	1	97
33	Revised Datasheets	32	98

ORIGINAL


Protocol Title:

Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

Study Number: AEH-11-PSEUDO-02

Test Facilities and Study Sponsor Upper Midwest Environmental Sciences Center (UMESC) US Geological Survey 2630 Fanta Reed Rd. La Crosse, Wisconsin 54603

Proposed Experimental Start Date: May 2011 Proposed Experimental Termination Date: March 2012

28

TABLE OF CONTENTS

1. INTRODUCTION	5
2. PROTOCOL OBJECTIVE	6
3. STUDY SCHEDULE	6
3.1 Proposed initiation	6
3.2 Schedule of events	3
3.3 Proposed completion date	6
4. STUDY DESIGN	7
4.1 General Description	7
4.2 Experimental Design	7
5. STUDY PROCEDURES	9
5.1 Test Animals	9
5.1.1 Description	Э
5.1.1.1 Age	
5.1.1.2 Sex	9
5.1.1.3 Species	9
5.1.2 Number of animals	Э
5.1.3 Source of animals	9
5.1.4 Inclusion criteria	9
5.1.5 Acclimation	9
5.1.6 Feeding	
5.2 Water Chemistry 1	
5.2.1 Dissolved Oxygen 1	10
5.2.2 Temperature 1	10
5.2.3 pH 1	
5.2.4 Hardness 1	
5.2.5 Alkalinity	0
5.2.6 Conductivity 1	0
5.2.7 Ammonia 1	
5.3 Disposal 1	
5.4 Study facilities 1	
5.4.1 Test facility 1	1
5.4.1.1 Exposure System 1	
5.4.1.2 Aeration 1	
5.4.1.3 Water supply 1	
5.4.1.4 Lighting 1	
5.4.1.5 Exposure chamber dimensions1	
5.4.1.6 Water discharge 1	
5.5 Observations 1	2

Page 2 of 22

5.5.1 Behavioral Observations	12
5.6 Treatment administration	12
5.6.1 Treatment	12
5.6.2 Route of administration	12
5.6.3 Dose verification	12
6. SPECIFICATION OF VARIABLES	12
6.1 Distribution to experimental units	
6.2 Determination of survival and growth	13
7. DATA ANALYSIS	13
7.1 Experimental unit	13
7.2 Number of exposures and replicates	13
7.3 Statistical methodology	13
7.4 Statistical significance	13
7.5 Other data analyses	13
8. PERSONNEL	13
8.1 Study Director	13
8.1.1 Address	13
8.1.2 Contact	13
8.1.3 Training and experience	13
8.2 Other personnel involved in study	14
9. DISPOSITION/STORAGE	14
9.1 Study Records	14
10. GOOD LABORATORY PRACTICES	14
11. AMENDMENT/DEVIATIONS TO THE PROTOCOL	14
11.1 Protocol amendments	14
11.2 Protocol deviations	14
12. INVESTIGATIONAL TEST ARTICLE	15
12.1 Test substance	15
12.1.1 Chemical name	15
12.1.2 Trade name	
12.1.3 Active/inactive ingredients	
12.1.4 Source	15
12.1.5 Lot Number	15
12.1.6 Expiration Date	
12.1.7 Storage during study	
12.1.8 Safety	
13. ADVERSE EVENTS	
14. BIOSECURITY PROCEDURES	
14.1 General Procedures	15
14.2 HACCP Plan	
	10

Page 3 of 22

STUDY NO. AEH-11-PSEUDO-02

15.	STANDARD OPERATING PROCEDURES	16
	REFERENCES	
	APPENDIX	
	1 Appendix 1 HACCP Plan	

Page 4 of 22

1. INTRODUCTION:

Historical native freshwater mussel populations of North America were considered the most diverse in the world with about 297 recognized taxa consisting of 281 species and 16 subspecies (Williams et al., 1993). Mussels are largely sedentary in nature, relying on movement of host fish during glochidial attachment as means of transport. Due to these facts, mussels are particularly vulnerable to a variety of anthropogenic influences including habitat degradation and alteration, pollution and over harvest. Master (1990) reported a survey conducted by the Nature Conservancy which showed 55% of North America's mussels as extinct or imperiled compared to 7% of terrestrial species which traditionally have received far greater attention. Ricciardi and Rasmussen (1999) projected that at least 127 imperiled mussel species will be lost in the next 100 years. The extinction rate was calculated to be 6.4% per decade and should be considered conservative because it did not take into account the extirpations caused by the invasive dreissenid mussels (Ricciardi and Rasmussen, 1999).

Neves et al (1997) reported the ominous status of native mussels in the Southeast with only 25 percent of the 269 species historically present reported as stable. Thirteen percent were reported as presumed extinct, 28 percent as endangered, followed by 14 percent as threatened and 18 percent listed as species of special concern. Many unionid mussel species in North America were imperiled prior to epizoic colonization by zebra mussels (*Dreissena polymorpha*), which has dramatically heightened concerns for their continued survival. Zebra mussels have been deemed responsible for the extirpation of unionids from waters in Europe as early as 1937 (Sebestyen, 1937). Severe declines in unionid abundance in Europe (Karatayev and Burlakova, 1995; Burlakova, 1998) and North America (Haag et al, 1993; Nalepa, 1994; Ricciardi et al., 1996) have since been well documented in the literature.

The 1973 Endangered Species Act (ESA) brought forth the need to recognize, protect and recover rare mussels in the United States. The United States Fish and Wildlife Service (USFWS) develops recovery plans for threatened and endangered species which utilize a range of tools to promote recovery of the species including restoring and acquiring critical habitat, removing introduced or invasive species and captive propagation and release into historic ranges.

As of 2004, mussel propagation work was being conducted in several different facilities in 7 states as well as in Ontario, Canada (Neves, 2004). The Genoa National Fish Hatchery (GNFH) in Wisconsin has been involved in mussel recovery since 2000, releasing tens of thousands of propagated subadult Higgins eye pearlymussel (*Lampsilis higginsii*) for recovery efforts. The GNFH produces subadult mussels using cage culture techniques. This technique involves placing glochidia laden host fish into

Page 5 of 22

submerged cages within natural water bodies such as the Upper Mississippi and St. Croix Rivers. The fish are released from the cages after mussel excystment and the mussels are allowed to grow on the cage bottom for an additional 6-18 months before being harvested. Areas that were previously successful in rearing mussels using this technique have been abandoned due to the proliferation and colonization by zebra mussels.

Biologists at the New York State Museum (NYSM) Field Research Laboratory have been researching dreissenid mussel control since 1991 and they discovered that a bacterium isolated from soils (*Pseudomonas fluorescens* [Pf-CL145A]) is efficacious for controlling zebra mussels. Marrone Bio Innovations (MBI; Davis, CA) is currently developing a freeze dried formulation of this bacterium called MBI-401 FDP. The current commercial applications of this product are for use with closed systems such as power generating plant cooling systems. The NYSM has partnered with the USFWS (Genoa NFH) and United States Geological Survey's (USGS) Upper Midwest Environmental Sciences Center (UMESC) to determine the suitability of this product for open water zebra mussel control applications such as treatment of native mussel propagation cages or native mussel beds.

The newly metamorphosed life stage of unionid mussels has been identified as a critical life stage that has unique life style characteristics that may not be adequately safe guarded by habitat protections designed for adult lifestages (ASTM E2455-06). This research will determine the animal effects of various concentrations of *Pseudomonas fluorescens (Pf*-CL145A) to newly metamorphosed juveniles from seven unionid mussels species present in the Great Lakes and Upper Mississippi River basins.

2. PROTOCOL OBJECTIVE:

This study will determine the animal effects of various concentrations of MBI-401 FDP (*Pseudomonas fluorescens* [*Pf*-CL145A]) to the newly metamorphosed lifestage of seven unionid mussels species present in the Great Lakes and Upper Mississippi River basins.

3. STUDY SCHEDULE:

- 3.1 Proposed initiation: May 2011
- 3.2 Schedule of events: A proposed schedule of events is provided in Table 1.
- 3.3 Proposed completion date: March 2012

Page 6 of 22

Table 1. Proposed Schedule of Events		
Date	Activity	
May 2011-December 2011	mussel exposures	
November 2011-February 2012	Data analysis	
March 2012	Final Report submission	

4. STUDY DESIGN:

4.1 General Description:

Newly metamorphosed juvenile mussels from 7 unionid mussel species (Table 2) endemic in the Great Lakes and Mississippi River basins will be evaluated for effects from exposure to varying concentrations of MBI-401 FDP (*Pseudomonas fluorescens* [*Pf*-CL145A]). Juvenile mussels will be placed into a flow through test apparatus and then exposed to the test material for 24 h in a static exposure. Following the exposure period, the water flow will resume to the exposure chambers and the mussels will be reared for an additional 30 days before being removed from the system and evaluated for survival and growth. The mussels will be preserved for possible histological examination. If histological examination is deemed necessary, a protocol amendment will be prepared to describe the methods and procedures to be used.

Table 2. Mussel species to be evaluated for MBI-401 FDP (*Pseudomonas fluorescens* [*Pf*-CL145A]) exposure effects.

Common name	Scientific name
Black sandshell	Ligumia recta
Fatmucket	Lampsilis siliquoidea
Hickorynut	Obovaria olivaria
Higgins eye	Lampsilis higginsii
Mucket	Actinonaias ligamentina
Plain pocketbook	Lampsilis cardium
Washboard	Megalonaias nervosa

4.2 Experimental Design:

Donor mussel collection, host fish inoculation, and newly metamorphosed mussels harvesting will be performed at the Genoa NFH by USFWS biologists. Gravid donor mussels will be collected from the Upper Iowa, Upper Mississippi or

Page 7 of 22

St. Croix Rivers. Mussels will be identified to species as described in Cummings and Mayer (1992) and Watters et al. (2009) by staff at the Genoa NFH. Approximately 1,200 juvenile mussels from each species will be collected from the mussel propagation aquaria by Genoa NFH biologists and transferred to the UMESC at ~20°C. After acclimation to UMESC test water, the mussels will be placed in petri dishes and viewed under a dissecting microscope. Twenty mussels displaying active foot movement will be transferred with a disposable pipet into a 50-mL beaker or petri dish containing 20°C well water. The beaker or petri dish will then be emptied and rinsed into a randomly chosen exposure chamber containing 20°C well water and approximately 4 mm of 75 – 150 μ m silica sand as substrate. The process will then be repeated until all exposure chambers receive a total of two distribution aliquots for a total of 40 juveniles for each exposure chamber. Additionally, two randomly chosen groups of 20 mussels of each species will be preserved to determine the initial mussel valve length.

Exposures will be initiated 12-24 h after the exposure chambers receive test animals by interrupting the fresh water flow and then adding the appropriate freshly prepared solution of MBI-401 FDP in a completely randomized design. There will be a total of four replicates for each exposure concentration, for a total of 24 exposure chambers per species (Figure 1). The exposure chambers will be held at 20°C on an 18:6 h light/dark cycle for the exposure and post exposure period. The exposure will be a single, dose of MBI-401 FDP (*Pseudomonas fluorescens* [*Pf*-CL145A]) administered as a 24 h static exposure. Water flow will be resumed to the exposure chambers after the treatment period.

At 30-d post exposure, the contents of each exposure chamber will be sieved through a 200-µm screen to separate the juvenile mussels from the substrate. The mussels will be examined through a dissecting scope to determine viability and for enumeration. A photomicrograph of all surviving mussels will be recorded for each exposure chamber for growth measurements. The mussels will be euthanized and fixed in modified Davidson's solution for up to 48 h and then transferred to 70% ethanol.

Page 8 of 22

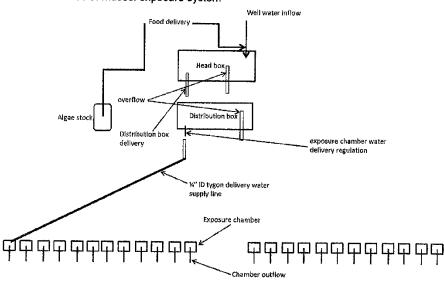


Figure 1. Schematic of mussel exposure system

5. STUDY PROCEDURES

5.1 Test Animals

- 5.1.1 Description:
 - 5.1.1.1 Age 24 -72 h newly excysted mussels.
 - 5.1.1.2 Sex The sex of newly excysted mussels cannot be determined visually.
 - 5.1.1.3 Species See Table 2
- 5.1.2 Number of animals: Approximately 960 mussels (40 per replicate x 4 replicates x 6 concentrations) of each species. This design uses the fewest number of mussels possible, consistent with the objective of the study, contemporary scientific standards and ASTM guide E2455-06.
- 5.1.3 Source of animals: All mussels will be obtained from the Genoa NFH.
- 5.1.4 Inclusion criterion: Mussels will be used only if they display active foot movement.
- 5.1.5 Acclimation: Mussels will be acclimated to UMESC well water and temperature (20°C) by the addition of approximately 50% UMESC well water at the Genoa NFH prior to transport to UMESC and again after arrival at the UMESC.

Page 9 of 22

5.1.6 Feeding: After the exposure period, the exposure chambers will receive a constant supply of well water containing approximately 2.25 mg/L (dry weight) of a 1:1:1 mixture of live chlorella algae (obtained from the Kentucky Department of Fish and Wildlife Resources Center for Mollusk Conservation) and Reed Mariculture tetraselmis and nannochloropsis instant algae. This mixture approximates the diet that produced the greatest survival in similar exposures with *Lampsilis cardium* and *L. siliquoidea* (Meinertz 2008). A fresh food stock solution will be prepared daily and delivered with a peristaltic pump to the headbox.

5.2 Water Chemistry

- 5.2.1 Dissolved oxygen: Dissolved oxygen will be measured and recorded prior to test initiation and at least twice during the exposure period in the control and exposure concentrations. Additionally, the dissolved oxygen will be measured and recorded daily throughout the holding period in one representative exposure chamber for each species. (UMESC SOP AEH 394 or equivalent).
- 5.2.2 Temperature: Temperature will be measured and recorded prior to test initiation and at least twice during the exposure period in the control and exposure concentrations. Additionally, the temperature will be measured and recorded daily throughout the holding period in one representative exposure chamber for each species.
- 5.2.3 pH: The pH will be measured and recorded prior to test initiation and at least twice during the exposure period in the control and exposure concentrations. Additionally, the pH will be measured and recorded daily throughout the holding period in one representative exposure chamber for each species. (UMESC SOP AEH 335 or equivalent).
- 5.2.4 Hardness: The hardness will be measured and recorded prior to test initiation and upon exposure termination from pooled replicate samples from the control and high concentrations. Additionally, the hardness will be measured weekly throughout the holding period on one representative exposure chamber for each species (UMESC SOP AEH 712).
- 5.2.5 Alkalinity: The alkalinity will be measured and recorded prior to test initiation and upon exposure termination from pooled replicate samples from the control and high concentrations. Additionally, the alkalinity will be measured weekly throughout the holding period on one representative exposure chamber for each species (UMESC SOP AEH 706).
- 5.2.6 Conductivity: The conductivity will be measured and recorded prior to test initiation and upon exposure termination from pooled replicate samples of

Page 10 of 22

each test concentration. Additionally, the conductivity will be measured weekly throughout the holding period on one representative exposure chamber for each species(UMESC SOP AEH 188 or equivalent).

- 5.2.7 Ammonia: The total ammonia will be measured and recorded prior to test initiation and upon exposure termination from pooled replicate samples of each test concentration. Additionally, the ammonia will be measured weekly throughout the holding period on one representative exposure chamber (UMESC SOP AEH 301 or equivalent). Unionized ammonia will be calculated from the total ammonia, pH and temperature of the samples.
- 5.3 Disposal: Upon study termination the mussels in each test vessel will be euthanized by MS-222 overdose after enumeration for survival and photomicrograph records are completed for growth analysis but prior to preservation for possible histological examination (UMESC SOP GEN 132).
- 5.4 Study facilities:
 - 5.4.1Test Facility

U.S. Geological Survey, Upper Midwest Environmental Sciences Center 2630 Fanta Reed Rd

La Crosse, Wisconsin 54603

- 5.4.1.1 Exposure system: The test system is a series of 24 aquaria (17.8 x 5.1 x 8.3 mm) for each species. Each exposure vessel will receive a continuous supply of 20°C well water from a distribution box (see Figure 1). Each chamber will be uniquely identified (eg: 1A2) to allow for identification of species treatment type and replicate number. Coding procedures will be documented in the laboratory notebook.
- 5.4.1.2 Aeration: Supplemental aeration will be supplied during exposures by gently bubbling in laboratory air through a pasteur pipet at a rate of approximately 1 bubble/second.
- 5.4.1.3 Water supply: Temperature adjusted well water (20°C) will be supplied continuously at a rate to provide approximately 1 chamber exchange per hour. During the 24 h exposure period, water to the chambers will be discontinued and the chambers will be static.
- 5.4.1.4 Lighting: Direct light may adversely affect test results, thus indirect lighting(~18 h L:6 h D; 100-1000 lux) will be provided; light intensity will be recorded at the initiation and prior to the completion of the exposure period (UMESC SOP AEH 308).

Page 11 of 22

- 5.4.1.5 Exposure chamber dimensions: The exposure chambers are (17.8 x 5.1 x 8.3 mm) glass aquaria. Each exposure chamber will contain approximately 380 mL of well water and 35g of substrate.
- 5.4.1.6 Water discharge: All water will be discharged into the UMESC invasive species isolation facility.
- 5.5 Observations:
 - 5.5.1 Survival and growth: Survival will be determined by observing foot movement, heart beat or ciliary movement. Growth will be determined by comparing valve length measurements from photomicrograph records captured and analyzed using Image Pro® Express software. Comparisons will be made between treatments as well as to mussel images recorded prior to the test initiation.
- 5.6 Treatment administration:
- 5.6.1 Treatment: Each species of mussels will be exposed to four replicates of either 0 (control), 50, 100, 200 or 300 mg/L and a 300 mg/L heat deactivated (70°C/45 minutes) control as a single dose exposure.
- 5.6.2 Route of administration: Exposures will be initiated by addition of an appropriate freshly prepared solution of MBI-401 FDP in a completely randomized design. The test concentrations will include 0 (control), 300 mg/L deactivated (positive control), or 50, 100, 200, or 300 mg/L of active MBI-401 FDP. To assure proper concentration levels, the exposure chamber water volume will be lowered as far as possible and the chamber will be flushed with the treatment solution before refilling to the original volume.
- 5.6.3 Dose verification: The activity of MBI-401 FDP (*Pseudomonas fluorescens* [*Pf*-CL145A]) cannot be assessed by current analytical techniques as the chemical nature of the active agent in the bacterium has not been determined or characterized. Dosage verification of MBI-401 FDP will be assessed by measuring and recording the absorbance of the prepared stock dosing solution and the high treatment concentrations with a Beckman DU 800 UV/Vis spectrophotometer (UMESC SOP AEH 303). The collected absorbance information will be used to determine inter- and intra-test variability in the preparation of stock and test solutions.

6. SPECIFICATION OF VARIABLES

6.1 Distribution to experimental units: Twenty mussels displaying active foot movement will be transferred with a disposable pipet to a 50 mL beaker containing 20°C well water. The beaker will then be emptied and rinsed into a

Page 12 of 22

randomly chosen exposure chamber containing 20°C well water with approximately 4 mm of $75 - 150 \mu$ m silica sand as substrate. This procedure will then be repeated until all chambers receive 40 mussels in two aliquots. The exposure chambers will be randomly assigned treatment concentration.

6.2 Determination of survival and growth: Survival of recovered mussels will be determined by observing foot movement, heart beat or ciliary movement. Growth will be determined by comparing valve length measurements from photomicrograph records captured and analyzed using Image Pro® Express software. Comparisons will be made between treatments as well as to mussel images recorded prior to the test initiation.

7. DATA ANALYSIS

- 7.1 Experimental unit: The experiment unit will be the exposure chamber.
- 7.2 Number of exposures and replicates: There will be a total of 6 treatment levels (control, positive control (heat treated *Pf*-CL145A) 50, 100, 200 and 300 mg *Pf*-CL145A/L) and four replicate exposure chambers per treatment level for a total of 24 exposure chambers for each mussel species.
- 7.3 Statistical methodology:

Survival data will be analyzed using a generalized linear mixed model (SAS PROC GLIMMIX). In every analysis, the exposure chamber will be treated as the experimental unit. The change in proportion of survival will be analyzed using a generalized linear mixed model where the distribution is binomial and the link used is the logit function.

If a significant effect of treatment is identified then pairwise comparison tests will be completed to compare each treatment group to the control group using unadjusted least squares means.

- 7.4 Statistical significance: Statistical significance will be declared at p < 0.05.
- 7.5 Other data analyses: Statistical methods for other study data collected will include calculation of means, standard deviations and coefficients of variation.

8. PERSONNEL

- 8.1 Study Director: James A. Luoma, B.A.
 - 8.1.1 Address: Upper Midwest Environmental Sciences Center, US Geological Survey, 2630 Fanta Reed Rd., La Crosse, Wisconsin 54603
 - 8.1.2 Contact: Tel: (608) 781-6391, Fax: (608) 783-6066; jluoma@usgs.gov
 - 8.1.3 Training and experience: CV on file at UMESC.

Page 13 of 22

8.2 Other personnel involved in study: Technical staff involved in the study will be identified in the study raw data to include study function. UMESC technical staff training and experience will be documented in CVs included in the study raw data.

9. DISPOSITION/STORAGE

9.1 Study Records: All data generated in the study at UMESC will be recorded in bound laboratory notebooks or kept in file folders (SOP No. GEN 008). All data sheets, file folders, laboratory notebooks and computer disks will be encoded with the study number when the data are generated and stored in secure files (SOP No. GEN 008). Raw data, laboratory notebooks and electronic files (including a CD-ROM containing the annotated SAS program used for the statistical analysis, the data files, SAS log and SAS output files) generated by UMESC and contract laboratory reports will be filed in the UMESC archives (SOP No. GEN 007) of the Upper Midwest Environmental Sciences Center, La Crosse Wisconsin, before the final report is signed by the Study Director. The final report will then be signed and archived.

10. GOOD LABORATORY PRACTICES

Data collection, storage and retrieval procedures for the study will be conducted in compliance with FDA regulations for Good Laboratory Practices (GLP; 21 CFR, Part 58). The study protocol and progress of the study will be reviewed at the start of the study and periodically throughout the study by the Quality Assurance Unit (QAU). The Study Director has the responsibility of ensuring that all procedures used in conjunction with the study conform with Good Laboratory Practices.

11. AMENDMENT/DEVIATIONS TO THE PROTOCOL

- 11.1 Protocol amendments: A signed copy of the Study Protocol will be retained on-site. Proposed amendments to the protocol shall be brought to the attention of UMESC Management. When the Study Director and Management agree verbally, the study can proceed with the change. As soon as possible, the Study Director will then prepare a written protocol amendment that is signed by the Study Director, Branch Chief, UMESC Center Director, and UMESC-QA. The UMESC statistician or UMESC Animal Care and Use Chair may also sign as needed. The amendment then becomes an official part of the protocol.
- 11.2 Protocol deviations: All deviations from this approved protocol will be documented and reviewed by the Study Director. The Study Director will

Page 14 of 22

make a judgment on the impact of the deviations. The Study Director will notify Management, UMESC-QA, as soon as possible, in writing, of any deviations to the protocol, including their impact on the study.

12. INVESTIGATIONAL TEST ARTICLE

- 12.1 Test Substance(s): MBI-401 FDP, Pseudomonas fluorescens (Pf-CL145A)
 - 12.1.1 Chemical name: Pseudomonas fluorescens (Pf-CL145A)
 - 12.1.2 Trade name: MBI-401 FDP
 - 12.1.3 Active ingredients: *Pseudomonas fluorescens* (*Pf*-CL145A) is the sole active ingredient, 100% active by weight.
 - 12.1.4 Source: Marrone Bio Innovations (MBI); Davis, CA
 - 12.1.5 Lot number: Multiple lots are expected to be tested. Lot number(s) will be included in the test chemical log books and lab notebook, and study files.
 - 12.1.6 Expiration date: 3 months from the date of manufacturer. An aliquot of each lot tested will be returned to the NYSM or MBI at the conclusion of exposures at UMESC for confirmatory post-test activity comparative zebra mussel bioassay tests (the standard testing protocol to assess *Pseudomonas fluorescens [Pf*-CL145A] formulation activity). Results of these confirmation bioassays will be used to validate the activity retention of the MBI-401 FDP, *Pseudomonas fluorescens (Pf*-CL145A) and will be included in the study files when available.
 - 12.1.7 Storage during study: test chemical will be stored refrigerated in a locked container within a restrictive entry laboratory. A subsample of the test chemical will be archived in the UMESC Chemical Archive (UMESC SOP GEN 011).
 - 12.1.8 A NIOSH approved respirator will be used when preparing stock solutions to avoid inhalation. Protective eyewear, gloves and lab coats will be worn at all times when working with the test substance.
- 13. ADVERSE EVENTS: Any adverse event will be recorded in the study logbook and the Study Director will be notified.

14. BIOSECURITY PROCEDURES

14.1 General Procedures: All personnel involved in the study will review the UMESC biosecurity (UMESC SOP APP 075) and project HACCP plans. Testing will be conducted in a laboratory with controlled access. All effluent water will be chlorine disinfected prior to discharge.

Page 15 of 22

Biosecurity procedures outlined in UMESC SOP APP 075.0 will be followed for samples and equipment.

14.2 HACCP Plan: See Appendix 1 for the HACCP plan for this project.

15. STANDARD OPERATING PROCEDURES

A complete list of the standard operating procedures used in the study will be included in the study guide. The follow SOP's were cited in this protocol:

UMESC SOP GEN 007 – Archives Management for Regulated Studies UMESC SOP GEN 008 – Maintenance of Data Recording of Raw Data for Regulated Studies

UMESC SOP GEN 132 – Care, Maintenance & Disposal of Aquatic Vertebrates UMESC SOP APP 075 – Procedures to Minimize the Risk of Transfer of Pathogens and Invasive Species

UMESC SOP AEH 011 – Procedures for Labeling Chemicals and Specimens UMESC SOP AEH 188 – Accumet Portable Waterproof Conductivity meter Model # AP75

UMESC SOP AEH 301 – Instrument Operating Procedure: YSI Photometer Model # 9000 Serial # 3638017

UMESC SOP AEH 303 – Instrument Operating Procedure: Beckman spectrophotometer Model DU 800 Serial # 8003098

UMESC SOP AEH 308 – Instrument Operating Procedure: Milwaukee Light Meter Model # SM7000 Serial # 727298

UMESC SOP AEH 335 – Beckman Portable pH/mV Meter, Model 250

UMESC SOP AEH 338 – Sartorius Model BP 3100S, Serial Number 12907582 UMESC SOP AEH 394 – YSI Handheld Dissolved Oxygen Meter, Model

55/12FT, Serials 94C17261 & 97F0837AG

UMESC SOP AEH 706 – Determination of Total Alkalinity by the Titrimetric (pH 4.5) Method

UMESC SOP AEH 712 – Determination of Total Hardness

16. REFERENCES.

American Society for Testing and Materials, 2006. Standard guide for conducting laboratory toxicity tests with freshwater mussels. E2455-06. In Annual Book of ASTM Standards, Vol 11.06. Philidelphia, PA.

Burlakova, L.E., 1998. Ecology of *Dreissena polymorpha* (PALLAS) and its role in the structre and function of aquatic ecosystems. Candidate dissertation, Zoology Institute of the Academy of Science Republice Belarus, 168 p. (in Russian) in Burlakova L.E., A.Y. Karatayev and D. K. Padilla. 2000. The impact of Dreissena polymorpha (PALLAS) invasion on Unionid bivalves. Internat. Rev. hydrobiol. 85 (5-6):529-541.

Page 16 of 22

Cummings S.K. and C.A. Mayer, 1992. Field guide to freshwater mussels of the Midwest. Illinois Natural History Survey Manual 5. 194 pp.

Haag, W.R., D.L. Berg, D.W. Garton, and J.L. Farris, 1993. Reduced survival and fitness in native bivalves in response to fouling by the introduced zebra mussel (Dreissena polymorpha) in western Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 50(1):13-19.

Karatayev, A.Y. and L.E. Burlakova, 1995. Present and future patterns in Dreissena population development in the Narochanskaya lakes system. Vestisi Akad. Navuk Belarusi. Ser. Biyol. Navuk 3: 95098 (in Belarussian) in Burlakova L.E., A.Y. Karatayev and D. K. Padilla. 2000. The impact of Dreissena polymorpha (PALLAS) invasion on Unionid bivalves. Internat. Rev. hydrobiol. 85 (5-6):529-541.

Master, L., 1990. The imperiled status of North American aquatic animals. Biodiversity Network News 3(3):5-8.

Meinertz, J.R., 2008. Survival and growth of newly transformed *Lampsilis cardium* and *L. siliquoidea*, in a flow-though, continuous feeding system. Final report, U.S. Geological Survey Upper Midwest Environmental Sciences Center, LaCrosse, WI. 140 pp.

Napela, T.F., 1994. Decline of native unionid bivalves in Lake St. Clair after infestation by the zebra mussel, *Dreissena polymorpha*. Can. J. Fish. Aquat. Sci. 51:2227-2233.

Neves R. J., 2004. Propagation of endangered freshwater mussels in North America. Journal of Conchology, special publication 3:69-80.

Neves, R.J., A.E. Bogan, J.D. Williams, S.A. Ahlstedt, and P.W. Hartfield, 1997. Status of aquatic mollusks in the southeastern United States: a downward spiral of diversity. Pages 43-85 in G.W. Benz and D.E. Collins, editors. Aquatic fauna in peril: the southeastern perspective. Southeastern Aquatic Research Institute, Lenz Design and communications, Decatur, Georgia.

Ricciardi, A. F.G. Whoriskey, and J.B. Rasamussen, 1996. Impact of the *Dreissena* invasion on native unionid bivalves in the upper St. Lawerance River. Can. J. Fish. Aquat. Sci. 53:1434-1444.

Page 17 of 22

Ricciardi A., and J.B. Rasmussen, 1999. Extinction rates of North American freshwater fauna. Conservation Biology. Vol. 13 (5):1220-1222.

Sebestyn, O., 1937. Colonization of two new fauna-elements of Pontus-origin (*Dreissena polymorpha* Pall. And *Corophuim curvispinum* G.O. Sars forma devium Wundsch) in Lake Balaton, Verh. Int. Ver. Theor. Angew. Limnol. 8:169-182 in Burlakova L.E., A.Y. Karatayev and D. K. Padilla. 2000. The impact of Dreissena polymorpha (PALLAS) invasion on Unionid bivalves. Internat. Rev. hydrobiol. 85 (5-6):529-541.

Watters, G.T., M.A. Hoggarth and D.H. Stansbery, 2009. The Freshwater Mussels of Ohio. The Ohio State University Press, Columbus, OH. 421 pp.

Williams, J.D., M.L. Warren Jr., K.S. Cummings, J.L. Harris, and R.J. Neves. 1993. Conservation status of freshwater mussels of the United States and Canada. Fisheries 18(9):6-22.

Page 18 of 22

17. APPENDIX.

17.1 Appendix 1. HACCP PLAN for the study Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

Step 1 – Activity Description

Facility: US Geological Survey-Upper Midwest Environmental Sciences Center	Site: Lower B, rooms 15, 16 and 17				
Site Coordinator: Jim Luoma	Activity: Determine the effects of various concentrations of				
Site Manager: Mark Gaikowski	Pseudomonos fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven unionid mussels species present in the				
Address: 2630 Fanta Reed Road La Crosse WI, 54601	Great Lakes and Upper Mississippi River basins.				
Phone: 608-781-6322					

Project Description					
The objective of this study is to determine effects of various concentrations of <i>Pseudomenas fluorescens (Pf</i> -CL145A) to newly metamorphosed juvenile mussels from seven unionid mussels species present in the Great Lakes and Upper Mississippi River basins.					
Step Z – Potential Hazards: Species which may potentially be moved/introduced					
Vertebrates:					
None					
Invertebrates:					

Zebra mussel (Dreissena polymorpha) Plants: None

Other biologicals (disease, pathogen, parasite):

Largemouth Bass Virus
Spring Viremia of Carp Virus
Bluegill Virus
Infectious Pancreatic Necrosis Virus
Viral Hemorrhagic Septicemia
Furunculosis Aeromonas salmanicida
Enteric Redmouth Disease Yersinia ruckeri
Bacterial Kidney Disease Renibacterium salmoninarum
Other Assorted parasites/pathogens commonly found in the upper Mississippi River Basin
Other (construction materials):

NA

Step 3 – Flow Diagram

Page 19 of 22

Flow diagram outlining sequential tasks to complete activity/project

Task 1	Juvenile mussels are obtained from the Genoa AFH and transferred to UMESC.
Task 2	Juvenile mussels are distributed to test chambers in the invasive species laboratory
Task 3	Water samples collected and analyzed for chemical parameters
Task 4	Juvenile mussels are removed for enumeration and growth observations

1 Tasks (from HACCP Step 3 - Flow Diagram)	2 Potential hazards identified in HACCP Step 2	3 Are any potential hazards probable? (yes/no)	4 Justify evaluation for column 3	5 What control measures can be applied to prevent undesirable results?	6 Is this task a critica control point? (yes/no)
Task 1 Juvenile mussels are obtained from the Genoa NFH and	Vertebrates	No	Juvenile mussels will be transported in clean well water and there will not be vertebrates present	N/A	no
transferred to UMESC.	Invertebrates	yes	Juvenile mussel will be collected from donor mussels collected from wild sources.	Assure donor mussels have been cleaned and rinsed with well water prior to use. Effluent water is treated and equipment will be disinfected. Equipment remains in the laboratory.	yes
	Plants	No	The donor mussels are cleaned upon collection and held in clean well water prior to use.	Any plant material will be removed from donor mussels and equipment before transporting Genoa NFH.	no
	Others	yes	The potential transfer of fish diseases from mussels grown on host fish is possible,	Genoa NFH uses certified disease free fish for mussel infestations. Effluent water is treated and equipment will be disinfected. Equipment remains in the laboratory.	yes
Task 2 Juvenile mussels are distributed to test	Vertebrates	no	Risk eliminated in Task 1	N/A	no
chambers in the invasive species laboratory	Invertebrates	πο	Risk eliminated in Task 1	Effluent water is treated and equipment will be disipfected. Equipment	no

Plants no Risk eliminated in Task 1 treated and equipment will be disinfected. Equipment remains in the laboratory. no Task 1 N/A no

Page 20 of 22

STUDY NO. AEH-11-PSEUDO-02

ORIGINAL

	Others	yes	The potential transfer of fish diseases from mussels grown on host fish is possible.	Genoa NFH uses certified disease free fish for mussel infestations. Effluent water is treated and equipment will be disinfected. Equipment remains in the laboratory.	yes
Task 3 Water samples collected and analyzed	Vertebrates	No	Risk eliminated in Ta 1	ask N/A	no
for chemical parameters	Invertebrates	No	Risk eliminated in Ta 1	esk Effluent water is treated and equipment will be disinfected. Equipment remains in the laboratory.	no
	Plants	No	Risk eliminated in Ta 1	n/A	no
	Others	yes	The potential transfe of fish diseases from mussels grown on he fish is possible.	certified disease	yes

Task 4 Juvenile mussels are removed for	Vertebrates	No	Risk eliminated in Task 1	N/A	טח
enumeration and growth observations	Invertebrates	No	Risk eliminated in Task 1	Effluent water is treated and equipment will be disinfected. Equipment remains in the laboratory.	no
	Plants	No	Risk eliminated in Task 1	N/A	no

Page 21 of 22

STUDY NO. AEH-11-PSEUDO-02

ORIGINAL

Others	Yes	The potential transfer of fish diseases from glochidia has never been documented.	Genoa NFH uses certified disease free fish for mussel infestations. Effluent water is treated and equipment will be disinfected. Equipment remains in the laboratory,	yes
--------	-----	--	--	-----

		t ll aget "		HACCP Plan Fo				
		(all CCP's or "yes	's" from colum	n 6 of HACCP S	tep 4 – Hazard Ar	alysis Works	sheet)	
				Moni	toring			
Critical Control Point (CCP)	Significant Hazard(s)	Limits for each Control Measure	What	How	Frequency	Who	Evaluation & Corrective Action(s) (If needed)	Supporting Documentatic (if any)
Task 1 Invertebrates	invertebrate transfer	Invertebrates cannot be transferred, Donor mussels must be cleaned and rinsed Effluent water must be captured and treated.		remove inverts Clean and rinse donor mussels	immediately	All Staff	Supervisor and staff are responsible for careful attention to detail-Disinfection of equipment	Records in log book
Tasks 1, 2, 3, 4 Other	Fish disease pathogen transfer	Pathogens must not be allow to establish in facility. Cortified disease free fish must be used to transform mussels. Effluent water must be captured and treated.	Effluent water chlorine treatment levels	Monitor socium hypochlorite supplies and check chlorine concentrations	,	Lab technicians	Supervisor and staff are responsible for careful attention to detail and performing immediate corrective action to restore chlorine discharge levels	Records In log books
Facility: Upper Midwest	Environmental S	ciences Center			Pseudomonas fl Juvenile mussel	<i>uorescens</i> (P s from seven	cts of various concentra f-CL145A) to newly met unionid mussels specie issippi River basins,	amorphosed
Address: 2630 Fanta Reec	Road, La Cross	e, WI 54601					and the state of baconing	
Signature:					Date:			
HACCP Plan was	followed							

FF # <u>3</u> Item No. <u>1</u> Pg <u>32</u> of <u>33</u>

Page 22 of 22

United States Department of the Interior

U.S. GEOLOGICAL SURVEY Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

Date: January 23, 2012 To: The Record Study Number AEH-11-PSEUDO-02

Subject: Note To File #1 to the study AEH-11-PSEUDO-02 "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to newly metamprphosed juvenile mussels from seven different unionid species".

This note is to document and clarify the collection of pH and temperature data collected for un-ionized ammonia calculations for the *O. olivaria* (dosed 12 July 2011) and *A. ligamentina* (dosed 14 July 2011) juvenile mussel exposures.

Samples of the stock solutions (50, 100, 200 and 300 mg/L active + 300 mg/L heat deactivated) used to dose the *O. olivaria* (dosed 12 July 2011) and *A. ligamentina* (dosed 14 July 2011) mussels were collected to analyze for un-ionized ammonia. At the time of sample collection, the pH and temperature of the stock solutions were recorded on the sample vial labels and not on a datasheet. It was realized on 9 August 2011 that the data were not recorded properly and the pH and temperature values were transcribed from the original sample vials to a Water Quality Form 2 data sheet. The exact instruments used to collect data were not recorded, however, it is assumed from other data sheets and instrument calibration logs that study coded instruments pH4 and THERM 5 were used to collect the pH and temperature values for *O. olivaria* and pH 3 and THERM 6 were used to collect pH and temperature values for *A. ligamentina*.

No adverse effects to the study are anticipated as the data needed were collected when required, have been documented in the study record and clarified as to procedure in this note to file. Additionally, all instruments used to collect the data are calibrated on a daily basis and calibration records are available for the dates that these data were collected.

' Writte	
----------	--

Written by Kerry L. Weber, M.S. Principal Investigator, UMESC 23 JAW 12 Date

Approved by

23JUNIZ

Date

James A. Luoma, B.A. Study Director, UMESC

Item 1

Page 1 of 1

cc: UMESC QAU

United States Department of the Interior

U.S. GEOLOGICAL SURVEY **Upper Midwest Environmental Sciences Center** 2630 Fanta Reed Road La Crosse, Wisconsin 54603

Date: January 23, 2012 To: The Record Study Number AEH-11-PSEUDO-02

Subject: Note To File #2 to the study AEH-11-PSEUDO-02 "Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamprophosed juvenile mussels from seven different unionid species".

This note is to document and clarify the use of two Water Quality Form 2's [Exposure Period Dissolved Oxygen, pH, Temperature (File Folder 10C)] datasheets for recording data on13 July 2011 for the O. olivaria (Hickorynut) juvenile mussel test.

Sections 5.2.1-5.2.3 of the study protocol requires that the dissolved oxygen, temperature and pH be measured and recorded twice during the exposure period. Prior to the end of the exposure period on 13 July 2011, pH and temperature were measured and recorded when the 24-h ammonia samples were collected. The data collector had lined out the dissolved oxygen column not realizing that this information was also required. Upon becoming aware that dissolved oxygen measurements were required, a second datasheet was used to record the dissolved oxygen levels and the pH and temperature columns were lined out on this data sheet. No explanation was given by the data collector on either datasheet as to what occurred or why the columns were lined out. A brief note was made on the datasheet containing the dissolved oxygen levels to see the first datasheet for pH and temperature. A more detailed explanation was written on the datasheets on 25 July 2011 to clarify the reasoning for the two datasheets.

No adverse effects to the study are anticipated as all the required data were measured and recorded.

Kerry L. Weber, M.S. Principal Investigator, UMESC

23 JAW12

Approved by James A. Luoma, B.A.

Study Director, UMESC

23 JONIL Date

cc: UMESC QAU

Item No.

Page 1 of 1

ORIGINAL

.

United States Department of the Interior

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

Date: June 3, 2011 To: The Record Study Number AEH-11PSEUDO-02

Subject: Amendment 1- Amendment to the study AEH-11-PSEUDO-02 "Effects of *Pseudomonas* fluorescens (*Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Revision of Study Protocol, Study # AEH-11PSEUDO-02 is proposed as detailed on page 2 of this amendment. Revised text is indicated **in bold**.

This amendment changes when the feed will be initiated to the exposure chambers to include feeding during the pre-exposure period. This change is being implemented maximize the feed available to the test animals and to reduce the potential stress on test animals due to lack of feed.

Reviewed by:

¢3 Sun II 06 June 2011 Mark P. Gaikowski, M.A. Date Jane E. Rivera, B.A. Date Supervisory Biologist Acting Quality Assurance Officer, Aquatic Ecosystem Health, UMESC UMESC¹ 6/3/11 Date Michael Jawson, Ph.D. Center Director, UMESC Approved by: 6/6/1, Date James A. Luoma, B.A. Study Director, UMESC

¹ UMESC: U.S. Geological Survey, Upper Midwest Environmental Sciences Center

Study# AEH-11-PSEUDO-02 Amendment #1

Page 1 of 2

Current text:

5.1.6 Feeding: After the exposure period, the exposure chambers will receive a constant supply of well water containing approximately 2.25 mg/L (dry weight) of a 1:1:1 mixture of live chlorella algae (obtained from the Kentucky Department of Fish and Wildlife Resources Center for Mollusk Conservation) and Reed Mariculture tetraselmis and nannochloropsis instant algae. This mixture approximates the diet that produced the greatest survival in similar exposures with *Lampsilis cardium* and *L. siliquoidea* (Meinertz 2008). A fresh food stock solution will be prepared daily and delivered with a peristatic pump to the headbox.

Revised text (in bold):

5.1.6 Feeding: Approximately 24-h prior to the distribution of test animals, the exposure chambers will receive a constant supply of well water containing approximately 2.25 mg/L (dry weight) of a 1:1:1 mixture of live chlorella algae (obtained from the Kentucky Department of Fish and Wildlife Resources Center for Mollusk Conservation) and Reed Mariculture tetraselmis and nannochloropsis instant algae. This mixture approximates the diet that produced the greatest survival in similar exposures with Lampsilis cardium and L. siliquoidea (Meinertz 2008).

Approximately 2-h prior to dosing, feed will be withheld and the exposure chambers will be allowed to clear with incoming 20°C well water. Feeding will resume after the 24-h exposure period. A fresh food stock solution will be prepared daily and delivered with a peristaltic pump to the headbox.

Item No of A

Page 2 of 2

ORIGINAL

United States Department of the Interior

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

Date: June 22, 2011 To: The Record Study Number AEH-11PSEUDO-02

Subject: Amendment 2- Amendment to the study AEH-11-PSEUDO-02 "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Revision of Study Protocol, Study # AEH-11PSEUDO-02 is proposed as detailed on page 2 of this amendment. Revised text is indicated in **bold**.

This amendment expands the data collection of the water chemistry parameters at the conclusion of the exposure period to include the measurements of alkalinity and hardness from each exposure concentration.

The amendment is in response to unexpected observed variations in alkalinity and hardness measurements during the first species tested (*Lampsilis higginsii*) under this protocol. Additional alkalinity and hardness data have been collected on the first three species (*Lampsilis higginsii*, *Lampsilis cardium*, and *Ligumia recta*) exposed in the test system and will be collected during future exposures.

Reviewed by: 22 Jun 2011 230.11 Date Mark P. Gaikowski, M.A. Date Jane E. Rivera, B.A. Supervisory Biologist Acting Quality Assurance Officer, Aquatic Ecosystem Health, UMESC UMESC¹ 6/24/2011 Date Michael Jawson, Ph.D. Center Director, UMESC

Approved by:

James A. Luoma, B.A. Study Director, UMESC

¹ UMESC: U.S. Geological Survey, Upper Midwest Environmental Sciences Center

Study# AEH-11-PSEUDO-02 Amendment #2

Page 1 of 2

OHIGINAL

Current text:

- 5.2.4 Hardness: The hardness will be measured and recorded prior to test initiation and upon exposure termination from pooled replicate samples from the control and high concentrations. Additionally, the hardness will be measured weekly throughout the holding period on one representative exposure chamber for each species (UMESC SOP AEH 712).
- 5.2.5 Alkalinity: The alkalinity will be measured and recorded prior to test initiation and upon exposure termination from pooled replicate samples from the control and high concentrations. Additionally, the alkalinity will be measured weekly throughout the holding period on one representative exposure chamber for each species (UMESC SOP AEH 706).

Revised text (in bold):

- 5.2.4 Hardness: The hardness will be measured and recorded prior to test initiation and upon exposure termination from pooled replicate samples from **each test concentration**. Additionally, the hardness will be measured weekly throughout the holding period on one representative exposure chamber for each species (UMESC SOP AEH 712).
- 5.2.5 Alkalinity: The alkalinity will be measured and recorded prior to test initiation and upon exposure termination from pooled replicate samples from **each test concentration**. Additionally, the alkalinity will be measured weekly throughout the holding period on one representative exposure chamber for each species (UMESC SOP AEH 706).

Page 2 of 2

Study# AEH-11-PSEUDO-02 Amendment #2

2 - ***** - ***** - *

United States Department of the Interior

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

Date: June 22, 2011 To: The Record Study Number AEH-11PSEUDO-02

Subject: Amendment 3- Amendment to the study AEH-11-PSEUDO-02 "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Revision of Study Protocol, Study # AEH-11PSEUDO-02 is proposed as detailed on page 2 of this amendment. Revised text is indicated in **bold**.

This amendment reduces the feeding rate of the mussels during the holding period. The amendment is in response to observed accumulation of settled algae within the headbox, distribution box and exposure chambers. This feeding rate is still slightly above the calculated rate successfully used by Meintertz (2008) to rear *Lampsilis cardium* and *Lampsilis siliquoidea* and therefore should provide ample nutrition for the mussels.

	Reviewed	by:	
Mark P. Gátkowski, M.A. Supervisory Biologist Aquatic Ecosystem Health, UMESC ¹	22Jnn 2011 Date	Jane E. Rivera, B.A. Acting Quality Assurance C UMESC	Difficer,
Michael Jawson, Ph.D. Center Director, UMESC	6/24/201, Date	/	
	Approved	l by:	
James A. Luoma, B. Study Director, UME	A.	<u>6/2-1/4</u> Date	
¹ UMESC: U.S. Geological Survey, Upp	per Midwest Enviro	onmental Sciences Center	FF # _ <u>3</u> Item No. <u>4</u> Pg of _3

Study# AEH-11-PSEUDO-02 Amendment #3

Page 1 of 2

ORIGINAL

Current text:

1. T. T. J.

5.1.6 Feeding: After the exposure period, the exposure chambers will receive a constant supply of well water containing approximately 2.25 mg/L (dry weight) of a 1:1:1 mixture of live chlorella algae (obtained from the Kentucky Department of Fish and Wildlife Resources Center for Mollusk Conservation) and Reed Mariculture tetraselmis and nannochloropsis instant algae. This mixture approximates the diet that produced the greatest survival in similar exposures with *Lampsilis cardium* and *L. siliquoidea* (Meinertz 2008). A fresh food stock solution will be prepared daily and delivered with a peristaltic pump to the headbox.

Revised text (in bold):

5.1.6 Feeding: After the exposure period, the exposure chambers will receive a constant supply of well water containing approximately **2.0** mg/L (dry weight) of a **1:1:1** mixture of live chlorella algae (obtained from the Kentucky Department of Fish and Wildlife Resources Center for Mollusk Conservation) and Reed Mariculture tetraselmis and nannochloropsis instant algae. This mixture approximates the diet that produced the greatest survival in similar exposures with *Lampsilis cardium* and *L. siliquoidea* (Meinertz 2008). A fresh food stock solution will be prepared daily and delivered with a peristaltic pump to the headbox.

∂ of

Study# AEH-11-PSEUDO-02 Amendment #3

Page 2 of 2

United States Department of the Interior

U.S. GEOLOGICAL SURVEY **Biological Resources Division** Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

ORIGINAL

Date: July 07, 2011 To: The Record Study Number AEH-11-PSEUDO-02

Subject: Amendment 4- Amendment to the study AEH-11-PSEUDO-02 "Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Revision of Study Protocol, Study # AEH-11-PSEUDO-02 is proposed as detailed on page 2 of this amendment. Revised text is indicated in bold.

This amendment changes the software used to capture, record and analyze the photomicrographs of mussels for study # AEH-11-PSEUDO-02 from Image Pro® Express software to Nikon Elements BR® software.

The change to Nikon Elements BR® software enhances photomicrograph quality, analysis capabilities, and allows for technical support.

Reviewed by:

Jn

Date

Mark P. Gaikowski, M.A. Supervisory Biologist

Aquatic Ecosystem Health, UMESC¹

Michael Jawson, Ph.D. Center Director, UMESC

<u>7/7/11</u> Date

Approved by:

James A. Luoma, B.A. Study Director, UMESC

Jane E. Rivera, B.A.

UMESC

Acting Quality Assurance Officer,

Item

<u>Taly 8,3</u>011 Date

¹ UMESC: U.S. Geological Survey, Upper Midwest Environmental Sciences Center

Study# AEH-11-PSEUDO-02 Amendment #4 Page 1 of 2

OMONAL

Current text:

- 5.5.1 Survival and growth: Survival will be determined by observing foot movement, heart beat or ciliary movement. Growth will be determined by comparing valve length measurements from photomicrograph records captured and analyzed using Image Pro® Express software. Comparisons will be made between treatments as well as to mussel images recorded prior to the test initiation.
- 6.2 Determination of survival and growth: Survival of recovered mussels will be determined by observing foot movement, heart beat or ciliary movement. Growth will be determined by comparing valve length measurements from photomicrograph records captured and analyzed using Image Pro® Express software. Comparisons will be made between treatments as well as to mussel images recorded prior to the test initiation.

Revised text (in bold):

- 5.5.1 Survival and growth: Survival will be determined by observing foot movement, heart beat or ciliary movement. Growth will be determined by comparing valve length measurements from photomicrograph records captured and analyzed using Nikon Elements BR® software. Comparisons will be made between treatments as well as to mussel images recorded prior to the test initiation.
- 6.2 Determination of survival and growth: Survival of recovered mussels will be determined by observing foot movement, heart beat or ciliary movement. Growth will be determined by comparing valve length measurements from photomicrograph records captured and analyzed using **Nikon Elements BR® software**. Comparisons will be made between treatments as well as to mussel images recorded prior to the test initiation.

Item No.

Study# AEH-11-PSEUDO-02 Amendment #4

Page 2 of 2

. '

United States Department of the Interlor

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

Date: July 07, 2011 To: The Record Study Number AEH-11-PSEUDO-02

Subject: Amendment 5- Amendment to the study AEH-11-PSEUDO-02 "Effects of *Pseudomonas* fluorescens (*Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Revision of Study Protocol, Study # AEH-11-PSEUDO-02 is proposed as detailed on page 2 of this amendment. Revised text is indicated **in bold**.

This amendment changes the sampling regime for ammonia due to observed results. Ammonia analysis will be increased to include sampling of individual exposure chambers during the exposure period. The individual exposure chamber samples will be filtered through a 0.45 micron filter, acidified using sulfuric acid and stored in a refrigerator until analysis by the UMESC Long Term Resources Monitoring Program (LTRMP) Water Quality Laboratory using the automated phenate method (APHA [American Public Health Association] 1992. Standard methods for the examination of water and wastewater. 18th edition. American Public Health Association, Washington, D.C. Various pages). The LTRMP laboratory does not perform their analysis according to Good Laboratory Practices (GLP). Data Generated by LTRMP will be annotated to state it does not comply with GLP regulations in the final report.

These changes will provide information regarding the accumulation rate of ammonia within the exposure chambers.

Reviewed by:

	-	
 Date	Jane É. Rivera, ′B.A. Acting Quality Assurance C UMESC	J <u>al 3 30</u> // Date
7/7/11 Date		
Approve	d by:	
A. ESC	7/n/1, Date	FF # <u>3</u> Item No. <u>6</u> Pg <u>1</u> of <u>7</u>
	Date -7/-7/11 Date Approve	Date Jane É. Rivera, B.A. Acting Quality Assurance C UMESC -7/-7/11 Date Approved by: 7/n/n,

¹ UMESC: U.S. Geological Survey, Upper Midwest Environmental Sciences Center

Study# AEH-11-PSEUDO-02 Amendment #5

Page 1 of 2

ORIGINAL

Current text: 5.2.7

a E a

Ammonia: The total ammonia will be measured and recorded prior to test initiation and upon exposure termination from pooled replicate samples of each test concentration. Additionally, the ammonia will be measured weekly throughout the holding period on one representative exposure chamber (UMESC SOP AEH 301 or equivalent). Unionized ammonia will be calculated from the total ammonia, pH and temperature of the samples.

Revised text (in bold): 5.2.7 Ammon

Ammonia: The total ammonia will be measured and recorded prior to test initiation in untreated water collected from each distribution box, upon exposure termination from pooled replicate water samples of each test concentration collected from the center section of each exposure chamber, and weekly throughout the holding period on one representative exposure chamber water sample collected from the center section of each exposure chamber using a YSI 9000 spectrophotometer (UMESC SOP AEH 301 or equivalent). Additionally, 5 mL samples will be collected from the center section of each exposure vessel at 6, 12 and 24 h post exposure, filtered through a 0.45 µm syringe filter, acidified (pH ~2.5) with sulfuric acid and then stored at ~4°C until analysis by the UMESC-LTRMP water quality laboratory.

Unionized ammonia will be calculated from the total ammonia, pH and temperature of the pooled samples or from measurements recorded from the exposure chambers at the time of sampling.

Study# AEH-11-PSEUDO-02 Amendment #5

Page 2 of 2

United States Department of the Interior

U.S. GEOLOGICAL SURVEY **Biological Resources Division** Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

Date: July 9, 2011 To: The Record Study Number AEH-11-PSEUDO-02

Subject: Amendment 6 to the study AEH-11-PSEUDO-02 "Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Revision of Study Protocol, Study # AEH-11-PSEUDO-02 is proposed as detailed on pages 2-5 of this amendment. Revised text is indicated In bold and underlined.

This amendment for study # AEH-11-PSEUDO-02 alters the feeding regime, exposure chamber sediment use and post exposure holding period in response to observed low and variable survival of higgins eye (L. higginsii), plain pocket book (L. cardium) and black sandshell (L. recta) mussels assigned to the control groups in test initiated from June 6-8, 2011. Future studies will be conducted according to the procedures outlined in this amendment. If higgins eye, plain pocket book and black sandshell mussels are available then exposures may be repeated using the procedures described in this amendment.

Amendment 3 incorrectly referenced text (section 5.6.1) that had been revised by approval of Amendment 1. The current text for section 5.6.1 is given as intended from the approval of amendments 1 and 3. The revised text includes the changes made in amendments 1 and 3 with those changes proposed in this amendment in bold and underlined.

This amendment was discussed with the UMESC AEH supervisory biologist and the New York State Museum cooperating biologist and verbally approved, effective July 9, 2011.

Reviewed by:

185ul 2011 18 Cal 2011 Mark P. Gaikowski, M.A. Date Date Jane E. Rivera, B.Á. Supervisory Biologist Acting Quality Assurance Officer, Aquatic Ecosystem Health, UMESC UMESC¹ 7/18/2011 Date Michael Jawson, Ph.D. Center Director, UMESC Approved by: <u>9 546 11</u> Date James A. Luoma, B.A. Study Director, UMESC

¹ UMESC: U.S. Geological Survey, Upper Midwest Environmental Sciences Center

Study# AEH-11-PSEUDO-02 Amendment #6 Page 1 of 5

ORIGINAL

Current text:

4.1 General Description:

Newly metamorphosed juvenile mussels from 7 unionid mussel species (Table 2) endemic in the Great Lakes and Mississippi River basins will be evaluated for effects from exposure to varying concentrations of MBI-401 FDP (*Pseudomonas fluorescens* [*Pf*-CL145A]). Juvenile mussels will be placed into a flow through test apparatus and then exposed to the test material for 24 h in a static exposure. Following the exposure period, the water flow will resume to the exposure chambers and the mussels will be reared for an additional 30 days before being removed from the system and evaluated for survival and growth. The mussels will be preserved for possible histological examination. If histological examination is deemed necessary, a protocol amendment will be prepared to describe the methods and procedures to be used.

4.2 Experimental Design:

Donor mussel collection, host fish inoculation, and newly metamorphosed mussels harvesting will be performed at the Genoa NFH by USFWS biologists. Gravid donor mussels will be collected from the Upper Iowa, Upper Mississippi or St. Croix Rivers. Mussels will be identified to species as described in Cummings and Mayer (1992) and Watters et al. (2009) by staff at the Genoa NFH. Approximately 1,200 juvenile mussels from each species will be collected from the mussel propagation aquaria by Genoa NFH biologists and transferred to the UMESC at ~20°C. After acclimation to UMESC test water, the mussels will be placed in petri dishes and viewed under a dissecting microscope. Twenty mussels displaying active foot movement will be transferred with a disposable pipet into a 50-mL beaker or petri dish containing 20°C well water. The beaker or petri dish will then be emptied and rinsed into a randomly chosen exposure chamber containing 20°C well water and approximately 4 mm of 75 – 150 μm silica sand as substrate. The process will then be repeated until all exposure chambers receive a total of two distribution aliquots for a total of 40 juveniles for each exposure chamber. Additionally, two randomly chosen groups of 20 mussels of each species will be preserved to determine the initial mussel valve lenath.

Exposures will be initiated 12-24 h after the exposure chambers receive test animals by interrupting the fresh water flow and then adding the appropriate freshly prepared solution of MBI-401 FDP in a completely randomized design. There will be a total of four replicates for each exposure concentration, for a total of 24 exposure chambers per species (Figure 1). The exposure chambers will be held at 20°C on an 18:6 h light/dark cycle for the exposure and post exposure period. The exposure will be a single, dose of MBI-401 FDP (*Pseudomonas fluorescens* [*Pf*-CL145A]) administered as a 24 h static exposure. Water flow will be resumed to the exposure chambers after the treatment period.

At 30-d post exposure, the contents of each exposure chamber will be sieved through a 200-µm screen to separate the juvenile mussels from the substrate. The mussels will be examined through a dissecting scope to determine viability and for enumeration. A photomicrograph of all surviving mussels will be

Study# AEH-11-PSEUDO-02 Amendment #6

 $FF # \frac{3}{1 \text{ tem No. } \frac{3}{2}}$ $Pg _ 2 \text{ of } 5$

Page 2 of 5

recorded for each exposure chamber for growth measurements. The mussels will be euthanized and fixed in modified Davidson's solution for up to 48 h and then transferred to 70% ethanol.

5.1.6 Feeding: Approximately 24-h prior to the distribution of test animals, the exposure chambers will receive a constant supply of well water containing approximately 2.0 mg/L (dry weight) of a 1:1:1 mixture of live chlorella algae (obtained from the Kentucky Department of Fish and Wildlife Resources Center for Mollusk Conservation) and Reed Mariculture tetraselmis and nannochloropsis instant algae. This mixture approximates the diet that produced the greatest survival in similar exposures with *Lampsilis cardium* and *L. siliquoidea* (Meinertz 2008).

Approximately 2-h prior to dosing, feed will be withheld and the exposure chambers will be allowed to clear with incoming 20°C well water. Feeding will resume after the 24-h exposure period. A fresh food stock solution will be prepared daily and delivered with a peristaltic pump to the headbox.

- 5.4.1.5 Exposure chamber dimensions: The exposure chambers are
 (17.8 x 5.1 x 8.3 mm) glass aquaria. Each exposure chamber will contain approximately 380 mL of well water and 35g of substrate.
- 6.1 Distribution to experimental units: Twenty mussels displaying active foot movement will be transferred with a disposable pipet to a 50 mL beaker containing 20°C well water. The beaker will then be emptied and rinsed into a randomly chosen exposure chamber containing 20°C well water with approximately 4 mm of 75 150 µm silica sand as substrate. This procedure will then be repeated until all chambers receive 40 mussels in two aliquots. The exposure chambers will be randomly assigned treatment concentration.

Revised text (in bold):

4.1 General Description:

Newly metamorphosed juvenile mussels from 7 unionid mussel species (Table 2) endemic in the Great Lakes and Mississippi River basins will be evaluated for effects from exposure to varying concentrations of MBI-401 FDP (*Pseudomonas fluorescens* [*Pf*-CL145A]). Juvenile mussels will be placed into a flow through test apparatus and then exposed to the test material for 24 h in a static exposure. Following the exposure period, the water flow will resume to the exposure chambers and the mussels will be reared for an additional <u>7 days</u> before being removed from the system and evaluated for survival and growth. The mussels will be preserved for possible histological examination. If histological examination is deemed necessary, a protocol amendment will be prepared to describe the methods and procedures to be used.

4.2 Experimental Design:

Donor mussel collection, host fish inoculation, and newly metamorphosed mussels harvesting will be performed at the Genoa NFH by USFWS biologists. Gravid donor mussels will be collected from the Upper Iowa, Upper Mississippi or

Study# AEH-11-PSEUDO-02 Amendment #6

FF # <u>3</u> Item No. <u>7</u> Pg <u>3</u> of <u>5</u>

Page 3 of 5

OBIGINAL

St. Croix Rivers. Mussels will be identified to species as described in Cummings and Mayer (1992) and Watters et al. (2009) by staff at the Genoa NFH. Approximately 1,200 juvenile mussels from each species will be collected from the mussel propagation aquaria by Genoa NFH biologists and transferred to the UMESC at ~20°C. After acclimation to UMESC test water, the mussels will be placed in petri dishes and viewed under a dissecting microscope. Twenty mussels displaying active foot movement will be transferred with a disposable pipet into a 50-mL beaker or petri dish containing 20°C well water. <u>The beaker</u> or petri dish will then be emptied and rinsed Into a randomly chosen exposure chamber containing 20°C well water. The process will then be repeated until all exposure chambers receive a total of two distribution aliquots for a total of 40 juveniles for each exposure chamber. Additionally, two randomly chosen groups of 20 mussels of each species will be preserved to determine the initial mussel valve length.

Exposures will be initiated 12-24 h after the exposure chambers receive test animals by interrupting the fresh water flow and then adding the appropriate freshly prepared solution of MBI-401 FDP in a completely randomized design. There will be a total of four replicates for each exposure concentration, for a total of 24 exposure chambers per species (Figure 1). The exposure chambers will be held at 20°C on an 18:6 h light/dark cycle for the exposure and post exposure period. The exposure will be a single, dose of MBI-401 FDP (*Pseudomonas fluorescens* [*Pf*-CL145A]) administered as a 24 h static exposure. Water flow will be resumed to the exposure chambers after the treatment period.

At 7 days post exposure, the contents of each exposure chamber will be <u>sieved through a 150 or 200-µm screen to separate the juvenile mussels</u>. The mussels will be examined through a dissecting scope to determine viability and for enumeration. A photomicrograph of all surviving mussels will be recorded for each exposure chamber for growth measurements. The mussels will be euthanized and fixed in modified Davidson's solution for up to 48 h and then transferred to 70% ethanol.

5.1.6 Feeding: Approximately <u>2 h prior to the distribution of test animals feeding</u> of the exposure chambers will commence by introduction of a constant supply of well water containing approximately 2.0 mg/L (dry weight) of a 1:1:1 mixture of live chlorella algae (obtained from the Kentucky Department of Fish and Wildlife Resources Center for Mollusk Conservation) and Reed Mariculture tetraselmis and nannochloropsis instant algae. This mixture approximates the diet that produced the greatest survival in similar exposures with Lampsilis cardium and L. siliquoidea (Meinertz 2008). Approximately 2-h prior to dosing, feed will be withheld and the exposure chambers will be allowed to clear with incoming 20°C well water. Feeding will resume after the 24-h exposure period. A fresh food stock solution will be prepared daily and delivered with a peristaltic pump to the headbox.

5.4.1.5 Exposure chamber dimensions: The exposure chambers are (17.8 x 5.1 x 8.3 mm) glass aquaria. <u>Each exposure chamber will contain</u> approximately 380 mL of well water.

Study# AEH-11-PSEUDO-02	Amendment #6
	7 anonamone #0

. . . .

FF # <u>3</u> Item No. <u>4</u> Pg <u>4</u> of <u>5</u>

Page 4 of 5

OBIGINAL

6.1 Distribution to experimental units: Twenty mussels displaying active foot movement will be transferred with a disposable pipet to a 50 mL beaker containing 20°C well water. <u>The beaker will then be emptied and rinsed into a randomly chosen exposure chamber containing 20°C well water.</u> This procedure will then be repeated until all chambers receive 40 mussels in two aliquots. <u>A treatment concentration will be randomly assigned to each exposure chamber according to a predetermined randomization scheme.</u>

FF # _____ Item No. Pg _5___

Study# AEH-11-PSEUDO-02 Amendment #6

· · · · · ·

Page 5 of 5

United States Department of the Interior

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

Date: December 08, 2011

To: The Record Study Number AEH-11-PSEUDO-02

Subject: Amendment 7- Amendment to the study AEH-11-PSEUDO-02 "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Revision of Study Protocol, Study # AEH-11-PSEUDO-02 is proposed as detailed on page 2 of this amendment. Revised text is indicated **in bold**.

This amendment deletes using the YSI 9000 spectrophotometer ammonia sampling method and analyzing pooled replicate samples. All ammonia samples will be filtered through a 0.45 micron filter, acidified using sulfuric acid and stored in a refrigerator until analysis by the UMESC Long Term Resources Monitoring Program (LTRMP) Water Quality Laboratory using the automated phenate method (APHA [American Public Health Association] 1992. Standard methods for the examination of water and wastewater. 18th edition. American Public Health Association, Washington, D.C. Various pages). The LTRMP laboratory does not perform their analysis according to Good Laboratory Practices (GLP). Data Generated by LTRMP will be annotated to state it does not comply with GLP regulations in the final report.

Reviewed by: 9 December 2011 kc // Mark P. Gaikowski, M.A. Jane E. Rivera, B.A Date Supervisory Biologist Acting Quality Assurance Officer. Aquatic Ecosystem Health, UMESC UMESC¹ <u>|~/ |~/ ||</u> Date Michael Jawson, Ph.D. Center Director, UMESC Approved by: 12/13/2011 James A. Luoma, B.A. Study Director, UMESC FF# ltem ¹ UMESC: U.S. Geological Survey, Upper Midwest Environmental Sciences Center

Study# AEH-11-PSEUDO-02 Amendment #7

Page 1 of 2

Current text: 5.2.7

Ammonia: The total ammonia will be measured and recorded prior to test initiation in untreated water collected from each distribution box, upon exposure termination from pooled replicate water samples of each test concentration collected from the center section of each exposure chamber, and weekly throughout the holding period on one representative exposure chamber water sample collected from the center section of each exposure chamber water sample collected from the center section of each exposure chamber water sample collected from the center section of each exposure chamber using a YSI 9000 spectrophotometer (UMESC SOP AEH 301 or equivalent). Additionally, 5 mL samples will be collected from the center section of each exposure vessel at 6, 12 and 24 h post exposure, filtered through a 0.45 µm syringe filter, acidified (pH ~2.5) with sulfuric acid and then stored at ~4°C until analysis by the UMESC-LTRMP water quality laboratory.

Unionized ammonia will be calculated from the total ammonia, pH and temperature of the pooled samples or from measurements recorded from the exposure chambers at the time of sampling.

Revised text (in bold):

5.2.7 Ammonia: The total ammonia will be measured and recorded prior to test initiation in untreated water collected from each distribution box, upon exposure termination from water samples collected from the center section of each exposure vessel at 6, 12 and 24 h post exposure, and prior to test termination in untreated water collected from each distribution box. 5 mL samples will be removed at each sampling time and at least 3 mL of each sample will filtered through a 0.45 µm syringe filter, acidified (pH ~2.5) with sulfuric acid and then stored at ~4°C until analysis by the UMESC-LTRMP water quality laboratory.

Unionized ammonia will be calculated using the UMESC-LTRMP total ammonia data and the pH and temperature measurements recorded from the exposure chambers or distribution boxes at the time of sampling.

FF # Item No

Study# AEH-11-PSEUDO-02 Amendment #7

Page 2 of 2

United States Department of the Interior

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

Date: December 20, 2011

To: The Record Study Number AEH-11-PSEUDO-02

Subject: Amendment 8- Amendment to the study AEH-11-PSEUDO-02 "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Revision of Study Protocol, Study # AEH-11-PSEUDO-02 is proposed as detailed on pages 2-7 of this amendment. Revised text is indicated **in bold**.

This amendment changes the test material from a Freeze dried (FDP) to a spray dried (SDP) formulation.

The initially manufacturer-preferred freeze dried formulation (FDP) of *Pseudomonas fluorescens* has recently been discontinued and the manufacturer has indicated support for a spray-dried (SDP) formulation.

The exposures will be conducted in an identical fashion except for the change in product formulation. Mussel species previously exposed to FDP will not be re-evaluated with the SDP formulation; data collected during FDP exposures will be retained in the study data management system.

Reviewed by:

Mark P. Gaikowski, M.A. Supervisory Biologist Aquatic Ecosystem Health, UMESC¹

2#Dec2#11

Date

Michael Jawson, Ph.D. Center Director, UMESC

12/22/2011

Approved by:

James A. Luoma, B.A. Study Director, UMESC

12/22/1 Date

¹ UMESC: U.S. Geological Survey, Upper Midwest Environmental Sciences Center

Study# AEH-11-PSEUDO-02 Amendment #8

Page 1 of 7

Current text:

1. INTRODUCTION: (paragraph 5 of Section 1 is the only paragraph affected by this amendment)

Biologists at the New York State Museum (NYSM) Field Research Laboratory have been researching dreissenid mussel control since 1991 and they discovered that a bacterium isolated from soils (*Pseudomonas fluorescens* [Pf-CL145A]) is efficacious for controlling zebra mussels. Marrone Bio Innovations (MBI; Davis, CA) is currently developing a freeze dried formulation of this bacterium called MBI-401 FDP. The current commercial applications of this product are for use with closed systems such as power generating plant cooling systems. The NYSM has partnered with the USFWS (Genoa NFH) and United States Geological Survey's (USGS) Upper Midwest Environmental Sciences Center (UMESC) to determine the suitability of this product for open water zebra mussel control applications such as treatment of native mussel propagation cages or native mussel beds.

2. PROTOCOL OBJECTIVE:

This study will determine the animal effects of various concentrations of MBI-401 FDP (*Pseudomonas fluorescens* [*Pf*-CL145A]) to the newly metamorphosed lifestage of seven unionid mussels species present in the Great Lakes and Upper Mississippi River basins.

4. STUDY DESIGN:

4.1 General Description:

Newly metamorphosed juvenile mussels from 7 unionid mussel species (Table 2) endemic in the Great Lakes and Mississippi River basins will be evaluated for effects from exposure to varying concentrations of MBI-401 FDP (*Pseudomonas fluorescens* [*Pf*-CL145A]). Juvenile mussels will be placed into a flow through test apparatus and then exposed to the test material for 24 h in a static exposure. Following the exposure period, the water flow will resume to the exposure chambers and the mussels will be reared for an additional 7 days before being removed from the system and evaluated for survival and growth. The mussels will be preserved for possible histological examination. If histological examination is deemed necessary, a protocol amendment will be prepared to describe the methods and procedures to be used.

4.2 Experimental Design:

Donor mussel collection, host fish inoculation, and newly metamorphosed mussels harvesting will be performed at the Genoa NFH by USFWS biologists. Gravid donor mussels will be collected from the Upper lowa, Upper Mississippi or St. Croix Rivers. Mussels will be identified to species as described in Cummings and Mayer (1992) and Watters et al. (2009) by staff at the Genoa NFH.

Study# AEH-11-PSEUDO-02 Amendment #8

Page 2 of 7

Approximately 1,200 juvenile mussels from each species will be collected from the mussel propagation aquaria by Genoa NFH biologists and transferred to the UMESC at ~20°C. After acclimation to UMESC test water, the mussels will be placed in petri dishes and viewed under a dissecting microscope. Twenty mussels displaying active foot movement will be transferred with a disposable pipet into a 50-mL beaker or petri dish containing 20°C well water. The beaker or petri dish will then be emptied and rinsed into a randomly chosen exposure chamber containing 20°C well water. The process will then be repeated until all exposure chambers receive a total of two distribution aliquots for a total of 40 juveniles for each exposure chamber. Additionally, two randomly chosen groups of 20 mussels of each species will be preserved to determine the initial mussel valve length.

Exposures will be initiated 12-24 h after the exposure chambers receive test animals by interrupting the fresh water flow and then adding the appropriate freshly prepared solution of MBI-401 FDP in a completely randomized design. There will be a total of four replicates for each exposure concentration, for a total of 24 exposure chambers per species (Figure 1). The exposure chambers will be held at 20°C on an 18:6 h light/dark cycle for the exposure and post exposure period. The exposure will be a single, dose of MBI-401 FDP (*Pseudomonas fluorescens* [*Pf*-CL145A]) administered as a 24 h static exposure. Water flow will be resumed to the exposure chambers after the treatment period.

At 7 days post exposure, the contents of each exposure chamber will be sieved through a 150 or 200-µm screen to separate the juvenile mussels. The mussels will be examined through a dissecting scope to determine viability and for enumeration. A photomicrograph of all surviving mussels will be recorded for each exposure chamber for growth measurements. The mussels will be euthanized and fixed in modified Davidson's solution for up to 48 h and then transferred to 70% ethanol.

5. STUDY PROCEDURES

- 5.6 Treatment administration:
 - 5.6.1 Treatment: Each species of mussels will be exposed to four replicates of either 0 (control), 50, 100, 200 or 300 mg/L and a 300 mg/L heat deactivated (70°C/45 minutes) control as a single dose exposure.
 - 5.6.2 Route of administration: Exposures will be initiated by addition of an appropriate freshly prepared solution of MBI-401 FDP in a completely randomized design. The test concentrations will include 0 (control), 300 mg/L deactivated (positive control), or 50, 100, 200, or 300 mg/L of active MBI-401 FDP. To assure proper concentration levels, the exposure chamber water volume will be lowered as far as possible and the chamber will be flushed with the treatment solution before refilling to the original volume.
 - 5.6.3 Dose verification: The activity of MBI-401 FDP (*Pseudomonas fluorescens* [*Pf*-CL145A]) cannot be assessed by current analytical techniques as the chemical nature of the active agent in the bacterium has not been determined

Study# AEH-11-PSEUDO-02 Amendment #8

Page 3 of 7

. . .

or characterized. Dosage verification of MBI-401 FDP will be assessed by measuring and recording the absorbance of the prepared stock dosing solution and the high treatment concentrations with a Beckman DU 800 UV/Vis spectrophotometer (UMESC SOP AEH 303). The collected absorbance information will be used to determine inter- and intra-test variability in the preparation of stock and test solutions.

12. INVESTIGATIONAL TEST ARTICLE

12.1 Test Substance(s): MBI-401 FDP, Pseudomonas fluorescens (Pf-CL145A)

- 12.1.1 Chemical name: Pseudomonas fluorescens (Pf-CL145A)
- 12.1.2 Trade name: MBI-401 FDP
- 12.1.3 Active ingredients: *Pseudomonas fluorescens* (*Pf*-CL145A) is the sole active ingredient, 100% active by weight.
- 12.1.4 Source: Marrone Bio Innovations (MBI); Davis, CA
- 12.1.5 Lot number: Multiple lots are expected to be tested. Lot number(s) will be included in the test chemical log books and lab notebook, and study files.
- 12.1.6 Expiration date: 3 months from the date of manufacturer. An aliquot of each lot tested will be returned to the NYSM or MBI at the conclusion of exposures at UMESC for confirmatory post-test activity comparative zebra mussel bioassay tests (the standard testing protocol to assess *Pseudomonas fluorescens [Pf*-CL145A] formulation activity). Results of these confirmation bioassays will be used to validate the activity retention of the MBI-401 FDP, *Pseudomonas fluorescens (Pf*-CL145A) and will be included in the study files when available.
- 12.1.7 Storage during study: test chemical will be stored refrigerated in a locked container within a restrictive entry laboratory. A subsample of the test chemical will be archived in the UMESC Chemical Archive (UMESC SOP GEN 011).
- 12.1.8 A NIOSH approved respirator will be used when preparing stock solutions to avoid inhalation. Protective eyewear, gloves and lab coats will be worn at all times when working with the test substance.

Revised text:

1. INTRODUCTION: (paragraph 5 of Section 1 is the only paragraph affected by this amendment)

Biologists at the New York State Museum (NYSM) Field Research Laboratory have been researching dreissenid mussel control since 1991 and they discovered that a bacterium isolated from soils (*Pseudomonas fluorescens* [Pf-CL145A]) is efficacious for

Study# AEH-11-PSEUDO-02 Amendment #8

Page 4 of 7

controlling zebra mussels. Marrone Bio Innovations (MBI; Davis, CA) is currently developing a **spray** dried formulation of this bacterium called MBI-401 **SDP**. The current commercial applications of this product are for use with closed systems such as power generating plant cooling systems. The NYSM has partnered with the USFWS (Genoa NFH) and United States Geological Survey's (USGS) Upper Midwest Environmental Sciences Center (UMESC) to determine the suitability of this product for open water zebra mussel control applications such as treatment of native mussel propagation cages or native mussel beds.

2. PROTOCOL OBJECTIVE:

This study will determine the animal effects of various concentrations of MBI-401 **SDP** (*Pseudomonas fluorescens* [*Pf*-CL145A]) to the newly metamorphosed lifestage of seven unionid mussels species present in the Great Lakes and Upper Mississippi River basins.

4. STUDY DESIGN:

4.1 General Description:

Newly metamorphosed juvenile mussels from 7 unionid mussel species (Table 2) endemic in the Great Lakes and Mississippi River basins will be evaluated for effects from exposure to varying concentrations of MBI-401 **SDP** (*Pseudomonas fluorescens* [*Pf*-CL145A]). Juvenile mussels will be placed into a flow through test apparatus and then exposed to the test material for 24 h in a static exposure. Following the exposure period, the water flow will resume to the exposure chambers and the mussels will be reared for an additional 7 days before being removed from the system and evaluated for survival and growth. The mussels will be preserved for possible histological examination. If histological examination is deemed necessary, a protocol amendment will be prepared to describe the methods and procedures to be used.

4.2 Experimental Design:

Donor mussel collection, host fish inoculation, and newly metamorphosed mussels harvesting will be performed at the Genoa NFH by USFWS biologists. Gravid donor mussels will be collected from the Upper Iowa, Upper Mississippi or St. Croix Rivers. Mussels will be identified to species as described in Cummings and Mayer (1992) and Watters et al. (2009) by staff at the Genoa NFH. Approximately 1,200 juvenile mussels from each species will be collected from the mussel propagation aquaria by Genoa NFH biologists and transferred to the UMESC at ~20°C. After acclimation to UMESC test water, the mussels will be placed in petri dishes and viewed under a dissecting microscope. Twenty mussels displaying active foot movement will be transferred with a disposable pipet into a 50-mL beaker or petri dish containing 20°C well water. The beaker or petri dish will then be emptied and rinsed into a randomly chosen exposure chamber containing 20°C well water. The process will then be repeated until all exposure chambers receive a total of two distribution aliquots for a total of 40

Study# AEH-11-PSEUDO-02 Amendment #8

Page 5 of 7

juveniles for each exposure chamber. Additionally, two randomly chosen groups of 20 mussels of each species will be preserved to determine the initial mussel valve length.

Exposures will be initiated 12-24 h after the exposure chambers receive test animals by interrupting the fresh water flow and then adding the appropriate freshly prepared solution of MBI-401 **SDP** in a completely randomized design. There will be a total of four replicates for each exposure concentration, for a total of 24 exposure chambers per species (Figure 1). The exposure chambers will be held at 20°C on an 18:6 h light/dark cycle for the exposure and post exposure period. The exposure will be a single, dose of MBI-401 **SDP** (*Pseudomonas fluorescens [Pf*-CL145A]) administered as a 24 h static exposure. Water flow will be resumed to the exposure chambers after the treatment period.

At 7 days post exposure, the contents of each exposure chamber will be sieved through a 150 or 200-µm screen to separate the juvenile mussels. The mussels will be examined through a dissecting scope to determine viability and for enumeration. A photomicrograph of all surviving mussels will be recorded for each exposure chamber for growth measurements. The mussels will be euthanized and fixed in modified Davidson's solution for up to 48 h and then transferred to 70% ethanol.

5. STUDY PROCEDURES

- 5.6 Treatment administration:
 - 5.6.1 Treatment: Each species of mussels will be exposed to four replicates of either 0 (control), 50, 100, 200 or 300 mg/L and a 300 mg/L heat deactivated (70°C/45 minutes) control as a single dose exposure.
 - 5.6.2 Route of administration: Exposures will be initiated by addition of an appropriate freshly prepared solution of MBI-401 **SDP** in a completely randomized design. The test concentrations will include 0 (control), 300 mg/L deactivated (positive control), or 50, 100, 200, or 300 mg/L of active MBI-401 **SDP**. To assure proper concentration levels, the exposure chamber water volume will be lowered as far as possible and the chamber will be flushed with the treatment solution before refilling to the original volume.
 - 5.6.3 Dose verification: The activity of MBI-401 **SDP** (*Pseudomonas fluorescens* [*Pf*-CL145A]) cannot be assessed by current analytical techniques as the chemical nature of the active agent in the bacterium has not been determined or characterized. Dosage verification of MBI-401 **SDP** will be assessed by measuring and recording the absorbance of the prepared stock dosing solution and the high treatment concentrations with a Beckman DU 800 UV/Vis spectrophotometer (UMESC SOP AEH 303). The collected absorbance information will be used to determine inter- and intra-test variability in the preparation of stock and test solutions.

12. INVESTIGATIONAL TEST ARTICLE

12.1 Test Substance(s): MBI-401 SDP, Pseudomonas fluorescens (Pf-CL145A)

Study# AEH-11-PSEUDO-02 Amendment #8

Page 6 of 7

•

- 12.1.1 Chemical name: Pseudomonas fluorescens (Pf-CL145A)
- 12.1.2 Trade name: MBI-401 SDP
- 12.1.3 Active ingredients: *Pseudomonas fluorescens* (*Pf*-CL145A) is the sole active ingredient, **50%** active by weight.
- 12.1.4 Source: Marrone Bio Innovations (MBI); Davis, CA
- 12.1.5 Lot number: Multiple lots are expected to be tested. Lot number(s) will be included in the test chemical log books and lab notebook, and study files.
- 12.1.6 Expiration date: Expiration date is not known, therefore, an aliquot of each lot tested will be returned to the NYSM or MBI at the conclusion of exposures at UMESC for confirmatory post-test activity comparative zebra mussel bioassay tests (the standard testing protocol to assess *Pseudomonas fluorescens* [*Pf*-CL145A] formulation activity). Results of these confirmation bioassays will be used to validate the activity retention of the MBI-401 SDP, *Pseudomonas fluorescens* (*Pf*-CL145A) and will be included in the study files when available.
- 12.1.7 Storage during study: test chemical will be stored refrigerated in a locked container within a restrictive entry laboratory. A subsample of the test chemical will be archived in the UMESC Chemical Archive (UMESC SOP GEN 011).
- 12.1.8 A NIOSH approved respirator will be used when preparing stock solutions to avoid inhalation. Protective eyewear, gloves and lab coats will be worn at all times when working with the test substance.

FF # <u>3</u> Item No. <u>1</u>

Study# AEH-11-PSEUDO-02 Amendment #8

Page 7 of 7

United States Department of the Interior

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

Date: May 12, 2014 To: The Record Study Number AEH-11-PSEUDO-02

Subject: Amendment 9 - Amendment to the study AEH-11-PSEUDO-02 "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Revision of Study Protocol, Study # AEH-11-PSEUDO-02 as detailed on page 2 of this amendment. Revised text is in <u>bold and underlined</u>, deleted text has a strike through.

This amendment documents the change of status of study number AEH-11-PSEUDO-02 titled "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species" from a Good Laboratory Practices (GLP) regulated study to a non-GLP regulated study. The data resulting from this study will not be used to support a product registration, therefore, a verbal decision with UMESC management was agreed to on April 22, 2014 to change the status of the study to non-regulated.

Reviewed by:

/<u>/ ؟ /</u> Date Mark P. Gaikowski, M.A. Jane E. Rivera, B.A. Dafe Supervisory Biologist Acting Quality Assurance Aquatic Ecosystem Health, Officer, UMESC UMESC¹ 05/14/2014 Kevin D. Richards, Ph.D. Date Acting Center Director, UMESC Approved by: 15 MAY 2014 James A. Kuoma, B.A. Date Item No. Study Director, UMESC of

¹ UMESC: U.S. Geological Survey, Upper Midwest Environmental Sciences Center

Study# AEH-11-PSEUDO-02 Amendment 9 .

Page 1 of 2

Current text:

10. GOOD LABORATORY PRACTICES

Data collection, storage and retrieval procedures for the study will be conducted in compliance with FDA regulations for Good Laboratory Practices (GLP; 21 CFR, Part 58). The study protocol and progress of the study will be reviewed at the start of the study and periodically throughout the study by the Quality Assurance Unit (QAU). The Study Director has the responsibility of ensuring that all procedures used in conjunction with the study conform with Good Laboratory Practices.

Revised text (in bold and underlined):

10. GOOD LABORATORY PRACTICES

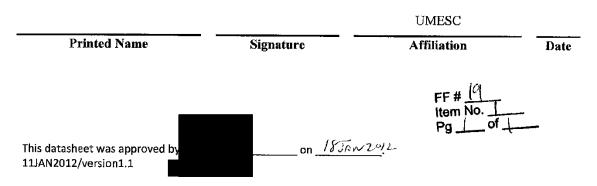
Data collection, storage and retrieval procedures for the study will be <u>not be</u> conducted in compliance with FDA regulations for Good Laboratory Practices (GLP; 21 CFR, Part 58). The study protocol and progress of the study <u>may</u> will be reviewed at the start of the study and periodically throughout the study by the Quality Assurance Unit (QAU). The Study Director has the responsibility of ensuring that all procedures used in conjunction with the study <u>conforms to</u> with Good Scientific Laboratory Practices.

Item No.

Study# AEH-11-PSEUDO-02 Amendment 9

Page 2 of 2

Study number: AEH-11-PSEUDO-02


File Folder: Lab book/pgs: Reviewed: Verified:

Newly Metamorphosed Juvenile Mussel Test Organism UMESC Lot Number Assignment Form

Species:		
Collection Date(s) :		
Collection Location:	Container II	D:
Approximate Number of Muss	els:	
Mussel collected and identified	by:	Affiliation
Dosing Date:	Formulation and lot #	
Additional information:		

UMESC MUSSEL LOT NUMBER DESIGNATION:_

Witness and form recorded by:

Study number: AEH-11-PSEUDO-02

File Folder: _____ Lab book/pgs: _____ Reviewed: _____ Verified: _____

Newly Metamorphosed Juvenile Mussel Distribution Form

Species:	UMESC LOT NUMBER:
Test Block Assignment (circle one): <u>1</u> 2	23
Estimated # Mussels/Distribution	
Initial Distribution Aliquot date/time (milita	ry):
Final Distribution Aliquot date/time (militar	y):
Number of Aliquot rounds: Num	ber of mussels/chamber
Additional information:	
With one and former monoid diagonal	
Witness and form recorded by:	
Printed Name Sign	UMESC ature Affiliation Date
	FF # $\frac{12}{1}$ Item No. $\frac{2}{2}$ Pg of
This datasheet was approved by 11JAN2012/version1.1	on 11 JAN 2012

Study Title: "Effects of <i>P</i> metamorphosed juvenile		· · · · · · · · · · · · · · · · · · ·
Study	number: AEH-11-PSEUD	00-02
File Folder: Lab b	ook/pgs: Reviewed:	Verified:
Newly Metamorpho	sed Mussel Exp	osure Dosing Form
Species:	UMESC	lot number:
Test System Assignment (circle o	ne): <u>1 2 3</u>	
Number mussel/Chamber <u>40</u>	Number of replicate Cha	mbers/Concentration <u>4</u>
Number of Concentrations (inclu	ding control) <u>6</u>	
Date/time (military) of dosing init	tiation:	
Date/time (military) of dosing con	npletion:	
Chemical Lot :	Stock Chemical Sample I	.D
Test Solution Preparation Time:_		
Test Solution preparation descrip	otion (include dilution volu	ıme):
Additional information:		
Witness and form recorded by:		
······································		TIMDSC
Printed Name	Signature	UMESC Affiliation Date
		FF # <u>19</u> Item No. <u>3</u>
		Pg of
This datasheet was approved by 11JAN2012/version1.1	on//、	JAN ZOIL.

Study number: AEH-11-PSEUDO-02

File Folder: Lab book/pgs: Reviewed: Verified:

Test Chemical Stock Preparation Data Form

Test Chemical: Pseudomonas fluorescens strain 145A

Test Chemical Lot #_____Date Rec'd_____Exp. Date_____

Mussel Species _____ System 1 2 3

Instruments _____

Chemical Weighing:

Sample I.D.	Sample wt. (g)	Date/Time	Initials
· · · · · · · · · · · · · · · · · · ·			

*Chemical samples to be stored refrigerated until used for stock preparation.

Stock Preparation:

	Dilution Vol.	Dilution	Use (ie: Active stock for	Date/	
Sample I.D.	(ml)	time	HGE)	Time	Initials
				· · · · · · · · · · · · · · · · · · ·	
		<u></u>			
*****		11 1 1 1			

*Stocks to be prepared immediately before use, except for heat deactivated stock which will be prepared prior to use to allow for deactivation and cooling.

This datasheet was approved by on on on Item N). <u>4</u>
11JAN2012/version1.1 On ON ON Pg	

Study Number AEH-11-PSEUDO-02 Reviewed: Verified:

Date of Dosing: Lab book/pgs: _ File Folder: __ Formulation and lot #:____

Chemical Stock Solution Determination and Preparation

Stock A = Control [20 °C well water -controls will be treated in the same manner but will use a stock solution of plain well water)
Stock B = 40,000 mg/L; 50% active ingredient[20mg/mL]) *** Make 10g/500 mL well water per each test system
Stock C = A0,000 mg/L detoxified active material [20mg/mL]***Make 10g/500 mL well for use in all 3 systems - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use
Dilution water = 20°C UMESC Well Water

	Final				Dilution water to	Well Water	Artive Stock	Denctine Starb	
Dose Level (mg/t)	Dose Level Solution (mg/l) Volume (ml)	mg of test material required	Deactivated mg required	Active mg required	add to container (ml)	Allquot Stock A (mL)		Aliquot Stack C	Color Code Accionment
0	5,000		0	0	0	5000.0	0.0	(00	White
300 H D	5,000	1,500	1500	0	4,850	0.0		150.0	White/black strines
50	5,000		0	250	4,975	0.0	25.0	0.0	Yellow
100	5,000	500	0	500	4,950	0.0	50.0	0.0	Yellow/black strines
200	5,000		0	1000	4,900	0.0	100.0	0.0	Blue
300 Active	5,000	1,500	0	1500	4,850	0.0	150.0	0.0	Blue/black stripes
Total						S000.0	5000.0	325.0	150.0

	s Date						
	Initials						
	<u>Time of Exposure Termination</u>						
	<u>Initials</u>						
Time Dosing	Completed						
	Time Dosing Started						
<u>Time Test</u> Solution	<u>Prepared</u>						
<u>Concentration</u>	(mg/L)	0	300 HD	50	100	200	300 Active

FF # <u>|</u> item No. Pg ____ of

;

.

...

Study Number AEH-11-PSEUDO-02	JDO-02						
File Folder:	Lab book/pgs:		Reviewed:		Veri	Verified:	
		Wate	Water Quality – Form 1 Pre-Exposure	1			
Mussel Species:			System:				
Dosing Date:	For	Formulation and lot #:	#			I	
Instruments:							
	Dissolved Oxyge	Dissolved Oxygen, Temperature, pH, Hardness, Alkalinity, and Conductivity	, pH, Hardness,	Alkalinity, and (Conductivity		
Dissolved Oxygen (mg/L) Temperature (*C)	pH	Conductivity (µS/cm)	Hardness (mg/L CaCO ₃)	Alkalinity (mg/1 CaCO ₃)	Date	Time (military)	initials
		Total and Un	Total and Un-ionized Ammonia Data	ia Data			
Temperature (°C)	Hđ		Date	Time	Time (military)	Init	Initials
		1					
Note: Measure and record th	he temperature and pH for the total and un-ionized ammonia when the sample to be analyzed by LTRMP is taken. 6 a f H 3 # 0)H for the total and	l un-ionized amm	onia when the sa	8 9 FF # <u>19</u> ■ Item No.	lyzed by LTRMP i	s taken.
This datasheet was approved 11JAN2012/version 1.1	d by	Б	ON /LJAN 2012	or	_6 of		

File Folder: _____ Lab book/pgs: _____ Reviewed: _____ Verified: _____

1

Water Quality Form 2

Exposure Period Dissolved Oxygen, pH, Temperature

Mussel Sp	ecies:	Syst	em ID:			
	te:		nulation and lot #:			
	ts:					
Chamber			Temperature		Time	
ID	(mg/L)	рН	(°C)	Date	(military)	Initia
w						
	·····	<u></u>				
	······				+	i +n •
	· · · · · · · · · · · · · · · · · · ·					
	,	2 1 Aud 1				
					-	
		•				
		·				
		·····				
		···				
	,					
·						

	FF # <u> 4</u> Item No <u></u>	A	
	Pg of	FF # Itep: No	
This datasheet was approved by:	on liton zain.	NE and H	
11JAN2012/version 1.1		www. frontil	

File Folder: ______ Lab book/pgs: ______ Reviewed: ______ Verified: ______

Water Quality Form 2a

Exposure Period pH and Temperature for Ammonia Analysis

Mussel Spe	ecies:	Sys	tem ID:			
	e:		mulation and lot #:			
	:s:					
Chamber ID	Time Period Post-exposure	<u> </u>	Temperature	0	Time	
	Post-exposure	рН	(°C)	Date	(military)	Initials
						ļ
		., <u>.</u>				
		,				
-			<u></u> .			
· · · ·						
						
	·····			 .		
	·		· · · · · · · · · · · · · · · · · · ·		······································	
					· · · · · · · · · · · · · · · · · · ·	
	·····					
			1			

Note: Ammonia samples will be collected at 6, 12 and 24-hour post-exposure from each exposure chamber. The samples will be filtered through a 0.45 μm syringe filter. 3 mL of the filtered sample will be acidified by 60 µL of 10% sulfuric acid. Temperature and pH will be measured when the ammonia samples are collected.

This datasheet was approved by: 11JAN2012/version 1.1

on 19 JANZOR

FF # <u>1</u>4 Item No. Pg ____ of

File Folder:	Lab book/pgs:	Reviewed:		Verified:		
FF# <u>19</u>	Wa	Water Quality – Form 3	3			
Pg of of	Exposure Termination Hardness, Alkalinity and Conductivity	n Hardness, Alkalir	iity and Conductivi	Σ.		
Instruments:						
System ID:	Mussel Species:					
Dosing Date:	Formulation and lot #:	id lot #:				
	Ŧ	Hardness and Alkalinity	ity			
Pooled Concentration	Chamber IDs	Hardness (mg/L CaCO ₃)	Alkalinity (mg/L CaCO ₃)	Date	Time (military)	Initials
Control (0 mg/L)			-			
50 mg/ L Active						
100 mg/ L Active						
200 mg/L Active						
300 mg/L Active						
300 mg/L Deactivated						
		Conductivity				
Pooled Concentration	Chamber IDs	Conductivity (µS/cm)	cy (JuS/cm)	Date	Time (military)	Initials
Control (0 mg/L)						
50 mg/ L Active						
100 mg/ L Active						
200 mg/L Active						
300 mg/L Active						
300 mg/L Deactivated						
					-	

This datasheet was approved by: 11JAN2012/version 1.1

ì

on 1/ Jow Zair

FF # / ? Item No. /o Pg <u>1</u> of <u>1</u>

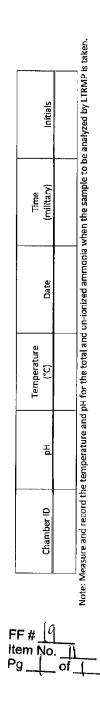
Verified:

Reviewed:

Lab book/pgs:

File Folder:

Daily Water Quality – Form 4 Dissolved Oxygen, pH, and Temperature


Mussel	Mussel Species:			Svet.	Svetem ID:	Instruments:				Month.	į	
Dosing Date:	Date:		Formulation and lot #:	and lot #: _								
	Davs Post	Block A	Dissolved		Tamnerature	a Arota	Dissolved		Tomacature		- T	
Day	Exposure	Chamber ID	(mg/L)	Нд	(,C)	Chamber ID	(mg/L)	Ha	(°C)	Date	(military)	Initials
Ħ									, ,			
2												Ĩ
m												
4												
5												
9												_
7												
8												
6												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23							 					
24												
25												
26			-									
27												
28	·											
29												
30												
31												
Note:	Water quality _F	Water quality parameters will b	e measured in t	two chamber	rs per system daily	/ (one chamber i	in block A and o	ne chamber	be measured in two chambers per system daily (one chamber in block A and one chamber in block B, chosen at random).	ו at random).		
Versior	Version 1.1/11JAN2012	This	datasheet was approved by	approved:	þγ		ы Б	-1/02 /10/ 11 no	0/2			

Verified: Reviewed: Lab book/pgs:_ File Folder: _

Weekly Water Quality – Form 5 Hardness, Alkalinity and Conductivity

	Mussel Species:		System:			
Dosing Date:		Formulation and lot #:		*****		
Instruments:						
Chamber ID	Hardness (me/l CaCO)	Alkalinity (mail Caro.)	(and intrine (is land)		Time (141	
			רטומתכוואוא (אשל כוווו)	Cale	(military)	Initials

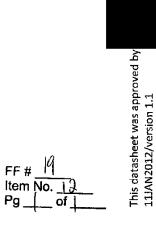
for analysis (hardness and alkalinity), water will be collected from the outflow section of each sampled exposure chambers.

This datasheet was approved by: 11JAN2012/version 1.1

00 /2Jan 2010

77

88


File Folder: Lab book/pgs: Reviewed: Verified:

System Conditions – Form 1 Light Intensity

Sample Period (circle one); During Exposure/Weekly

Mussel Species:	Svetem 10.			
Dosing Date:	Formulation and lot #:			
Instruments:				
Block ID	Light Intensity (lux)	Date	Time (military)	Initials
¢				
۵		,		
A				
۵				
System Mean				

During exposure light intensity will be measured upon initiation and prior to termination of exposure period in both blocks of each system. Weekly light intensity will be measured twice during the week in both blocks of each system. Note:

on 11 Jaw 2012

Bellstein System ID: Block: Dosing Date: Chemical lot #: Unsylved 1 2 3 4 5 6 1	System ID: Block: Dosing Date: Chemical lot #: 3 4 5 6 7 8 9 10 11 3 4 5 6 7 8 9 10 11 3 4 5 6 7 8 9 10 11 4 5 6 7 8 9 10 11 4 5 6 7 8 9 10 11 5 6 7 8 9 10 11 4 5 6 7 8 9 10 11 5 6 7 8 9 10 11 11 5 6 7 8 9 9 10 11 6 1 1 1 1 1 1 1 7 8 9 9 10 11 1 1 1 7 8 1 1 1 1 1	
	m m	
	tein No.	
tein No. <u>13</u> Pg j of <u>1</u>	tein No.	
	tein No.	
n No13	n No.	
	No.	
31 31 31 31 31 31 31 31 31 31 31 31 31 3		
NOTE: How rates should be measured daily from four chambers in each block, resulting in each chamber being measured every three days. On the days that a chamber's flow rate chamber's flow rate should be measured daily from four chamber's flow rate should be measured to fail and the days that a chamber's flow rate should be measured to fail and the days that a chamber's flow rate is not measured, that chamber's flow rate should	d daily from four chambers in each block, resulting in each chamber being measured every three days. On the days that a chamber's flow rate is not measured, that chamber's flow rate should	ates should be measured o

× • • • •

Percent Dry Weight (H/D)*100 Diet Mean Dry Weight (g) [G-B] т Pan + Diet Mean Dry Weight (g) [(E+F)/2] **Expiration Date:** Initials/Date/Time (military): To be filled out by data collector determining weights at each respective time point. Drying Oven / Temperature(°C): 00 /2/20/ 20/2 Individual Algae Product Dry Weight Determination Datasheet φ System: _ 48 h Pan + Diet Dry Wcight (g) ш 24 h Pan + Diet Dry Weight (g) u. Diet Wet Weight (g) [C-B] Species: _ Batch #: This datasheet was approved by Mean Percent Dry Weight [Sum of column I, divided by 6]: ۵ Weight Set(s): Pan + Diet Wet Weight (g) Pan Tare Weight/Wet Weight: ___ Pan Tare Weight (g) മ Version 1.1/11JAN2012 24 h Dry Weight: 48 h Dry Weight: Feeding Chart: Algal Diet: Pan ID Balance: ∢

Verified:

Reviewed:

Lab book/pgs: _

File Folder:

15

FF # Item No.

Study Number AEH-11-PSEUDO-02

91

File Folder: _____ Lab book/pgs: _____ Reviewed: _____ Verified: _____

Algae Stock Solution Preparation

Species: _____ System: _____

Dosing Date: ______ Formulation and lot #: _____

Instruments: _____

Day	Days Post Exposure	Food Delivery Rate (mL/min)	Headbox Flow Rate (mL/min)	Chlorella (g)	Nanno (g)	Tetra (g)	Date	Time (military)	Initials
1									
2									
3	 .					_			
4									
5									
6									
7									
8		n=n							
9									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20				·					
21									
22									
23					-				· ·
24									
25									
26							.		
27									
28									
29				·					••
30					-				
31									

Note: Food delivery rate is 2.0 mL/minute (±0.1). Headbox flow rate is 320 mL/minute (± 20). If flow rates deviate adjust accordingly.

Note: Use Algae Stock Preparation Chart (File folder 13a) and headbox flow rate from this form to determine wet weight of each algal diet for stock preparation. Mix algal diets with well water for a total volume of 3 600 mL and place on stir plate.

11JAN2012/version 1.1

FF #

This datasheet was approved by

on 19 Jan Zon

Sample Concentration (mg/mL) [G/C] т Mean Sample Mean Dry Weight (mg) [F-B] Mean concentration (mg/L) without salt content (Difference between means in column H) from well water U Mean sample Drying Oven / Temperature(°C): Pan + Sample Mean Dry Weight (mg) [(D+E)/2] Algae Stock Solution Dry Weight Determination ц. 48 h Pan + Sample Dry Weight (mg) System: ш Initials/Date/Time {military]: To be filled out at each respective time point. Sample Collection: _____/ 24 h Pan + Sample Dry Weight (mg) Dosing Date: ۵ Weight Set(s): Sample Stock Volume (mL) Pan Tare Weight (mg) 2 Well Water Sample Pan Tare Weight: 24 h Dry Weight: 48 h Dry Weight: **Mussel Species:** Feeding Chart: **Balance**: Pan JD ۲

This datasheet was approved by

Version 1.2/11JAN2012

93

ď

FF # /5 Item No. Pg /

Study Number AEH-11-PSEUDO-02

Reviewed:

Lab book/pgs:_

File Folder:

Verified:

	Initials	:											
1	Date							 	 				
Datasheet	Comments												
Juvenile Mussel Recovery Datasheet	Number of Viable Mussels												
Juvenile Muss	Number of Mussels Recovered												-
7	Chamber ID									 			
FF # <u>/9</u> Item No. <u>/7</u> Pg <u>1</u> of	Species												
Dosing Date: _	System Number												

Study Number AEH-11-PSEUDO-02 Lab book/pgs: _____ Revie

File Folder: ____

-2102 NJAN 2012

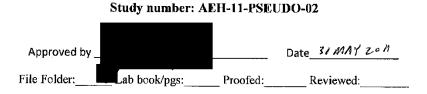
ľ

This datasheet was approved by 11JAN2012/version1.1

			Reviewed:		
Dosing Date:			ion and lot #:		
	Juve	nile Mussel IV	licropictograph Datash		- <u> </u>
System Number	Species	Chamber ID	Micropictograph ID	Date	Initials
				-	
		łł			
					+
		· · · · · · · · · · · · · · · · · · ·			_
					-
					+
					+
					-
					<u> </u>
					<u> </u>
					ļ
					<u> </u>
·					+
					+
					+
			· · · · · · · · · · · · · · · · · · ·		
			·······		1
					1
			·····		
					6
is datasheet was a			on _1.JAN ZO12	FF#	No. 18

File Folder:	Study Numb Lab hook	Study Number AEH-11-PSEUDO-02 Lah hook/noc·	ад. -	Vorifiod:		FF # <u>/9</u>	Š
		Formulation and lot #	5			Item No.	4
			livenije Missel Measurement Datasheet	nt Datacheet		10 64	
System Number	Species	Chamber ID	Micropictograph ID	Mussel ID	Length (µm)	Date	Initials
							-
					:		
					:		
		, ,					
This datasheet was approved by	approved by		On 11 JAN Zu, 2				
Version 1.1/11/ANZ	710						

.


			ih i Ahe:		
Balance:		Thermometer:			
Temperature:	Wa	ater Density ¹ (g/mL):			
Pipette Setting	Don #	Water Mass		Time	
(μL)	Rep #1	(g)	Date	(military)	Initials
	2				·
	3				
	4				
	5				
	6				
······································	7				
	8				
	9				
	Mean				
	Standard Devlation				

¹ Water density (g/mL) at varying temperatures: 18°C: 0.9985976; 19°C: 0.9984073; 20°C: 0.9982063; 21°C: 0.9979948; 22°C:0.9977730.

FF # <u>19</u> Item No. <u>20</u> Pg _____ of __

This datasheet was approved by ______ on <u>// J&V 2&/2</u>. 11JAN2012/version 1.1

File Folder:	Lab bo	ook/pgs:		Proofed:	Reviewed:	
	Exposure Chan	nber Subs	trate Weig	ht and Distribution I	Datasheet	
Balance:				Weight Set(s):	······································	
Beaker ID	Sand Weight (g) [35g ± 0,1g]	Date	Initials	Distributed to: Chamber ID	Date	Initi
				· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·				-
The	e data		prms	$\overline{}$		
11.00			·			
Wer	e vevis	de	n			
Ta	h -		012	and		
				and		
will	no la	haer	be	used.		
				VIW	\rightarrow	
· · · · · · · · · · · · · · · · · · ·				1874NS	$ o _{2}$	
Δ			ha T	1011-18 2012 K	4) 19744	
Ownote i	wrong date.	Should	10 30	411-18 2012.K	101 110 9	510

Newly Metamorphosed Juvenile Mussel Distribution Form

Species:		UMESC LOT NUMBER:	
Test Block Assignment (circle one):	12	_3	
Estimated # Mussels/Distribution			
Initial Distribution Aliquot date/tim	e (military):		
Final Distribution Aliquot date/time	(military):		
Number of Aliquot rounds:	Number o	f mussels/chamber	
Additional information:			
Witness and form recorded by:			
		UMESC	
Printed Name	Signature	Affiliation	Dat

Pg <u>2</u> of <u>3</u>2

34 - 35 8 - 4

Study number: A	AEH-11-PSEU	U DO-02
Approved by		Date 31 MAY 2011
File Folder: Lab book/pgs:	Proofed:	Reviewed

Newly Metamorphosed Juvenile Mussel Test Organism UMESC Lot Number Assignment Form

Species:			
Collection Date(s) :			
Collection Location:	Container ID	•	
Approximate Number of Mussel	s:		
Mussel collected and identified b	y:	_ Genoa NFH	
Additional information:			
JMESC MUSSEL LOT NUMB	ER DESIGNATION:		-
Witness and form recorded by:			
		UMESC	
Printed Name	Signature	Affiliation	

Pg <u>3</u> of <u>32</u>

Proofed: ____Lab book/pgs: ___ File Folder: __

Individual Algae Product Dry Weight Determination Datasheet

Algal Diet:			Batch #:		Ш	Expiration Date:			-
A	B	υ	D	ш	ь	9	н		— —
Pan (D	Pan Tare Weight (g)	Pan + Diet Wet Weight (g)	Diet Wet Weight (g) [C-B]	24 h Pan + Diet Dry Weight (g)	48 h Pan + Diet Dry Weight (g)	Pan + Diet Mean Dry Weight (g) [(E+F)/2]	Diet Mean Dry Weight (g) [G-B]	Percent Dry Weight (H/D)*100	·
									T
									-
								-	1
Initials/Date/T	Initials/Date/Time (military): To be filled out by data collector determining weights at each respective time point.	o be filled out by	data collector de	termining weight	ts at each respec	tive time point.			
Pan Tare Weigl	Pan Tare Weight/Wet Weight: _			[
24 h Dry Weight:	1:								
48 h Dry Weight:	ıt:								
Balance:		Weight Set(s):	s):		Drying Oven / Temperature(°C):	perature(°C):			
Mean Percent Dry Weight		[Sum of column I, divided by 6]:	ded by 6]:						
Version 1.0 / 23MAY2011		Approved by:		Date:	Date: 6/3/4		Pa 4 25		-
							5 1 0	22	

Reviewed:

١,

۰,

Reviewed: ____ Proofed: ____ ____Lab book/pgs: ___ File Folder:

³, ¹, , ⁷

Algae Stock Solution Dry Weight Determination

Mussel Species:	ecies:			System: 1			
A	8	c	0	ш	L	5	T
Pan ID	Pan Tare Weight (m ^a)	Sample Stock Volume (ml.)	24 h Pan + Sample Drv Meicht (ma)	48 h Pan + Sample Dry Weinht (mc)	Pan + Sample Mean Dry Weight (mg)	Sample Mean Dry Weight (mg)	Sample Concentration (mg/mL)
	10,				[[UTC]/2]	[L-D]	
		-					
Mussel Species:	ecies:			System: 2			
Mussel Species:	ecies:			System: 3			
Well Water Sample	r Sample						
						-	
Initials/Da	Initials/Date/Time (military): To be filled out at a	 To be filled out at each respective time point. 	point.			
Sample Collection:							
Pan Tare Weight:	Veight:						
24 h Dry Weight:	(eight:						
48 h Dry Weight:	/eight:						
Balance:		Weight Set(s):	s):	Drying O	Drying Oven / Temperature(°C):	ö	
Mean Sam	ple Concentratio	ns [Average of three i	Mean Sample Concentrations [Average of three reps in column H] (mg/ml):	1			
Algae System 1:	em 1:	Algae System 2:	tem 2:	Algae System 3:	stem 3:	Water:	
	-					ļ	(
Version 1.1	Version 1.1 / 22JUN2011	Approved by:		Date:	2-14	$Pg \leq of \leq 0$	ot 02

Reviewed: __ _ Proofed: _ _ Lab book/pgs: _ File Folder:

5

,

•.

Algae Stock Solution Dry Weight Determination

Mussel Species:	pecies:			System: 1			
A	6	C	٩	Ш	ш	σ	н
Pan ID	Pan Tare Weight (mg)	Algae Stock Volume (mL)	24 h Pan + Diet Dry Weight (mg)	48 h Pan + Diet Dry Weight (mg)	Pan + Algae Mean Dry Weight (mg) [(D+E)/2]	Algae Mean Dry Weight (mg) [F-B]	Algae Concentration (mg/mL) [G/C]
Mussel Species:	pecies:			System: 2			-
Mussel Species:	pecies:			System: 3			
Initials/C	Initials/Date/Time (military)): To be filled out at each respective time point.	each respective time	e point.			
Sample C	Sample Collection:						
Pan Tare Weight:	Weight:						
24 h Dry Weight:	Weight:						
48 h Dry Weight:	Weight:						
Balance:		Weight Set(s):	s):	Drying O	Drying Oven / Temperature(°C):	Ċ	
Mean Al	gae Concentrations	Mean Algae Concentrations [Average of three reps in column H] (mg/ml):	ps in column H] (mg,				
System 1:			System 2:		System 3:		
						Pg 6 of 32	f 32
				** *			ĺ

Date: 6/2///)

Version 1.0 / 01JUN2011 Approved by

•

1.. .

____Proofed:___ Lab book/pgs: __ File Folder:

Reviewed:

Algae Stock Solution Preparation

Month:	rth:															
		System 1 Mussel Species:	sel Species:			System 2 Mussel Species:	el Specíes:			System 3 Mussel Species:	el Species:					
Day	Days Post Exposure	Headbox Flow Rate (mL/min)	Chiorella (g)	Nanno (g)	Tetra (g)	Headbox Flow Rate (mL/min)	Chlorella (g)	Nanno (g)	(g)	Headbox Flow Rate (mL/min)	Chlorella (g)	Nanno (g)	Tetra (g)	Date	Time (military)	Initials
1																
2																
ñ																
4													-			
5																
9																
7																
~																
თ																
10			-					ĺ	Ī							
11						, a										
12									Ī							
13						×										
14																
5			ĺ													
16																
17																
18																
19																
20																
21			-													
22																
23																
24																
25																
26				_												
27																
28																
29																
30																
31																—
No	te: Use Alga	Note: Use Algae Stock Preparation Chart (File folder 13a) and headbox flow rate from SC Form 2 (File folder 18b) to determine wet weight of each algal diet for stock	ition Chart ((File folde.	r 13a) and	headbox flow n	ate from SC	:Form 2 (F	ile folder :	18b) to determir	he wet wei	ght of each	ı algal diei	t for stock		
	prepara	preparation. Mix algal diets with 3,600 mL well water and place on stir plate.	liets with 3,	600 mL w	rell water c	ind place on stir	plate.							1	ſ	
	0 / 0 /;-						ſ	199	5610				Pa	Pa ↓ Df	ب ت اربر	\sim
rei?			Approved by: _	- :Ya t				ate:	111-1-				1	ļ		l

 2

۰.

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

Date___6/27/// Approved

Algae Stock Preparation Chart

Version 1.2 Effective Date 6/27/11 Initials 5-

Chlorella Dry wt2.58 %Nanno Dry wt19.82 %Tetra Dry wt17.34 %Delivery pump setting2.0 mL/min

Stock for each system prepared in 3,600 mL of well water

Flow Rate (mL/min)	Vol. Delivered 30 hrs (L)	Delivery pump Flow (mL/min)	Pump Vol 30 hrs (L)	Total voi through Headbox (30h [L])	Dry wt. algae required per type (mg)	Wet wt Chlorella required (g)	Wet wt Nanno required (g)	Wet wt Tetra required (g)
300	540.0	2.0	3.6	543.6	362.4	14.05	1.83	2.09
301	541,8	2.0	3.6	545.4	363.6	14.09	1.83	2.10
302	543.6	2,0	3.6	547.2	364.8	14.14	1.84	2.10
303	545.4	2,0	3.6	549.0	366.0	1 4.19	1.85	2.11
304	547,2	2,0	3.6	550.8	367.2	14.23	1.85	2.12
305	549.0	2.0	3.6	552.6	368.4	14.28	1.86	2.12
306	550.8	2.0	3.6	554.4	369.6	14.33	1.86	2.13
307	552.6	2.0	3.6	556.2	370.8	14.37	1.87	2.14
308	554.4	2.0	3.6	558.0	372.0	14.42	1.88	2.15
309	556.2	2.0	3.6	559.8	373,2	14.47	1.88	2,15
310	558.0	2.0	3.6	561.6	374.4	14.51	1.89	2.16
311	559.8	2.0	3.6	563.4	375.6	14.56	1,90	2.17
312	561.6	2,0	3.6	565.2	376.8	14.60	1.90	2,17
313	563.4	2.0	3.6	567.0	378.0	14.65	1.91	2.18
314	565.2	2,0	3.6	568.8	379.2	14.70	1,91	2.19
315	567.0	2.0	3.6	570.6	380.4	14.74	1.92	2.19
316	568.8	2.0	3.6	572.4	381.6	14.79	1.93	2.20
317	570.6	2.0	3.6	574.2	382.8	14.84	1.93	2.21
318	572.4	2.0	3.6	576.0	384.0	14.88	1,94	2.21
319	574.2	2.0	3.6	577.8	385.2	14.93	1.94	2.22
320	576.0	2.0	3.6	579.6	386.4	14.98	1.95	2.23
321	577.8	2.0	3.6	581.4	387.6	15.02	1.96	2.24
322	5 79.6	2.0	3.6	583.2	388.8	15.07	1.96	2.24

Pg 8 of 32

1 of 2

٦,

٠.

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

Date_____6/3/11 Approved

Algae Stock Preparation Chart

Version 1.0 Effective Date 6/7/11 Initials 5~

Chlorella Dry wt	2.17 %	
Nanno Dry wt	19.82 %	
Tetra Dry wt	17.34 %	
Delivery pump setting	2.0 mL/n	nin

Stock for each system prepared in 3,600 mL of well water

Flow Rate (mL/min)	Vol. Delivered 30 hrs (L)	Delivery pump Flow (mL/min)	Pump Vol 30 hrs (L)	Total vol through Headbox (30h [L])	Dry wt. algae required per type (mg)	Wet wt Chlorella required (g)	Wet wt Nanno required (g)	Wet wt Tetra required (g)
300	540.0	2,0	3.6	543.6	407.7	18.79	2.06	2.35
301	541.8	2.0	3.6	545.4	409.1	18.85	2.06	2.36
302	543.6	2,0	3.6	547.2	410.4	18.91	2.07	2.37
303	545.4	2.0	3.6	54 9 .0	411.8	18.97	2.08	2.37
304	547.2	2.0	3.6	550.8	413.1	19.04	2.08	2.38
305	549.0	2.0	3.6	552.6	414.5	19,10	2.09	2.39
306	550.8	2.0	3.6	554.4	415.8	19.16	2.10	2.40
307	552.6	2.0	3.6	556.2	417.2	19.22	2.10	2.41
308	5 54,4	2.0	3.6	558.0	418.5	19.29	2.11	2.41
309	556.2	2.0	3.6	559.8	419.9	19.35	2.12	2.42
310	55 8.0	2,0	3.6	561,6	421.2	19.41	2.13	2.43
311	559.8	2.0	3.6	563.4	422.6	19.47	2.13	2.44
312	561.6	2.0	3.6	565.2	423.9	19.53	2.14	2.44
313	563.4	2.0	3,6	567.0	425.3	19.60	2.15	2.45
314	565.2	2.0	3.6	568.8	426.6	19.66	2.15	2.46
315	567.0	2.0	3,6	570.6	428.0	19.72	2,16	2.47
316	568.8	2.0	3.6	572.4	429.3	19.78	2.17	2.48
317	570.6	2.0	3,6	574.2	430.7	19.85	2,17	2,48
318	572.4	2.0	3.6	576.0	432.0	19.91	2.18	2.49
319	574.2	2.0	3,6	577.8	433.4	19.97	2,19	2,50
320	576.0	2.0	3.6	579.6	434.7	20.03	2,19	2.51
321	577.8	2.0	3.6	581.4	436,1	20.09	2.20	2.51
322	579.6	2.0	3.6	583.2	437.4	20.16	2.21	2.52

Pg <u>1</u> of 32

1 of 2

۰,

۰.

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different un<u>ionid species</u>

Date_____6/6/11 Approved

Algae Stock Preparation Chart

Version 1.1 Effective Date 6/6/11 Initials Jac

Chlorella Dry wt2.9 %Nanno Dry wt19.82 %Tetra Dry wt17.34 %Delivery pump setting2.0 mL/min

Stock for each system prepared in 3,600 mL of well water

Flow Rate (mL/min)	Vol. Delivered 30 hrs	Delivery pump Flow	Pump Vol 30 hrs	Total vol through Headbox	Dry wt. algae required per type	Wet wt Chlorella required	Wet wt Nanno required	Wet wt Tetra required
	(L)	(mL/min)	(L)	(30h [L])	(mg)	(g)	(g)	(g)
300	540.0	2.0	3.6	543.6	407.7	14.06	2.06	2.35
301	541.8	2.0	3.6	545.4	409.1	14.11	2.06	2.36
302	543.6	2.0	3.6	547.2	410.4	14.15	2.07	2.37
303	545.4	2.0	3.6	549.0	411.8	14.20	2.08	2.37
304	547.2	2.0	3.6	550.8	413.1	14.24	2.08	2.38
305	549.0	2.0	3.6	552.6	414.5	14.29	2.09	2.39
306	550.8	2.0	3.6	554.4	415.8	14.34	2.10	2.40
307	552.6	2.0	3.6	556.2	417.2	14,38	2.10	2.41
308	554.4	2.0	3.6	558.0	418.5	14.43	2.11	2.41
309	556.2	2.0	3.6	559.8	419.9	14.48	2.12	2.42
310	558.0	2.0	3.6	561.6	42 1.2	14.52	2.13	2.43
311	559.8	2.0	3 <i>.</i> 6	563.4	422.6	14.57	2.13	2.44
312	561.6	2.0	3.6	565.2	423.9	14.62	2.14	2.44
313	563.4	2.0	3.6	567.0	425.3	14.66	2.15	2.45
314	565.2	2.0	3 .6	568.8	426.6	14.71	2.15	2.46
315	567.0	2.0	3.6	570.6	428.0	14.76	2.16	2.47
316	568.8	2.0	3 .6	572.4	429.3	14.80	2.17	2.48
317	570.6	2.0	3.6	574.2	430.7	14.85	2.17	2.48
318	572.4	2.0	3.6	576.0	432.0	14.90	2.18	2.49
319	574.2	2.0	3.6	577.8	433.4	14.94	2.19	2.50
320	576.0	2.0	3.6	579.6	434.7	14.99	2.19	2.51
321	577.8	2.0	3.6	581.4	436.1	15.04	2.20	2.51
322	579.6	2.0	3.6	583.2	437.4	15.08	2.21	2.52

 $Pg \stackrel{\text{\tiny{10}}}{-} of \frac{3}{6}$

1 of 2

۰,

۲,

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

Date 7/1/11 Approved

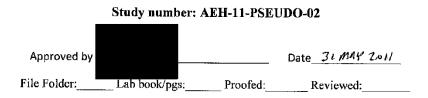
Algae Stock Preparation Chart

Version 1.3 Effective Date 7/7/2011 Initials KUW

Chlorella Dry wt1.81 %Nanno Dry wt19.82 %Tetra Dry wt17.34 %Delivery pump setting2.0 mL/min

Stock for each system prepared in 3,600 mL of well water

Flow Rate	Vol. Delivered	Delivery pump	Pump Vol	Total vol through	Dry wt. algae required	Wet wt Chloreila	Wet wt Nanno	Wet wt Tetra
(mL/min)	30 hrs	Flow	30 hrs	Headbox	per type	required	required	required
	(L)	(mL/min)	(L)	(30h [L])	(mg)	(g)	(g)	(g)
300	540.0	2,0	3.6	543.6	362.4	20.02	1.83	2.09
301	541.8	2.0	3.6	545.4	363.6	20.09	1.83	2.10
302	543.6	2.0	3.6	547.2	364.8	20.15	1.84	2.10
303	545.4	2.0	3.6	549.0	366.0	20.22	1.85	2.11
304	547.2	2.0	3.6	550.8	367.2	20.29	1.85	2.12
305	549.0	2.0	3.6	552.6	368.4	20.35	1.86	2.12
306	550.8	2.0	3,6	554.4	369.6	20.42	1.86	2.13
307	552.6	2.0	3.6	556.2	370.8	20.49	1.87	2.14
308	554.4	2.0	3.6	558.0	372.0	20.55	1.88	2.15
309	556.2	2.0	3.6	559.8	373.2	20.62	1.88	2,15
310	558.0	2.0	3.6	561.6	374.4	20.69	1.89	2.16
311	559.8	2.0	3.6	563.4	375.6	20.75	1.90	2.17
312	561.6	2,0	3.6	565.2	376.8	20.82	1,90	2.17
313	563.4	2.0	3.6	567.0	378.0	20.88	1.91	2.18
314	565.2	2.0	3.6	568.8	379.2	20.95	1.91	2.19
315	567.0	2.0	3.6	570.6	380.4	21.02	1.92	2.19
316	568.8	2.0	3.6	572.4	381.6	21.08	1.93	2.20
317	570.6	2,0	3.6	574.2	382.8	21.15	1.93	2.21
318	572.4	2.0	3.6	576.0	384.0	21.22	1.94	2.21
319	574.2	2.0	3.6	577.8	385.2	21.28	1.94	2.22
320	576 .0	2,0	3.6	579.6	386.4	21.35	1.95	2.23
321	5 77.8	2.0	3.6	581.4	387,6	21.41	1.96	2.24
322	5 79.6	2.0	3.6	583.2	388.8	21.48	1.96	2.24


Pg 11 of 32

1 of 2

Study Title: "Effects of Pseudomonas fluorescens (Pf-CL145A) to newly
metamorphosed juvenile mussels from seven different unionid species"

	Study number:	AEH-11-PSE	J DO-02	
Approved by			Date 5/7,/11	
File Folder:	Lab book/pgs:	Proofed:	Date_ <u>5⁻/7,/1</u> Reviewed:	
			posure Dosing	Form
			C lot number:	
Test System Assignment	(circle one):1	23	_	
Number mussel/Chambo	er_40 Number	of replicate C	nambers/Concentration _	4
Number of Concentratio	ns (including contr	•ol)6		
Date/time (military) of d	osing initiation:			_
Chemical Lot :	Stock Che	emical Sample	9 I.D.	
Test Solution Preparatio	n Time:		-	
Test Solution preparatio	n description (inch	ıde dilution va	blume):	
				
Additional information:				
Witness and form re	lad bus			
Witness and form record	ieu by:			
Printed Name	Sig	nature	UMESC Affiliation	Da
	-			
			Pg <u>\</u>	of <u>3</u> d

Study Title: "Effects of *Pseudomonas fluorescens (Pf-*CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Test Chemical Stock Preparation Data Form

Test Chemical: Pseudomonas fluorescens strain 145A

Test Chemical Lot #_____ Date Rec'd_____ Exp. Date_____

Chemical Weighing:

Sample I.D.	Sample wt. (g)	Date/Time	Initials
			· · · · · · · · · · · · · · · · · · ·
			·
······································			
			······

*Chemical samples to be stored refrigerated until used for stock preparation.

Stock Preparation:

Sample I.D.	Dilution Vol. (ml)	Dilution time	Use (ie: Active stock for HGE)	Date/ Time	Initials

*Stocks to be prepared immediately before use, except for heat deactivated stock which will be prepared at least 1 hr prior to use to allow for deactivation and cooling.

Pg 13 of 32

File Folder: Approved by: Study Number AEL.11

Date 6/24/1

Pg <u>14</u> of <u>32</u>

Chemical Stock Solution Determination

Version: 1.1/24JUNE2011

Stock A = Control (20 °C well water -controls will be treated in the same manner but will use a stock solution of plain well water) Stock B = 10,000 mg/L; 100% active ingredient[10mg/mL]) *** Make 5g/500 mL well water per each test system Stock C = 10,000 mg/L detoxified active material [10mg/mL]*** Make 5g/500 mL well for use in all 3 systems - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use

Total							, p
	300	200	100	50	300	0	Dosage Levei (mg/L)
	mg/L	mg/L	mg/t	mg/L	mg/L (Deactivated)	control (well water blank)	Dose concentration
	5,000	5,000	5,000	5,000	5,000	5,000	Test solution Stock volume (mL)
	1,500	1,000	500	250	1,500	0	mg of test material required
	0	0	0	0	1500	0	Deactivated mg required
	1500	1000	500	250	o	0	Active mg required
0.0	0.0	0.0	0.0	0.0	0.0		Aliquot Støck A (mL)
325.0 150.0	150.0	100.0	50.0	25,0	0.0	0.0	Aliquot Stock B (mL)
150.0	0.0	0.0	0.0	0.0	150.0	0.0	Aliquot Stock C (mL)
	Blue/black stripes	Blue	0.0 Yellow/black stripes	25.0 0.0 Yellow	White/black stripes	White	Color Code Assignment

Concentration	Concentration Time Test Solution Prepared	Time Dosing Started	Time Dosing Completed	Initials	Time of Exposure Termination	Intiails	Date
0 mg/L							
300 mg/L Deactive							
50 mg/L							
100 mg/L							
200 mg/L							

300 mg/L Active

۰,

.

۰, ,

Study Number AFL-L1-ESENDOOP Approved by: Date U/L Date U/L Approved by: Date U/L Chemical Stock Solution Determination Stock Solution of plain well water) Stock C = 10,000 mg/L; 100% active ingredient[J0mg/mL])*** Make 5g/500 mL well for use in all 3 systems - Heat deactivated for 45 minutes at 70°C/cooled to 20°C prior to use Mage Stock Notice in all 3 systems - Heat deactivated for 45 minutes at 70°C/cooled to 20°C prior to use Dosage Level Test solution mg of test: Deactivated Active ingredient[J0mg/mL]*** Make 5g/500 mL well for use in all 3 systems - Heat deactivated for 45 minutes at 70°C/cooled to 20°C prior to use Of Dosage Level Note Note the solution of plain well water in all 3 systems - Heat deactivated for 45 minutes at 70°C/cooled to 20°C prior to use Dosage Level Note Note the solution of plain well water in all 3 system 3 Sock Note the solution of plain well water is all 3 system 3 Deact Note the solut	t to use	10 °C prior Aliquo Stock ((mL) 1.50.0 0.0	cooled to 2 Aliquot Stock 8 (mL) 0.0 25.0 50.0 100.0	Aliquet Stock A (ml) 0.0 0.0 0.0 0.0 0.0	ted for 45 min Active mg required 0 250 250 250 1500	system ms - Heat deactivat Deactivated ng required 0 1500 0 0 0 0	n, wei wei per sein test mg of test material required 1,500 250 1,000 1,000	g/mL])*** Make 5g/500 r mg/mL]*** Make 5g/500 r Test solution Stock volume (mL) 5,000 5,000 5,000 5,000 5,000 5,000	g/L; 100% active ingredient[10m g/L detoxified active material [10 Dose concentration control (weil water blank) mg/L (Deactivated) mg/L mg/L mg/L	Stock B = 10,000 r Stock C = 10,000 r Dosage Level (mg/t) 50 100 200 300
for 45 minutes at 70°C/cooled to 20 Active Aliquot Aliquot mg Stock A Stock B required (mt.) (mt.) 0 0.0 0.0 250 0.0 25.0 500 0.0 50.0 1000 0.0 100.0	t t C A Yellov	10 °C prior Aliquo Stock ((mL) 0.0 0.0 0.0 0.0	cooled to 2 Aliquot Stock B (m1) 0.0 0.0 0.0 2.5.0 50.0	ultes at 70°C/c Aliquot Stock A (ml.) 0.0 0.0 0.0 0.0 0.0	ted for 45 min Active required 0 250 500 1000	system ms - Heat deactivat Deactivated ng required 1500 0 0 0 0	nt weil for use in all 3 syste mg of test naterial cquired 1,500 2500 1,000	g/mL])**** Make 5g/500 r mg/mL] ^{****} Make 5g/500 r Test solution Stock volume (mL) 5,000 5,000 5,000 5,000	glr, 100% active ingredient[10m yL detoxified active material [10 Dose concentration control (well water blank) mg/L (Deactivated) mg/L mg/L	Stock B = 10,000 r Stock C = 10,000 r Dosage Level (mg/t) 0 300 50 100 200
for 45 minutes at 70°C/cooled to 20 Active Aliquot Aliquot mg Stock A Stock B required (mL) (mL) 0 0.0 0.0 250 0.0 25.0 500 0.0 50.0	t to use	10 °C prior Alique Stock ((mL) 1,50,0 0,0	cooled to 2 Aliquot Stock B 0.0 0.0 25.0 50.0	Jutes at 70° C/c Aliquot Stock A (mL) 0.0 0.0 0.0 0.0	ted for 45 min Active mg required 0 250 500	system ms - Heat deactivat Deactivated ng required 0 1500 0 0	1. well for use in all 3 syste mg of test material required 1,500 250	g/mL])**** Make 5g/500 r mg/mL]**** Make 5g/500 r Test solution Stock volume (mL) 5,000 5,000 5,000 5,000	g/L; 100% active ingredient[10m g/L detoxified active material [10 Dose concentration control (well water blank) mg/L (Deactivated) mg/L mg/L	Stock B = 10,000 r Stock C = 10,000 r Dosage Level (mg/l) 0 300 50
for 45 minutes at 70°C/ccoled to 20 Active Aliquot Aliquot required (mL) (mL) 0 0.0 0.0 250 0.0 25.0	t to use	10 °C prior Aliquo Stock ((mL) 1,50.0	cooled to 2 Aliquot Stock B (mL) 0.0 0.0 25.0	utes at 70°C/c Aliquot Stock A (mL) 0.0 0.0	ted for 45 min Active ng required 0 250	system ms - Heat deactivat Deactivated mg required 0 1500 0	nt well for use in all 3 syste mg of test material required 1,500 250	g/mL])**** Make 5g/500 r mg/mL]**** Make 5g/500 r Test solution Stock volume (mL) 5,000 5,000 5,000	g/L; 100% active ingredient[10m g/L detoxified active material [10 Dose concentration control (well water blank) mg/L (Deactivated) mg/L	Stock B = 10,000 r Stock C = 10,000 r Dosage Level (mg/l) 0 300 50
for 45 minutes at 70°C/ccoled to 20 Active Aliquot Aliquot mg Stock A Stock B required (mL) (mL) 0 0.0 0.0	t t C White	10 °C prior Aliquo Stock ((mL) 150.0	cooled to 2 Aliquot Stock B (mL) 0.0	utes at 70°C/c Aliquot Stock A (mL) 0.0 0.0	ied for 45 min Active mg required 0 0	system ms - Heat deactivat Deactivated mg required 0 1500	11. well for use in all 3 syste mg of test material required 1,500	g/mL])*** Make 5g/500 r mg/mL]*** Make 5g/500 r Test solution Stock volume (mL) 5,000 5,000	g/L; 100% active ingredient[10m g/L detoxified active material [10 Dose concentration control (weil water blank) mg/L (Deactivated)	Stock B = 10,000 r Stock C = 10,000 r Dosage Level (mg/t) 0 300
for 45 minutes at 70°C/cooled to 20 Active Aliquot Aliquot required (mL) (mL) 0 0.0 0.0	t t	10 °C prior Aliquo Stock ((mL)	cooled to 2 Aliquot Stock B (mL) 0.0	utes at 70°C/c Aliquot Stock A (mL) 0.0	ied for 45 min Active ng required 0	system ms - Heat deactivat Deactivated mg required 0	n, wei wei per sein test mg of test material required 0	g/mL])*** Make 5g/500 r mg/mL]*** Make 5g/500 r Test solution Stock volume (mL) 5,000	g/L; 100% active ingredient[10m y/L detoxified active material [10 Dose concentration Control (weil water blank)	Stock B = 10,000 r Stock C = 10,000 r Dosage Level (mg/t) 0
for 45 minutes at 70°C/cooled to 20 Active Aliquot Aliquot mg Stock A Stock B	t to use	:0 °C prior Aliquo Stock ((mL)	cooled to 2 Aliquot Stock B (mL)	utes at 70°C/c Aliquot Stock A (mL)	ted for 45 min Active mg reguired	system ms - Heat deactivat Deactivated mg required	it well for use in all 3 syste mg of test material required	g/mL])*** Make 5g/500 r mg/mL]*** Make 5g/500 r Test solution Stock volume (mL)	g/1; 100% active ingredient[10m y/L detoxified active material [10 Dose concentration	Stock B = 10,000 r Stock C = 10,000 r Stock C = 10,000 r Dosage Level (mg/l)
Study Number AEH-J1-PSEUDO-07 Approved by: Date ////////////////////////////////////	t to use	10 °C prior Aliquo Stock (cooled to 2 Aliquot Stock B	Aliquot Stock A	led for 45 min Active mg	system ms - Heat deactivat Deactivated mg	it weil for use in all 3 syste mg of test material	g/mL]) *** Make 5g/500 r mg/mL]*** Make 5g/500 r Test solution Stock volume	g/1; 100% active ingredient[10m y/L detoxified active material [10	Stock B = 10,000 m Stock C = 10,000 m Dosage Level
Study Number AEH-11-PSEUDO-07 Approved by: Date U/U Chemical Stock Solution Determination Stock A = Control (20 °C well water - controls will be treated in the same manner but will use a stock solution of plain well water) Stock B = 10,000 mg/L; 100% active ingredient(10mg/mL)) *** Make 5g/500 mL well water per each test system Stock C = 10,000 mg/L detoxified active material [10mg/mL]*** Make 5g/500 mL well for use in all 3 systems - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use Test solution mg of test Deactivated Active Aliquot Aliquot Aliquot	to use	20 °C prior Aliquo	cooled to 2 Aliquot	utes at 70°C/c Aliquot	ted for 45 min Active	system ms - Heat deactivat Deactivated	it well for use in all 3 syste mg of test	g/mL]) *** Make 5g/500 r mg/mL]*** Make 5g/500 r Test solution	g/L; 100% active ingredient[1.0m y/L detoxified active material [1.0	Stock B = 10,000 r Stock C = 10,000 r
Study Number AEH-J1-PSEUDO-07 Approved by: Date U/U/U Chemical Stock Solution Determination Stock A = Control (20 °C well water -controls will be treated in the same manner but will use a stock solution of plain well water) Stock B = 10,000 mg/L; 100% active ingredient[10mg/mL]) *** Make 5g/500 mL well water per each test system Stock C = 10,000 mg/L detoxified active material [10mg/mL]*** Make 5g/500 mL well for use in all 3 systems - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use	to use	20 °C prior	cooled to 2	iutes at 70°C/c	ted for 45 min	system ms - Heat deactivat	it well for use in all 3 syste	g/mL]) *** Make 5g/500 r mg/mL]*** Make 5g/500 r	g/L; 100% active ingredient[10m /L detoxified active material [10	Stock C = 10,000 m Stock C = 10,000 m
Study Number AEH-J1-PSEUDO-07					,		d wall water nor each test			
CAEH-11-PSEUDO-07					erì	ion of plain well wat	r but will use a stock soluti	treated in the same manne	0 °C well water -controls will be 1	stands A - Control I
CAEH11-PSEUDO-07									Solution Determination	Chemical Stoc
CAEH-11-PSEUDO-07										
Study Number AEH-11-PSEUDO-07							16/11	Date 6		Approved by:_
							•		-11-PSEUDO-07	Study Number AE

0.0 Yellow/black stripes 0.0 Blue 0.0 Blue/black stripes 150.0

0.0

50.0 100.0 150.0 325.0

Total

112

S
÷.
_
Study
<
-
2
<u> </u>
⊐ .
<u></u>
σ
lumber
-
7.
AEH
÷÷
÷
Ē
Π.
÷.
٠ ٨
řń
<u> </u>
1-PSEUDO
0
0
÷

System 3 Mussel Species:	System 2 Mussel Species: _	System 1 Mussel Species:	Pre		File Folder:	Study Number AEH-11-PSEUDO-02
			Exposure Dissolved Oxygen, Te	×	Lab book/pgs:	00-02
Instruments:			Pre-Exposure Dissolved Oxygen, Temperature, pH, Hardness, Alkalinity, and Conductivity	Water Quality – Form 1a	Proofed:	
			inity, and Conductivity		Reviewed:	
				Pg <u> </u>	_ of <u>32</u>	

3	2	1	System # Disso	Mussel Species:	System 3 Mussel Species:	System 2 Mussel Species:
			Dissolved Oxygen (mg/L)		I Species:	I Species:
			Temperature (°C)			
			рH			
			Conductivity (µS/cm)	Sample Location:		
		•	Hardness (mg/L CaCO ₃)	ocation:	Instruments:	
			Alkalinity (mg/L CaCO ₃)			
			Date			
			Time (military)			
			Initials			

Version 1.0 / 01JUN2011 Approved by:

_ Date: <u>_6/2///</u>

	System	iem :	tem	stem			File Folder;	
	P	System 3 Mussel Species:	System 2 Mussel Species:	System 1 Mussel Species:			er:	
	Temperature (°C)						Lab book/pgs:	
	Percent Transmittance (%T)				Pre-Exposure To	Wate	: 	
	Total Ammonia ¹ Nitrogen (mg/L)	Instrun			otal and Un-ionize	r Quality – Form 1	Proofed:	
	Calculated Un- ionized Ammonia ¹ (mg/L)	nents:			d Ammonia	σ		
	Date						Reviewer	
	Time (military)						ġ.	
	Initials							
_		Percent Total Ammonia ¹ Calculated Un- ionized Ammonia ¹ Time Temperature (°C) Transmittance (%T) Nitrogen (mg/L) (mg/L) Date (military)	Instruments: Percent Total Ammonia ¹ Calculated Un- ionized Ammonia ¹ Time (mg/L) Temperature (°C) Transmittance (%T) Nitrogen (mg/L) (mg/L) Date (military)	Instruments: Calculated Un- Percent Total Ammonia ¹ Calculated Un- ionized Ammonia ¹ Time Time (military) Temperature (°C) Transmittance (%T) Nitrogen (mg/L) (mg/L) Date (military)	Instruments: Percent Total Ammonia ¹ Calculated Un- ionized Ammonia ¹ Time (mg/l) Temperature (°C) Transmittance (%T) Nitrogen (mg/l) Date (military)	Pre-Exposure Total and Un-ionized Ammonia Instruments: Transmittance (%T) Calculated Un- ionized Ammonia ¹ Time Time (mg/L) Time (mg/L) Time (mg/L) <th c<="" td=""><td>Water Quality – Form 1b Pre-Exposure Total and Un-ionized Ammonia Instruments: Percent Total Ammonia¹ Calculated Un-1 Time Vitrogen (mg/L) Date (military) Vitrogen (mg/L) Date (military)</td></th>	<td>Water Quality – Form 1b Pre-Exposure Total and Un-ionized Ammonia Instruments: Percent Total Ammonia¹ Calculated Un-1 Time Vitrogen (mg/L) Date (military) Vitrogen (mg/L) Date (military)</td>	Water Quality – Form 1b Pre-Exposure Total and Un-ionized Ammonia Instruments: Percent Total Ammonia ¹ Calculated Un-1 Time Vitrogen (mg/L) Date (military) Vitrogen (mg/L) Date (military)

ammonia nitrogen. Follow procedures in SOP AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-ionized ammonia from temperature, pH, and total

·, ·. Version 1.0 / 01JUN2011 Approved by: _ Date: <u>6/2///</u>

		ran noon hga.			Sieu.		nevieweu,		
			Wat	Water Quality Form 3a	orm 3a				
		Expo	sure Termina	tion Total and	Exposure Termination Total and Un-ionized Ammonia	nmonla			
Mussel Species:				Syst	System ID:	Instruments:			
Pooled Concentration	Chamber IDs	рН	Temperature (°C)	Percent Transmittance (%T)	Total Ammonia Nitrogen ¹ (mg/L)	Calculated Un- ionized Ammonia ¹ (mg/L)	Date	Time (military)	Initials
Control (0 mg/L)									
50 mg/ L Active									
100 mg/ L Active									
200 mg/L Active									
300 mg/L Active									
300 mg/L Deactivated									

¹, 1,

Version 1.0 / 01JUN2011 Approved by:

____ Date: <u>____/2_///____</u>

File Folder: Study Number AEH-11-PSEUDO-02 System ID: Instruments: 300 mg/L Deactivated Pooled Concentration Pooled Concentration 300 mg/L Active 300 mg/L Active 200 mg/L Active 100 mg/ L Active Control (0 mg/L) Control (0 mg/L) 50 mg/ L Active **Mussel Species:** Lab book/pgs: Chamber IDs Chamber IDs Exposure Termination Hardness, Alkalinity and Conductivity Water Quality - Form 3b Hardness and Alkalinity Conductivity Hardness (mg/L CaCO₃) Proofed: Conductivity (µS/cm) Alkalinity (mg/L CaCO₃) Reviewed: Date Date Time (military) Time (military) Initials Initials Pg <u>19</u> of <u>32</u>

Version 1.0 / 01JUN2011 Approved by . Date: <u>6/2/11</u>

. .

•.

Sampling Hour pH Temperature (*C) Percent Transmittance (%T) Total Ammonia ¹ Nitrogen (mg/L) Galculate Ionizition Ammonia ¹ Hour pH Temperature (*C) (%T) Nitrogen (mg/L) (mg/L) Hour pH pH pH (mg/L) (mg/L) (mg/L) Hour pH pH pH pH (mg/L) (mg/L) Hour pH pH pH pH pH Hour pH pH pH pH Hour pH pH pH pH Hour pH pH pH	PH Temperature (°C) Percent Transmittance Total Ammonia ¹ Ammo (%T) Calculate ioniz Ammonia ¹ (mg/ (mg/ (mg/ (mg/ (mg/ (mg/ (mg/ (mg/	Instruments:	ered or line in the second sec			Total and Un-ic	nized Ammonia Accu Concentration:	Total and Un-ionized Ammonia Accumulation Concentration:			
Chamber Sampling Sampling pH Temperature (*C) Percent Transmitance Tensmitance Tensmitanc	mpling Hoar pH Temperature (°C) Percent Transmittance Total Ammonia ¹ Galculate Ammo (%T) Vitrogen (mg/L) (%T) Nitrogen (mg/L) (mg/L) (mg/L) (mg/L) Vitrogen (mg/L) (%T) Nitrogen (mg/L) (mg/L) (mg/L) (mg/L) Vitrogen (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Vitrogen (mg/L) (mg/L)	_				-				1 1	-
In SOP AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-ionized ammon	P AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-lonized ammor		Chamber Sampling Location	Sampling Hour	Ηđ	Temperature (°C)	Percent Transmittance (%T)	Total Ammonia ¹ Nitrogen (mg/L)	Calculated Ur ionized Ammonia ¹ (mg/L)	7	- Date
In SOP AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-ionized ammon	P AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-lonized ammor										
In SOP AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-ionized ammon	P AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-lonized ammor										
In SOP AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-ionized ammor	P AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-ionized ammor										
In SOP AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-ionized ammor	P AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-lonized ammor										
in SOP AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-ionized ammor	P AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-lonized ammor										
In SOP AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-ionized ammor	P AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-ionized ammor										
in SOP AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-ionized ammor	P AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-ionized ammor									r 1	
in SOP AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-ionized ammor	P AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-ionized ammor										
in SOP AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-ionized ammor	P AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-lonized ammor										
in SOP AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-ionized ammor	P AEH 301.0 to calculate total ammonia nitrogen from %T and to calculate un-ionized ammor										
		Follow pr	ocedures i	n SOP AEH 30)1.0 to calculat) e total ammonia nitro	gen from %T and	to calculate un-ionii	zed ammonia fro	ㅋ	hia from temperature, pH, and total

Pg <u>20</u> of <u>22</u>

Lab book/pgs: Daily Water Quality – Form - System ID: Block A Dissolved Temperatur (°C) Chamber ID (mg/L) pH Temperatur (°C) Chamber ID (mg/L) pH (°C)			Lab book/pgs: Proofed: Daily Water Quality – Form 4 Dissolved Oxygen, pH, and Temperatu System ID: Instruments: Dissolved Temperature Oxygen PH (°C) Block B Oxygen PH (°C) Chamber ID (°C) Chamber ID (mg/L) PH (°C) Chamber ID (°C) Image: ID (°C) Oxygen (°C) Image: ID Image: ID Image: ID	Lab book/pgs: Proofed: Review Daily Water Quality – Form 4 Dissolved Oxygen, pH, and Temperature System ID: Instruments: Dissolved Temperature Block B Oxygen (mg/L) pH Temperature Block B Oxygen ("C) Chamber ID (mg/L) pH Temperature ("C) Chamber ID (mg/L) pH Temperature ("C) Chamber ID (mg/L) pH Temperature ("C) Dissolved Dissolved Dissolved Dissolved (mg/L) pH ("C) H Temperature ("C) Dissolved Dissolved Dissolved Dissolved (mg/L) pH ("C) Dissolved Dissolved Dissolved (mg/L) pH ("C) Dissolved Dissolved Dissolved Dissolved (mg/L) pH ("C) Dissolved Dissolved Dissolved Dissolved (mg/L) pH ("C) Dissolved Dissolved Dissolved Dissolved (mg/L) pH
r Quality – Form , System ID: pH Temperatur (°C)	gs: Proofed yr Quality – Form 4 Dissolved Oxy	gs: Proofed: system ID: Instruments: Temperature Block B Oxygen pH "C) Chamber ID (mg/l) pH Glock B Oxygen image: photoe image: photoe image: photoe image: photoe image: photoe image: photoe image: photoe image: photoe image: photoe image: photoe image: photoe image: photoe image: photoe image: photoe image: photoe image: photoe image: photoe image: photoe image: photoe	gs:	ature Date
	Lissolved Oxy	Proofed: Instruments: Block B Chamber ID Chamber ID Chamber I	Proofed:	ature Date Date

Study Number AEH-11-PSEUDO-02

۰.

File Folder: _____ Lab book/pgs: _____ Proofed: _____ Reviewed: _____

System Conditions – Form 1 Light Intensity

Sample Period (circle one); During Exposure/Weekly

Instruments:				
Mussel Species:		System ID): 1	
Block ID	Light Intensity (lux)	Date	Time (military)	Initials
A		" "·······		
В				
А				
В				
System 1 Mean				
Mussel Species:		System ID): 2	
	Light Intensity (lux)		Time	
Block ID		Date	(military)	Initials
А				
В				
A				
В				
System 2 Mean	n			
Mussel Species:		System ID): 3	
	Light Intensity (lux)	T	Time	
Block ID		Date	(military)	Initials
A				
В				
A				
В				
System 3 Mean				

System 3 Mean

 System 3 Mean
 Image: System 3 Mean

 Note:
 During exposure light intensity will be measured upon initiation and prior to termination of exposure period in both blocks of each system. Weekly light intensity will be measured twice during the week in both blocks of each system.

Version 1.0 / 01JUN2011 Approved by:

Date: 6/2/11

Pg <u>22</u> of <u>32</u>

_ Date: <u>6/2///</u>

Version 1.0 / 01JUN2011 Approved by: _

• "•

•

ddn nn, auju

File Folder:		_ Lab book/pgs:		Proofed:		-	{eview	Reviewed:	<pre>teviewed:</pre>
		System Condi	tions – Form 2 L	Daily Food Stoc	(and He	adbox	System Conditions – Form 2 Daily Food Stock and Headbox Flow Rates	adbox Flow Rates	adbox Flow Rates
Month:									
	System 1 Mussel Species:	oecies:	System 2 Mussel Species:	becies:	System 3	8 Mussel S	System 3 Mussel Species:	3 Mussel Species:	3 Mussel Species:
Days Post Day Exposure	Food Delivery Rate (mL/min)	Headbox Flow Rate (mL/min)	Food Delivery Rate (mL/min)	Headbox Flow Rate (mL/min)	Food I Rate (r	Food Delivery Rate (mL/min)	Delivery Headbox Flow nL/min) Rate (mL/min)		Headbox Flow Rate (mL/min)
2									
3									
4									
5									
б									
7									
8									
ę									
10									
11					•				
12			-						
13									
14									
15									
16									
17									
18									
19									
20									
21									
22									
23									
24						_			
25									
26									
27									
28				-					
29									
30									
:		j							

	ssel Species: Day Post		System ID:	Form 3	Block:				
		2 3	- 4-	- 51	- 00	- vo	6	11	11 12
	2								
	3						\neg		
	4								
	5						\rightarrow		
	6								
	7					-			
	8							_	
	9								
	10								
	11								
	12								
	13								
	14								
	15								
	16								
	17								
	18					_			
	19								
	20								
	21								
	22								
	23								
	24								
	25								
	26								
	27								
	28						ŀ		
	29								
	30								
-	31								

	- i
L I	Mussel Species: Block: Block:
	Days Post 1 2 3 4 5 6 7 8 9
	5
	6
	13
	14
	15
	17
21 21 22 23 23 24 24 24 25 24 25 24 25 25 25 25 25 25 25 25 25 25 25 25 26 <td< td=""><td></td></td<>	
22 23 23 24 24 25 26 27 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 26 27 28 29 29 29 20 21 22 23 24 25 26 27 28 29 29 29 20 21 22 23 24 25 26	21
23 1	
24 1	23
25 26 27 27 27 28 29 20 21 22 23 24 25 26 27 28 29 29 29 29 29 29 20 21 22 23 24 25 26 27 28 29	24
26 27 27 27 28 29 28 29 30 30 30 31 32 33 34 35 36 37 38 39 30 30 31 32 33 34 35 36 37 38 39 30 30 31 32 33 34 35 36 37 38 39 39 39 39 39 39 39 39 39 39 39 39 39 39	25
	26
	27
	28
30	29
	30

2000 - 200 1000 - 200 1000 - 200 1000 - 200

Version 1.0 / 27MAY2011 Approved by: _____ Date: $\frac{\zeta_{2}/2}{L_{2}}$

System 3 Mussel Species: System 2 Mussel Species: System 1 Mussel Species: File Folder: Study Number AEH-11-PSEUDO-02 Systern # Note: System # N ч ω ω ы щ for analysis (hardness, alkalinity, and total ammonia nitrogen), water will be collected from the outflow section of each sampled exposure chambers. Weekly water quality parameters will be measured from one chamber randomly selected from each system. For parameters requiring a water sample to be collected Chamber ID Chamber ID Lab book/pgs: Weekly Water Quality – Form 5 Hardness, Alkalinity and Conductivity ዩ Hardness (mg/L CaCO₃) Temperature (°C) Percent Transmittance (%T) Alkalinity (mg/L CaCO₃) Proofed: Instruments: Total Ammonia Nitrogen¹ (mg/L) Conductivity (µS/cm) Calculated Un-ionized Ammonia¹ (mg/L) Reviewed: Date Date (military) (military) Time Time Initials Initials Pg <u> 20</u> of <u>32</u>

File Folder: Version 1.0/29JU	File Folder: Lab book/pgs: Proc		Proofed: Date:	Reviewed: .: 7/5/2011 Juvenile Musse	Reviewed: 7/5/2011 Juvenile Mussel Recovery Datasheet		
System Number	Species	Chamber ID	Number of Mussels Recovered	Number of Viable Mussels	Comments	Date	Initials
-							

· · · · ·

Study Number AEH-1. File Folder: Lab book/pgs: Version 1.0/29JUN2011 Approved by:	Lab book, 011 Approv	1-PSEU	fed:	Reviewed:			
			Juvenile Mussel Measurement Datasheet	nt Datasheet			
System Number	Species	Chamber ID	Micropictograph ID	Mussel ID	Length (µm)	Date	Initials
	÷						
;							

Pg <u>28</u> of <u>32</u>

Study Number AEH-11-PSEUDO-02

 $(1-\frac{2}{3}) = \frac{2}{3} \, .$

.

File Folder: _____ Lab book/pgs: _____ Proofed: _____ Reviewed: _____

Pipette Calibration

Balance:		Thermometer:			
Temperature:	Wa	ter Density ¹ (g/mL):			
Pipette Setting (µL)	Rep#	Water Mass (g)	Date	Time (military)	Initials
<u></u>	1 1	(87		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	2				
	3				
	4	·			
	5				
	6				-
	7				
	8				***
	9				
	10				
	Mean		_		
	Standard Deviation				
	eviation (Standard Deviation				

Note: Pipette calibration must be performed with deionized water left to adjust to ambient room temperature for at least 24 hours prior to calibration.

¹ Water density (g/mL) at varying temperatures: 18°C: 0.9985976; 19°C: 0.9984073; 20°C: 0.9982063; 21°C: 0.9979948; 22°C:0.9977730.

Approved by:	Date: <u>7/13/1</u>
--------------	---------------------

Pg <u>29</u> of <u>32</u>

Study Number AEH-11-PSEUDO-02

e e e e

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

Approved_____ Date_08_DEC_2.....

Algae Stock Preparation Chart

Version 1.4 Effective Date OS DECLOU Initials Jak

Chlorella Dry wt	1.9 %
Nanno Dry wt	20.48 %
Tetra Dry wt	17.93 %
Delivery pump setting	2.0 mL/min

Stock for each system prepared in 3,600 mL of well water

Flow Rate (mL/min)	Vol. Delivered 30 hrs (L)	Delivery pump Flow (mL/min)	Pump Vol 30 hrs (L)	Total vol through Headbox (30h [L])	Dry wt. algae required per type (mg)	Wet wt Chlorella required (g)	Wet wt Nanno required (g)	Wet wt Tetra required (g)
	540.0	2,0	3.6	543.6	362.4	19.07	1.77	2.02
301	541.8	2.0	3.6	545.4	363.6	19.14	1.78	2.03
302	543.6	2,0	3.6	547.2	364.8	19.20	1.78	2.03
303	545.4	2.0	3.6	549.0	366.0	19.26	1.79	2.04
304	547.2	2.0	3.6	550.8	367.2	19.33	1.79	2.05
305	549.0	2.0	3.6	552.6	368.4	19.39	1.80	2.05
306	550.8	2.0	3.6	554.4	369.6	19.45	1.80	2.06
307	552.6	2.0	3.6	556.2	370.8	19.52	1.81	2.07
308	554.4	2.0	3.6	558.0	372.0	19.58	1.82	2.07
309	556,2	2.0	3.6	559.8	373.2	19.64	1.82	2.08
310	558.0	2.0	3.6	561.6	374.4	19.71	1.83	2.09
311	559.8	2,0	3.6	563.4	375.6	19.77	1.83	2.09
312	561.6	2.0	3.6	565.2	376.8	19.83	1.84	2.10
313	563.4	2,0	3.6	567.0	378.0	19.89	1.85	2.11
314	565.2	2.0	3.6	568.8	379.2	19.96	1.85	2.11
315	567.0	2.0	3.6	570.6	380.4	20.02	1.86	2.12
316	568.8	2.0	3,6	572.4	381.6	20.08	1.86	2.13
317	570.6	2.0	3.6	574.2	382.8	20.15	1.87	2.13
318	572.4	2.0	3,6	576.0	384.0	20.21	1.88	2.14
319	574.2	2.0	3.6	577.8	385.2	20.27	1.88	2.15
320	576.0	2.0	3.6	579.6	386.4	20.34	1.89	2.16
321	577.8	2.0	3.6	581.4	387.6	20.40	1.89	2.16
322	579.6	2.0	3.6	583.2	388.8	20.46	1,90	2.17

Pg <u>30</u> of <u>32</u>

1 of 2

ersion 1.0/29JUN2	011 Appro	oved by:	Date: <u>7/5/1</u>		
ile Folder: Lab book/pgs: Proofed: Reviewed: ersion 1.0/29JUN2011 Approved by: Date:?/ <i>5/</i> // Juvenile Mussel Micropictograph Datasheet					
System Number	Species	Chamber ID	Micropictograph ID	Date	Initials
			_		
			······································		1
		ŀ			
			, <u>, , , , , , , , , , , , , , , , , , </u>		
					1
				ľ	
				1	
					-
					1
					-
	·				
					-
					1
		· · · · · ·			<u>+</u>
					1
			<u>-</u> tat .		+

Pg <u>31</u> of <u>32</u>

.

Study Number AEH-11-PSEUDO-02

	<u>\</u>					
Mussel Specie	<u> </u>	Syst	em ID: Ir	struments:		
Chamber Di ID	issolved Oxygen (mg/L)	рН	Temperat (°C)	ture Dat	Time (military)	Initia
		pn		Dat	e (military)	IIIIIa
	·					-
		<u>`````````````````````````````````````</u>				
		$\overline{)}$				
				X		
The		1 .				
	or on					
						-
TOrnh	s we	e rev	1sed			
·			` \	· · · · · · · · · · · · · · · · · · ·		
\wedge				$\overline{}$		
nom	JAN	1-10	2012			
		······	·			
and		no le	haer	\rightarrow		
		110 10	1			-
1					\square	
De-1	ised.	1/1	1 2			
			hf		-	
		18 JA	W2012			
	d oxygen, pH, and to	emperature will be	measured <u>at leas</u>	<u>t twice</u> during th	e exposure period	in every
exposure	e chamber. daik, Should	be Jan 11-18	DOD, KW 1	BJANZOIZ		\backslash
Version 1.0/1		roved by: _			<u>6/1/11</u>	

Appendix 2. Deviations From the Study Protocol

ltem number	Item description	Number of pages	Report page number
1	Deviation 1: Algae feed delivery line incorrectly inserted into pump; feed not supplied for \approx 24 h	1	131
2	Deviation 2: Dry weight of chlorella not measured prior to use for feeding	1	132
3	Deviation 3: Algae feed delivery line obstructed; only $\approx 20\%$ of feed rationed for ≈ 24 h	1	133
4	Deviation 4: Low water level in test chamber due to standpipe leak and water delivery line obstruction	1	134
5	Deviation 5: Power outage interrupted algae delivery pumps for ≈ 12 h	1	135
6	Deviation 6: Decreased number of preserved mussels for initial mussel valve length	2	136
7	Deviation 7: Microphotograph overwritten and restored	1	138
8	Deviation 8: Dosing stock solutions for 300 mg/L heat deactivated and 50 mg/L active solutions incorrectly prepared	1	139
9	Deviation 9: Conductivity meter incorrectly calibrated	1	140
10	Deviation 10: Algae feed delivery line obstructed; only $\approx 20\%$ of feed rationed for 24 h	1	141
11	Deviation 11: Algae feed delivery line crimped causing clog; only $\approx 20\%$ of feed rationed for ≈ 24 h – Dated April 27, 2012	1	142
12	Deviation 12: Low water level in test chamber due to standpipe leak	1	143

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: June 27, 2011 To: The Record Study Number AEH-11-PSEUDO-02

Subject: Deviation 1 to study AEH-11-PSEUDO-02 "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Deviation #1 – Section 5.1.6 of study number AEH-11-PSEUDO-02 amended protocol entitled "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species" states that "exposure chambers will receive a constant supply of 2.0 mg/L (dry weight) of a 1:1:1 mixture of live chlorella algae (obtained from the Kentucky Department of Fish and Wildlife Resources Center for Mollusk Conservation) and Reed Mariculture tetraselmis and nannochloropsis instant algae. This mixture approximates the diet that produced the greatest survival in similar exposures with *Lampsilis cardium* and *L. siliquoidea* (Meinertz 2008). A fresh food stock solution will be prepared daily and delivered with a peristaltic pump to the headbox".

On June 16, 2011 the algae feed delivery line for system 1 (containing *Ligumia recta*) was found to have been incorrectly inserted into the pump after cleaning on 15 June 2011. Therefore, system 1 was inadvertently not feed for approximately 24 hours. Upon discovery on June 16, 2011 the feed supply was corrected as soon as possible.

No adverse impacts to the study are anticipated as a result of this deviation, however, the impact of this deviation to the outcome of the study will not be fully known until the viability data are analyzed. Therefore, an assessment of the impact of this deviation will be rendered in the final study report.

Janies A. Luoma, B.A.

6/27/11

Study Director, UMESC

Item No.

cc: UMESC QAU

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

cc: UMESC QAU

Date: June 27, 2011 To: The Record Study Number AEH-11-PSEUDO-02

Subject: Deviation 2 to study AEH-11-PSEUDO-02 "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Deviation #2 – Section 5.1.6 of study number AEH-11-PSEUDO-02 amended protocol entitled ""Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species" states that "exposure chambers will receive a constant supply of 2.0 mg/L (dry weight) of a 1:1:1 mixture of live chlorella algae (obtained from the Kentucky Department of Fish and Wildlife Resources Center for Mollusk Conservation) and Reed Mariculture tetraselmis and nannochloropsis instant algae. This mixture approximates the diet that produced the greatest survival in similar exposures with *Lampsilis cardium* and *L. siliquoidea* (Meinertz 2008). A fresh food stock solution will be prepared daily and delivered with a peristaltic pump to the headbox".

On June 23, 2011 I was made aware that the first bottle of chlorella from the second batch of algae received from Kentucky Department of Fish and Wildlife Resources Center for Mollusk Conservation had been exhausted and that a dry weight determination for the second bottle of the same batch had not been performed after the algae had been refreshed by the replacement of suspension water. I instructed study personnel to use the existing dry weight data from the first bottle of batch 2 until new dry weight data becomes available for the second bottle.

The second bottle of algae was used for preparing feed stocks from 6/24-26/2011 using the algae stock preparation chart (version 1.1) which utilized a chlorella dry weight of 2.9% for the calculations. On 6/27/2011, the data for the dry weight of the second batch was available and a new algae stock preparation chart (version 1.2) was prepared with the new chlorella dry weight of 2.58%.

Due to the slight reduction to the overall feeding rate, no adverse impacts to the study are anticipated as a result of this deviation.

Study Director, UMESC

6/21/11

U.S. GEOLOGICAL SURVEY Biological Resources Division Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: June 27, 2011 To: The Record Study Number AEH-11-PSEUDO-02

Subject: Deviation 3 to study AEH-11-PSEUDO-02 "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Deviation #3 – Section 5.1.6 of study number AEH-11-PSEUDO-02 amended protocol entitled ""Effects of *Pseudomonas fluorescens (Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species" states that "exposure chambers will receive a constant supply of 2.0 mg/L (dry weight) of a 1:1:1 mixture of live chlorella algae (obtained from the Kentucky Department of Fish and Wildlife Resources Center for Mollusk Conservation) and Reed Mariculture tetraselmis and nannochloropsis instant algae. This mixture approximates the diet that produced the greatest survival in similar exposures with *Lampsilis cardium* and *L. siliquoidea* (Meinertz 2008). A fresh food stock solution will be prepared daily and delivered with a peristaltic pump to the headbox".

On June 26, 2011 the algae feed delivery line for systems 2 and 3 (containing *Lampsilis cardium* and *Lampsilis higginsii*, respectively) were found to be partially obstructed and therefore, systems 2 and 3 received approximately 20% of the feed ration for the previous 24 hours. Upon discovery on June 26, 2011 the feed supply was corrected as soon as possible.

No adverse impacts to the study are anticipated as a result of this deviation, however, the impact of this deviation to the outcome of the study will not be fully known until the viability data are analyzed. Therefore, an assessment of the impact of this deviation will be rendered in the final study report.

lámes A. Luoma, B.A. Study Director, UMESC

<u>6/21/1</u>

C.

cc: UMESC QAU

U.S. GEOLOGICAL SURVEY **Biological Resources Division Upper Midwest Environmental Sciences Center** 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: July 1, 2011 To: The Record Study Number AEH-11-PSEUDO-02

Subject: Deviation 4 to study AEH-11-PSEUDO-02 "Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Deviation #4 - Sections 4.1 and 5.1.6 of study number AEH-11-PSEUDO-02 amended protocol entitled ""Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species" state that mussels will be reared in a flow through test apparatus and that exposure chambers will receive a constant supply of 2.0 mg/L (dry weight) of a 1.1.1 mixture of live chlorella algae and Reed Mariculture tetraselmis and nannochloropsis instant algae.

On June 30, 2011 at ~0800 h two exposure chambers were discovered to have low water levels (system 1 (Ligumia recta) chamber 1B4 and system 2 (Limpsilis cardium) chamber 2B11). Chamber 2B11 of system 2 (L cardium) was observed to have a reduced water level (< 3 cm decrease) but water inflow remained. Chamber 1B4 of system 1 (L. recta) was observed to have no water inflow into the chamber and a water level of approximately 2.5 cm.

On June 29, 2011 at approximately 1430 h the exposure chambers were cleaned by brushing the outer sections of the exposure chambers, removing the standpipe corks and allowing the chamber to drain to approximately 20% of volume, then reseating the standpipe corks and allowing the chambers to refill. The chambers were visually inspected at 1645 h and were observed to be full with water inflow. It is concluded that the standpipe corks were not adequately reseated after chamber cleaning and therefore a slow leak was present. It is further concluded that obstructions in the delivery lines reduced (system 2, chamber 2B11) or eliminated (system 1, chamber 1B4) water inflow into the chambers and the leaks caused the water levels to drop.

Upon discovery the standpipe corks were reseated and full water flow was restored to the exposure vessels.

No adverse impacts to the study are anticipated as a result of this deviation, however, the impact of this deviation to the outcome of the study will not be fully known until the viability data are analyzed. Therefore, an assessment of the impact of this deviation will be rendered in the final study report.

Jamés A. Luoma, B.A.

Study Director, UMESC

cc: UMESC QAU

134

U.S. GEOLOGICAL SURVEY **Biological Resources Division** Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: July 7, 2011 To: The Record Study Number AEH-11-PSEUDO-02

Subject: Deviation 5 to study AEH-11-PSEUDO-02 "Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Deviation #5 -- Section 5.1.6 of study number AEH-11-PSEUDO-02 amended protocol entitled ""Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species" states that "exposure chambers will receive a constant supply of 2.0 mg/L (dry weight) of a 1:1:1 mixture of live chlorella algae (obtained from the Kentucky Department of Fish and Wildlife Resources Center for Mollusk Conservation) and Reed Mariculture tetraselmis and nannochloropsis instant algae. This mixture approximates the diet that produced the greatest survival in similar exposures with Lampsilis cardium and L. siliquoidea (Meinertz 2008). A fresh food stock solution will be prepared daily and delivered with a peristaltic pump to the headbox".

At approximately 2230 h on July 1, 2011 a brief power interruption to the center caused the algae delivery pumps for systems 1, 2 and 3 (containing Lampsilis higginsii, Lampsilis cardium and Lampsilis higginsii, respectively) to stop delivering algae to the headboxes. The UMESC backup generator restored power to the pumps within approximately two minutes, however the pumps did not restart when the power was restored. The loss of food was discovered and corrected at approximately 1000 h on July 2, 2011. No adverse impacts to the study are anticipated as a result of this deviation, however, the impact of this deviation to the outcome of the study will not be fully known until the viability data are analyzed. Therefore, an assessment of the impact of this deviation will be rendered in the final study report.

lárhes A. Luríma, B.A.

Study Director, UMESC

cc: UMESC QAU

Item NC

U.S. GEOLOGICAL SURVEY Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: December 13, 2011

To: The Record Study Number AEH-11-PSEUDO-02

Subject: Deviation 6 to study AEH-11-PSEUDO-02 "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Deviation #6 – Sections 5.5.1 and 6.2 (Survival and Growth and Determination of Survival and Growth) of the amended protocol states that the growth of the newly metamorphosed juveniles from each dosing concentration will be assessed by "comparing valve length measurements from photomicrograph records captured and analyzed using Nikon Elements BR ® software. Comparisons will be made between treatments as well as to mussels images recorded prior to the test initiation." According to Section 4.2 (Experimental Design), the mussel images recorded prior to the test initiation were to come from "two randomly chosen groups of 20 mussels of each species [that were preserved] to determine the initial mussel valve length."

The procedures as described in the protocol were followed except three randomly chosen groups of 20 mussels of each species were preserved to determine the initial mussel valve length. On August 8, 2011 when the preserved mussel samples were photographed for initial valve length measurements, it was found that many of the samples did not have 20 mussels. The exact cause of the decreased number of preserved mussels for initial valve lengths is unclear; however, there are a few potential causes: 1) 20 mussels were not originally counted for the sample; 2) the mussels were not washed properly into the sample vial for preservation; 3) mussels were inadvertently removed from the sample when the 10% NBF was replaced with 70% ethanol due to some of the mussels floating; 4) Not all mussels were removed from the sample vial when the initial valve length photographs were taken; 5) Due to some of the mussels floating, they may not have been noticed sticking to the side of the petri dish during photographing.

AEH-11-PSEUDO-02

No adverse impacts to the study are anticipated as a result of this deviation. The total number of mussels photographed from the three preserved samples for the initial valve lengths is greater than the originally proposed 40 mussels in two samples.

1 <u>3 DEZ 20</u> 11 Date
13 per 2011
Date

cc: UMESC QAU

 $\begin{array}{c} \text{FF \# } \underline{3} \\ \text{Item No. } \underline{1616} \\ \text{Pg } \underline{-2} \\ \text{of } \underline{-2} \end{array}$

U.S. GEOLOGICAL SURVEY Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: December 13, 2011

To: The Record Study Number AEH-11-PSEUDO-02

Subject: Deviation 7 to study AEH-11-PSEUDO-02 "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to newly metamorphosed mussels from seven different unionid species"

Deviation #7 – Sections 4.2 and 6.2 (Experimental Design and Determination of viability) state that "a photomicrograph of all surviving mussels will be recorded for each exposure chamber for growth measurements." One photograph (PPB-2A2-3x-Live.tif) taken on July 9, 2011 was overwritten on August 8, 2011. The photograph was restored by Martin Tagesen using the network back-up from July 9, 2011.

No negative impacts to the study are anticipated as the photograph was restored to its original file before analysis was conducted.

Writ t/en/ by	<u> 3 DEC 201</u> Date
Kerry L. Weber, M.S.	
Principal Investigator, UMESC	
	13 Dec.2011
Approved by	Date
	Date
Games A. Luoma, B.A.	

Study Director, UMESC

FF # Item No. $Pg_{1}of_{1}$

Page 1 of 1

cc: UMESC QAU

U.S. GEOLOGICAL SURVEY Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: December 13, 2011

To: The Record Study Number AEH-11-PSEUDO-02

Subject: Deviation 8 to study AEH-11-PSEUDO-02 "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to newly metamorphosed mussels from seven different unionid species"

Deviation #8 – The stock dosing solutions for the 300 mg/L heat deactivated and the 50 mg/L active solutions were incorrectly prepared and temporarily (≤ 20 minutes) used for exposing the 300 mg/L heat deactivated and 50 mg/L active exposure vessels. When the dosing solutions were prepared, less dilution water was used then was required due to an error in reading the Chemical Stock Solution Determination data sheet. The dilution water initially used was total volume required (5,000 mL) minus the mg (read as mL in error) of test material required (1,500 mg for heat deactivated; 250 mg for the 50 mg/L active), instead of the total volume required (5,000 mL) minus the aliquot of stock required (150 mL stock C for the 300 mg/L heat deactivated; 25 mL stock B for the 50 mg/L active).

This error was noticed immediately after dosing the 50 mg/L exposure chambers and new dose solutions were prepared and then used to flush and refill the chambers. The incorrect dosage was in the chambers no more than 20 minutes. The incorrect dosage of material used was calculated to be ~52 mg/L for the 50 mg/L chambers and ~411 mg/L for the heat deactivated chambers. No negative impacts to the study are anticipated as: 1) the incorrect dosage was in the exposure chambers for a brief time (≤ 20 minutes); 2) the heat deactivate material is denatured and it is believed that any toxicity would be from longer term exposure and likely associated ammonia production; and 3) the dose that the 50 mg/L chambers received was ~4% above the target dose.

James A. Luoma, B.A.

Study Director, UMESC

<u>|] Pecto</u> || Date

Item No. 2

Page 1 of 1

cc: UMESC QAU

U.S. GEOLOGICAL SURVEY Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: February 7, 2012

To: The Record Study Number AEH-11-PSEUDO-02

Subject: Deviation 9 to study AEH-11-PSEUDO-02 "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species" Deviation #9 – Sections 5.2.6 (Conductivity) of the amended protocol for study number study number AEH-11-PSEUDO-02 states that "the conductivity will be measured and recorded prior to test initiation and upon exposure termination from pooled replicate samples of each test concentration. Additionally, the conductivity will be measured weekly throughout the holding period on one representative exposure chamber from each species (UMESC SOP AEH 188 or equivalent)."

On January 28, 2012, the procedures as described in the protocol were followed, however, during the calibration of the conductivity meter, the wrong temperature was inadvertently used to derive the temperature corrected conductivity values. The value used to calibrate the conductivity meter and recorded in the logbook was for the temperature of 19.7° C (896μ S) instead of 20.7° C (915μ S). This error was caused by reading the number in the chart directly above the correct temperature correct conductivity value.

A second error was found in the calibration of the conductivity meter during the 10μ S standard for January 28, 2012. The value used to calibrate the conductivity meter and recorded in the logbook was 8.87 μ S. This value should have been 8.84 μ S. This indicates a recording error as well as an improper calibration point for the conductivity meter.

The adverse impacts to the study are considered negligible for the following reasons:

- 1) The incorrect values used to calibrate the meter were reasonably close to the values that should have been used ($\leq 19\mu$ S difference).
- 2) The conductivity data collected on January 28, 2012 were similar to data collected during exposures to glochidia (study # AEH-11-PSEUDO-01) using the same lot of product.
- 3) Conductivity measurements are ancillary information, not primary endpoints for used for statistical comparison.

7FEB2012 Date 7 Feb 12 Date Written by Xpproved by Jeremy K. Wise, B.S. ames A. Luoma, B.A. Study Director, UMESC Bio Science Tech, UMESC Item No. 21 cc: UMESC QAU Page 1 of 1 Pa of

U.S. GEOLOGICAL SURVEY **Biological Resources Division Upper Midwest Environmental Sciences Center** 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: April 27, 2012 The Record Study Number AEH-11-PSEUDO-02 To:

Subject: Deviation 10 to study AEH-11-PSEUDO-02 "Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Deviation #10 - Section 5.1.6 of study number AEH-11-PSEUDO-02 amended protocol entitled ""Effects of Pseudomonas fluorescens (PF-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species" states that "exposure chambers will receive a constant supply of 2.0 mg/L (dry weight) of a 1:1:1 mixture of live chlorella algae (obtained from the Kentucky Department of Fish and Wildlife Resources Center for Mollusk Conservation) and Reed Mariculture tetraselmis and nannochloropsis instant algae. This mixture approximates the diet that produced the greatest survival in similar exposures with Lampsilis cardium and L, siliquoidea (Meinertz 2008). A fresh food stock solution will be prepared daily and delivered with a peristaltic pump to the headbox".

On April 24, 2012 the algae feed delivery line for system 2 (containing Ligumia recta) was found to be partially obstructed and therefore, system 2 received approximately 20% of the feed ration for the previous 24 hours. Upon discovery on April 24, 2012 the feed supply was corrected as soon as possible.

Adverse impacts to the study as a result of this deviation are unknown; the impact of this deviation to the outcome of the study will not be fully known until the viability data are analyzed. Therefore, an assessment of the impact of this deviation will be rendered in the final study report.

27APPV Date Wrjtten by Kelary L. Weber, M.S. Principal Investigator, UMESC 4/21/12 Date

Spproved by James A. Luoma, B.A. Study Director, UMESC

cc: UMESC QAU

FF # <u>3</u> Item No. <u>3</u> Pg _____ of __

U.S. GEOLOGICAL SURVEY **Biological Resources Division** Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: April 27, 2012 To: The Record Study Number AEH-11-PSEUDO-02

Subject: Deviation 11 to study AEH-11-PSEUDO-02 "Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Deviation #11 -- Section 5.1.6 of study number AEH-11-PSEUDO-02 amended protocol entitled ""Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species" states that "exposure chambers will receive a constant supply of 2.0 mg/L (dry weight) of a 1:1:1 mixture of live chlorella algae (obtained from the Kentucky Department of Fish and Wildlife Resources Center for Mollusk Conservation) and Reed Mariculture tetraselmis and nannochloropsis instant algae. This mixture approximates the diet that produced the greatest survival in similar exposures with Lampsilis cardium and L. siliquoidea (Meinertz 2008). A fresh food stock solution will be prepared daily and delivered with a peristaltic pump to the headbox".

On April 25, 2012 the algae feed delivery line for system 2 (containing Ligumia recta) was found to be crimped by a holding clamp causing the line to clog. Therefore, system 2 received approximately 20% of the feed ration for the previous 24 hours. Upon discovery on April 25, 2012 the feed supply was corrected as soon as possible.

Adverse impacts to the study as a result of this deviation are unknown; the impact of this deviation to the outcome of the study will not be fully known until the viability data are analyzed. Therefore, an assessment of the impact of this deviation will be rendered in the final study report.

M∕ritten/bý Kerry L. Weber, M.S. Principal Investigator, UMESC

4/21/n Date

27APRID

Date

Approved by James A. Luoma, B.A.

Study Director, UMESC

cc: UMESC QAU

U.S. GEOLOGICAL SURVEY **Biological Resources Division** Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603

MEMORANDUM

Date: May 18, 2012 To: The Record Study Number AEH-11-PSEUDO-02

Subject: Deviation 12 to study AEH-11-PSEUDO-02 "Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Deviation #12 - Sections 5.4.1.2 and 5.4.1.3 of study number AEH-11-PSEUDO-02 amended protocol entitled "Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species" states that each exposure vessel will receive a continuous supply of temperature adjusted (20°C) well water from the distribution box at a rate to provide approximately 1 chamber exchange per hour.

At approximately 1030 h, during post-exposure water chemistry and setting of flow rates to holding chambers it was observed that all chambers were filled and there were no apparent issues. At approximately 1400 h on May 17, 2012, it was found that holding chamber 1B2 contained approximately 2.5 cm of water. Once discovered, the standpipes were reseated in the chamber and the chamber was filled with acclimated well water in the inflow section of the chamber. The chamber was periodically monitored for an additional 2 hours to determine that the problem was resolved. No further action was required. It is assumed that the emptying of holding chamber 1B2 occurred over a 3.5 hour span due to a slow leak caused by the improper seating of the inflow standpipe from the termination of dosing.

Adverse impacts to the study as a result of this deviation are unknown; the impact of this deviation to the outcome of the study will not be fully known until the viability data are analyzed. Therefore, an assessment of the impact of this deviation will be rendered in the final study report.

> 18MAY12 Writter by Date Kerry L. Weber, M.S. Principal Investigator, UMESC 5-18-12

Approved by Jømes A. Luoma, B.A. Study Director, UMESC

Date

cc: UMESC QAU

Appendix 3. Randomization Assignments

Item number	Item description	Number of pages	Report page number
1	SAS generated random assignment of species to test system - dated July 7, 2011	4	145
2	SAS generated random assignment of species to test system - dated December 8, 2011	3	149
3	SAS generated random assignment of species to test system - dated January 23, 2012	4	152
4	SAS generated random assignment of species to test system - dated March 28, 2012	4	156
5	SAS generated random assignment of species to test system - dated May 2, 2012	4	160
6	SAS generated random assignment of species to test system - dated May 23, 2012	4	164
7	SAS generated random assignment of juvenile mussel distribution - dated July 7, 2011	7	168
8	SAS generated random assignment of juvenile mussel distribution – dated December 8, 2011	7	175
9	SAS generated random assignment of juvenile mussel distribution – dated January 23, 2012	13	182
10	SAS generated random assignment of juvenile mussel distribution – dated March 28, 2012	6	195
11	SAS generated random assignment of juvenile mussel distribution – dated May 2, 2012 for <i>Lampsilis cardium</i>	6	201
12	SAS generated random assignment of juvenile mussel distribution – dated May 23, 2012	8	207
13	SAS generated random assignment of treatment to experimental tanks – dated July 7, 2011	10	215
14	SAS generated random assignment of treatment to experimental tanks – dated December 8, 2011	9	225
15	SAS generated random assignment of treatment to experimental tanks – dated January 23, 2012	18	234
16	SAS generated random assignment of treatment to experimental tanks – dated March 28, 2012	7	252
17	SAS generated random assignment of treatment to experimental tanks – dated May 2, 2012	7	259
18	SAS generated random assignment of treatment to experimental tanks – dated May 23, 2012	8	266

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed AEH-11-PSEUDD-02 1 juvenile mussels from seven different unionid species AEH-11-PSUED0-02 Random assignment of mussel species to block

Obs	block	х	blocka	sps
1	1	0.52805	System 1	Hickory nut
2	2	0.56107	System 2	Mucket
3	з	0.78855	System 3	blank

Log Book/Pages File Folder 12 Mitials Kurd Usie 27 JULI

PROOFED BY TALI Intion KIN Dave 121 REVIEWED BY initials. Date Not us Needed VWW.svM Item Number:

Pg ____ of <u>⊣</u>____

Analysis performed by M. Gaikowski SAS version 9.2 15:39 C7JUL11 MM

```
4
      * date created : 07Jul11 - MPG
                                                                            AEH-11-PSEUD0-02
     * Verified by: _____ (Date:_____
5
                                        ____)
                                                            page _ _
                                                                     of
     * Random allocation of mussel species to block.test 2.sas
6
     7
     DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
8
9
10
     FOOTNOTE1 'Analysis performed by M. Gaikowski SAS version ' &SYSVER &SYSTIME &SYSDATE;
WARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
11
12
     options /*1s=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2:
13
     /*Random assignment of mussel species to block*/
14
15
16
     data sps:
17
      do block = 1 to 3 by 1;
                                                             Low Book / Pas
18
       x = ranuni(-1);
                                                             File Folder,
19
        output;
                                                                                      27. TUL
                                                             Initials KLU
20
      end:
21
     run;
NOTE: The data set WORK.SPS has 3 observations and 2 variables.
                                                                        PROOFED BY
                                                                  Initiale: KIW Date: PT-TULI
NOTE: DATA statement used (Total process time):
      real time
                         0.43 seconds
                                                                       H. VIENIL J SY
      opu time
                         0.15 seconds
                                                                       not needed
I w Frievily
22
    proc sort data=sps;
23
     by x;
24
    run;
NOTE: There were 3 observations read from the data set WORK.SPS.
NOTE: The data set WORK.SPS has 3 observations and 2 variables.
NOTE: PROCEDURE SORT used (Total process time):
     real time
                        0.12 seconds
     cpu time
                        0.07 seconds
25 data block; set sps;
26 if block = 1 then blocka = 'System 1';
27 if block = 2 then blocka = 'System 2';
28
    if block = 3 then blocka = 'System 3'; run;
NOTE: There were 3 observations read from the data set WORK.SPS.
NOTE: The data set WORK.BLOCK has 3 observations and 3 variables.
NOTE: DATA statement used (Total process time):
     real time
                        0.03 seconds
     cpu time
                        0.03 seconds
29
    data assign_sps; set block;
30
     if _n_ = 1 then sps = 'Hickory nut';
31
      if _n_ = 2 then sps = 'Mucket';
32
      if _n_ = 3 then sps = 'blank';
                                                                         Pg 2 of 4
33
     run:
NOTE: There were 3 observations read from the data set WORK.BLOCK.
NOTE: The data set WORK.ASSIGN_SPS has 3 observations and 4 variables.
NOTE: DATA statement used (Total process time):
     real time
                        0.01 seconds
     cpu time
                        0.01 seconds
```

AEH-11-PSEUD0-02

34 proc sort data=assign_sps; 35 by block; 36 run; NOTE: There were 3 observations read from the data set WORK.ASSIGN_SPS. NOTE: The data set WORK.ASSIGN_SPS has 3 observations and 4 variables. NOTE: PROCEDURE SORT used (Total process time): real time 0.01 seconds opu time 0.01 seconds 37 proc print data= assign_sps; title1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed'; 38 title2 h=1 'juvenile mussels from seven different unionid species '; 39 title3 h=1 'AEH-11-PSUED0-02'; 40 41 title4 h=1 'Random assignment of mussel species to block'; 42 run; NOTE: There were 3 observations read from the data set WORK.ASSIGN_SPS. NOTE: PROCEDURE PRINT used (Total process time): real time 0.24 seconds cpu time 0.07 seconds

File Folder 97-37411 Initials KCL

PROOFED BY Initiates HIN A VIEV Dute! 495125610. 🕳 not us reided 1/2morty

Pg 3_ of 4

```
AEH-11-PSEUDD-02
 * Study Number : AEH-11-PSUEDO-02
* Study Director: Jim Luoma
* date created : 07Jul11 - MPG MMT
* Verified by:
               _____ (Date:___
                                  )
                                                    page ____ of ____
* Random allocation of mussel species to block.test 2.sas
DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
FOOTNOTE1 'Analysis performed by M. Gaikowski SAS version ' &SYSVER &SYSTIME &SYSDATE;
options /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
/*Random assignment of mussel species to block*/
data sps;
 do block = 1 to 3 by 1;
                                                  Los Book /
  x = ranuni(-1);
                                                                            7- TNI
                                                  File Folder
   output;
                                                   Initials 🕌
 end;
run:
proc sort data=sps;
 by x;
run;
data block; set sps;
                                                                                TUL11
                                                        Tattlete: KUW
                                                                      De10 1
if block = 1 then blocka = 'System 1';
                                                              A MEWL .
if block = 2 then blocka = 'System 2';
if block = 3 then blocka = 'System 3'; run;
                                                                      Date<sup>1</sup>
                                                                    needed
data assign_sps; set block;
                                                                    10m Juni 14
 if _n = 1 then sps = 'Hickory nut';
 if _n_ = 2 then sps = 'Mucket';
  if _n_ = 3 then sps = 'blank';
 run;
                                                                    Item Number: _2
 proc sort data=assign_sps;
 by block;
run;
proc print data= assign sps;
title1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';
title2 h=1 'juvenile mussels from seven different unionid species ';
title3 h=1 'AEH-11-PSUEDO-02';
title4 h=1 'Random assignment of mussel species to block';
run;
```

Pg 4 of 4

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species AEH-11-PSUEDO-02 Random assignment of mussel species to block OSMErc2011

0bs	block	x	blocka	sps
1	1	0.70364	System 1	empty
2	2	0.45820	System 2	washboard
З	3	0. 0768 3	System 3	Black sandshell

AEH-11-PSEUDO-02

Log Book / Pages 2/25 File Folder 12A Jaitials LU Love 1/1 DEC/1 2125

Initials: Lim Data BEVEWE Initials: Data Not needed WW ZWWIG

10 _____ 0019

.

.

Item Number: 3

Page _____ of ____

Analysis performed by Jim Luoma SAS version 9.2 08:22 08DEC11

	_2/25	
Log Book / Pages		
File Folder	12.4	
	Date 7-Movily	ي بياريوني وي الرونيوني
Initials KW		

· ••

, **-**

PROOFED BY Initials: _____ Date (_____ REVIEWED BY Initials: _____ Date(_____ Needed Needed WW Frow H

Page _____ of _____

AEH-11-PSEUDO-02

.

esto di peti

10 _____ (A)

```
* Study Number : AEH-11-PSUEDO-02
* Study Director: Jim Luoma
* date created : 08DEC11 - JAL
* Verified by:
                   _____(Date:____
                                   __)
                                                      page
                                                              of
* Random allocation of mussel species to block.sas
*****
                                                                      AEH-11-PSEUDO-02
                                                          0800-2011
DM 'LOG; CLEAR; OUTPUT; CLEAR; '; * CLEAR LOG AND OUTPUT;
                                                      Sar
FOOTNOTE1 'Analysis performed by Jim Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
options /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
/*Random assignment of mussel species to block*/
                                                      Log Book/Pages
data sps;
                                                      File Folder.
 do block = 1 to 3 by 1;
                                                                         2 NOV
                                                                     9 s C
                                                      Initials I'm
  x = ranuni(-1);
  output;
                                                                      Not needed
                                                       PROOFEDBY
end;
                                                                          WW
run;
                                                             Date 1
                                                       REVIEWED BY
                                                  Initials: -
proc sort data=sps;
                                                              Datel
by x;
                                                   In 141819
run;
data block; set sps;
if block = 1 then blocka = 'System 1';
if block = 2 then blocka = 'System 2';
if block = 3 then blocka = 'System 3'; run;
data assign_sps; set block;
                                                          Item Number:
if _n_ = 1 then sps = 'Black sandshell';
 if _n_ = 2 then sps = 'washboard';
  if _n_ = 3 then sps = 'empty';
 run;
 proc sort data=assign_sps;
                                                          Page
by block;
run;
proc print data= assign_sps;
title1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';
title2 h=1 'juvenile mussels from seven different unionid species ';
title3 h=1 'AEH-11-PSUEDO-02';
title4 h=1 'Random assignment of mussel species to block';
run;
```

uvenile mussels from seven different unionid species andom assignment of mussel species to system $\int A^{-1} - 23 - 2^{-1}$ AEH-11-PSEUDO-02 AFTH NU KNW FRENIY 'bs block blocka х sps 0.47947 System 1 Fatmucket 1 1 Log Book / Pages File Folder 2 2 0.99238 System 2 empty 3 3 0.56137 System 3 empty 12 APRIE Iditials Km Dave.

PhQue Initials: REVIEWED BY Date! Ipitiala: Not welled This H

Item Number: + of poges Page O Missed 4th page ym gruniu

nalysis performed by Jim Luoma SAS version 9.2 08;45 23JAN12

Study Number : AEH-11-PSUEDO-02 Study Director: Jim Luoma . . date created : 23JAN12 - JAL 50 AEH-11-PSEUDO-02 Verified by: _____ (Date:_____ page ____ of Random allocation of mussel species to system.sas ********** 'M 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT; OOTNOTE1 'Analysis performed by Jim Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE; ptions /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2; *Random assignment of mussel species to System*/ Log Book / Pages File Folder_ And the owner of the lot Date _ Thurly Initials 1/100 ata sps; do block = 1 to 3 by 1; x = ranuni(-1);PROOFED Date : output; Initials: REVIEWED BY end; Initialai Date! un; roc sort data=sps; put Kow Front by x; un; ata block; set sps; f block = 1 then blocka = 'System 1'; f block = 2 then blocka = 'System 2'; f block = 3 then blocka = 'System 3'; run; ata assign_sps; set block; if n = 1 then sps = 'Fatmucket'; if _n_ = 2 then sps = 'empty'; if _n_ = 3 then sps = 'empty'; Page run; proc sort data=assign_sps; by block; un; roc print data= assign_sps; itle1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed'; Omissed 4th Page Him Frient itle2 h=1 'juvenile mussels from seven different unionid species '; itle3 h=1 'AEH-11-PSUEDO-02'; itle4 h=1 'Random assignment of mussel species to system'; un;

83 * Verified by: _____ (Date:_____ page ____ of ____ _) 84 * Random allocation of mussel species to system.sas 86 DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT; 87 88 FOOTNOTE1 'Analysis performed by Jim Luoma SAS version ' & SYSVER & SYSTIME & SYSDATE; ARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text. 89 options /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2; 90 91 2/32 Log Book / Pages _ 92 /*Random assignment of mussel species to System*/ TZA Eile Folder 93 Date Awovie ipitials lun 94 data sps: do block = 1 to 3 by 1; 95 PROOFED 96 x = ranuni(-1);Initials: ______Bate :_____ REVIEWED BY 97 output; Nut nuded hurt nuded lim front 98 end; Initialey 99 run; OTE: The data set WORK.SPS has 3 observations and 2 variables. OTE: DATA statement used (Total process time): 0.01 seconds real time 0.01 seconds opu time 00 proc sort data=sps; 01 by x; 02 run; OTE: There were 3 observations read from the data set WORK.SPS. OTE: The data set WORK.SPS has 3 observations and 2 variables. OTE: PROCEDURE SORT used (Total process time): real time 0.01 seconds Item Number: 03 data block; set sps; 04 if block = 1 then blocka = 'System 1'; Page 3 of 34 pm Inun 05 if block = 2 then blocka = 'System 2'; 06 if block = 3 then blocka = 'System 3'; run; OTE: There were 3 observations read from the data set WORK, SPS. OTE: The data set WORK.BLOCK has 3 observations and 3 variables. OTE: DATA statement used (Total process time): real time 0.01 seconds cpu time 0.01 seconds 07 data assign_sps; set block; 08 if _n_ = 1 then sps = 'Fatmucket'; if _n_ = 2 then sps = 'empty'; 09 if _n_ = 3 then sps = 'empty'; 10 11 run;

CTE: There were 3 observations read from the data set WORK.BLOCK.

OTE: The data set WORK.ASSIGN_SPS has 3 observations a OTE: DATA statement used (Total process time): real time 0.01 seconds cpu time 0.01 seconds	Log Book / Pages $\frac{Z/3Z}{12A}$ File Folder $\frac{12A}{2}$
<pre>12 proc sort data=assign_sps; AEH-11-PSEUDO-02 13 by block; 14 run;</pre>	Initials Date Date Hubble PROOFELET Initials: Date : Not out REVIEWED BY Yeard Initials: Date Web BY Yeard Initials: Date Hubble Initials: Market Hubb
OTE: There were 3 observations read from the data set OTE: The data set WORK.ASSIGN_SPS has 3 observations a OTE: PROCEDURE SORT used (Total process time): real time 0.01 seconds cpu time 0.00 seconds	
<pre>15 proc print data= assign_sps; 16 title1 h=1 'Effects of Pseudomonas fluorescens (Pf 17 title2 h=1 'juvenile mussels from seven different 18 title3 h=1 'AEH-11-PSUEDO-02'; 19 title4 h=1 'Random assignment of mussel species to 20 run;</pre>	unionid species ';
OTE: There were 3 observations read from the data set OTE: PROCEDURE PRINT used (Total process time): real time 0.00 seconds	WORK.ASSIGN_SPS.

real time	0.00	seconds
cpu time	0.01	seconds

and a second second

ign in 1

Item Number: ____

٠

. • .

• 4_of_4 Page __

There of the additional trade events (it entrony to non-ty motamer product uvenile massels from seven different unionid species 3-28-12 EH-11-PSUED0-02 andom assignment of mussel species to system 51bs block blocka х sps 1 1 0.26750 System 1 empty 2 2 0.13851 System 2 Black Sandshell

System 3

empty

3

з

0.86880

File Folder DA Lab Book 2 page 39 tim 12490012 PROOFEDBY Date : İnlials: _ BEVIEWED BY Initialar _Date¹ _ Not needed 14

AEH-11-PSEUDO-02

5 Item Number: ____

_of_4 Page_

nalysis performed by Jim Luoma SAS version 9.2 08:10 28MAR12

```
- uate dieated . ZomAniz - UAL معين
·D
    * Verified by: _____ (Date:_____)
.7
                                                           page ____ of ____
    * Random allocation of mussel species to system.sas
-8
    .9
                                                                        AEH-11-PSEUDO-02
0
    DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
1
    FOOTNOTE1 'Analysis performed by Jim Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
2
'ARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
3
4
    options /*1s=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2:
-5
                                                                           2/39
                                                            Log Book/Pages .
-6
    /*Random assignment of mussel species to System*/
                                                                        12A
                                                            File Folder 12A
Initials Date 3MANY
-7
-8
    data sps;
9
    do block = 1 to 3 by 1;
                                                                 PROOFE
                                                            0
     x = ranuni(-1);
1
       output;
                                                            Initialy _____ Date' .
:2
     end;
                                                                  not needed
                                                                   Khe Incula
:3
    run;
IOTE: The data set WORK.SPS has 3 observations and 2 variables.
IOTE: DATA statement used (Total process time):
     real time
                   0.00 seconds
     cpu time
                       0.01 seconds
          ۰,
    proc sort data=sps;
4
5
    by x;
6
    run;
IOTE: There were 3 observations read from the data set WORK.SPS.
IOTE: The data set WORK.SPS has 3 observations and 2 variables.
                                                                    Page 2 of 4
IOTE: PROCEDURE SORT used (Total process time):
     real time
                        0.01 seconds
     cpu time
                        0.01 seconds
                             Harris 10
i7 data block; set sps;
if block = 1 then blocka = 'System 1';
19
    if block = 2 then blocka = 'System 2';
'0
    if block = 3 then blocka = 'System 3'; run;
IOTE: There were 3 observations read from the data set WORK.SPS.
IOTE: The data set WORK.BLOCK has 3 observations and 3 variables.
IOTE: DATA statement used (Total process time):
     real time
                       0.01 seconds
     cpu time
                       0.01 seconds
'1
   data assign sps; set block;
    if _n = 1 then sps = 'Black Sandshell';
'2
     if n = 2 then sps = 'empty';
Έ
'4
      if _n_ = 3 then sps = 'empty';
'5
     run;
```

NOTE: There were 3 observations read from the data set WORK.BLOCK.

OTE:	The data set WOHK.AS	SIGN_SPS has 3 observations	anu 4 variabies.	
OTE:	DATA statement used	(Total process time):	,	11.244 V A
	real time	0.01 seconds	Log Book / Pages	
	cpu time (0.01 seconds	Eile Folder	
			Initials //w Date	
6 7 8	proc sort data≃assig by block; run;	n_sps; AEH-11-PSEUDO-02	PROOFED BY Initials: Date : Nut and REVIEWED BY August Initials: Date' August	
OTE:	There were 3 observa	tions read from the data se	t WORK.ASSIGN_SPS.	
		SIGN_SPS has 3 observations		
0TE:	PROCEDURE SORT used	(Total process time):		
	real time	0.01 seconds		
	cpu time	0.01 seconds		
		e se de la construcción de la const En esta de la construcción de la con		
9	proc print data= assig	gn_sps;		
0	title1 h≃1 'Effects o	f Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';	
1	title2 h=1 'juvenile r	mussels from seven differen	t unionid species ';	
2	title3 h=1 'AEH-11-PSU	UEDO-02';		
3	title4 h=1 'Random as:	signment of mussel species	to system';	:
4	run;			
		tions read from the data se (Total process time):	t WORK.ASSIGN_SPS.	
UTE		0.00 seconds		
		0 00 seconds		

30

Page 3 of \underline{H}

```
Study Number : AEH-11-PSUED0-02
  Study Director: Jim Luoma
  date created : 28MAR12 - JAL 5~
  Verified by: _____ (Date:____)
                                                      page of
  Random allocation of mussel species to system.sas
                                                                           AEH-11-PSEUDO-02
M 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
COTNOTE1 'Analysis performed by Jim Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
ptions /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
*Random assignment of mussel species to System*/
                                                                          2139
                                                          Log Book / Pages
                                                          File Folder,
ata sps;
                                                          Initials _ Kh
                                                                         Date TWOVIH
do block = 1 to 3 by 1;
 x = ranuni(-1);
                                                              PROOFED BY
                                                        Initiaisi ____ Date i____
REVIEWED BY
  output;
end;
                                                        Initialey____
                                                                   __ Date!
un;
                                                             Not needed
roc sort data=sps;
by x;
un;
ata block; set sps;
f block = 1 then blocka = 'System 1';
f block = 2 then blocka = 'System 2';
.f block = 3 then blocka = 'System 3'; run;
                                                               Page ______ of _____
.ata assign_sps; set block;
if _n_ = 1 then sps = 'Black Sandshell';
 if _n_ = 2 then sps = 'empty';
 if _n_ = 3 then sps = 'empty';
run;
                                                              Item Numbe
proc sort data=assign_sps;
by block;
un:
roc print data= assign_sps;
itle1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';
itle2 h=1 'juvenile mussels from seven different unionid species ';
itle3 h=1 'AEH-11-PSUEDO-02';
itle4 h=1 'Random assignment of mussel species to system';
un;
```

uvenile mussels from seven different unionid species EH-11-PSUEDD-02⁻ andom assignment of mussel species to system

5/2/1-
J4- AEH-11-PSEUDO-02

J

bs	block	х	blocka	sps
1	1	0.75336	System 1	Plain Pocketboo
2	2	0.36393	System 2	Blacksand shell
3	3	0.81421	System 3	empty

Z/45 Log Book/Pages Eile Folder 124 Ibitials /// Date Frievia

PROOFED Initials Date :. REVIEWED BY Initials, Ad needed KWW INSVIT

Item Number:

of 4 Page

malysis performed by Jim Luoma SAS version 9.2 13:52 02MAY12

```
auco oroacou i oemayre ora
    * Verified by: _____ (Date: _____)
9
                                                              page ____ of _
0
    * Random allocation of mussel species to system.sas
1
                                                              **********
                                                                             AEH-11-PSEUDO-02
2
    DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
3
    FOOTNOTE1 'Analysis performed by Jim Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
4
'ARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
5
    options /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
6
7
8
    /*Random assignment of mussel species to System*/
                                                                 Log Book / Pages 2/45
Eile Folder 12.4
9
                                                                Eile Folder
00 data sps;
                                                                                 Date 3Novi-
    do block = 1 to 3 by 1;
01
02
      x = ranuni(-1);
                                                                     PROOFED
                                                               Initials: Date :
REVIEWED BY
03
      output;
04
     end;
                                                               Initials: ____ Date'
05 run;
                                                                      Not reeded
OTE: The data set WORK.SPS has 3 observations and 2 variables.
OTE: DATA statement used (Total process time):
     real time
                       0.00 seconds
     cpu time
                        0.00 seconds
06 proc sort data=sps;
07
   by x;
08 run;
OTE: There were 3 observations read from the data set WORK.SPS.
OTE: The data set WORK.SPS has 3 observations and 2 variables.
OTE: PROCEDURE SORT used (Total process time):
     real time
                        0.00 seconds
                        0.00 seconds
     cpu time
                                                                         Page 2 of 4
09 data block; set sps;
10 if block = 1 then blocka = 'System 1';
11 if block = 2 then blocka = 'System 2';
12 if block = 3 then blocka = 'System 3'; run;
OTE: There were 3 observations read from the data set WORK, SPS.
OTE: The data set WORK.BLOCK has 3 observations and 3 variables.
OTE: DATA statement used (Total process time):
     real time
                        0.01 seconds
     cpu time
                        0.01 seconds
                      ******
                               13 data assign_sps; set block;
    if _n_ = 1 then sps = 'Blacksand shell';
14
    if n = 2 then sps = 'Plain Pocketbook';
15
      if _n_ = 3 then sps = 'empty';
16
17
    run;
OTE: There were 3 observations read from the data set WORK.BLOCK.
```

OTE: The data set WORK.ASSIGN_SPS has 3 observations and 4 variables.

OTE: DATA statement used (Total process time):

	real time	0.01 seconds		5 Y / 4
	cpu time	0.01 seconds	Log Book / Pages _ Z/45	
		AEH-11-PSEUDO-02	File Folder 12.4	
18	proc sort data≃ass	;ign_sps;	Pr.OUTEL IST	
19	by block;		Initials:Date :Not della	
20	run;		Initials: Date: Not we then the termination of termina	
OTE		ASSIGN_SPS has 3 o ed (Total process t	the data set WORK.ASSIGN_SPS. bservations and 4 variables.	
		na ann an Africa. Ta ann an Africa		
21	proc print data= as			
22	title1 h=1 'Effects	of Pseudomonas fl	uorescens (Pf-CL145A) to newly metamorph	osed';
23	title2 h=1 'juvenil	le mussels from sev	en different unionid species ';	
24	title3 h=1 'AEH-11-	•		
25	title4 h=1 'Random	assignment of muss	el species to system';	
26	run;			
	: There were 3 obser : PROCEDURE PRINT us		the data set WORK.ASSIGN_SPS. time):	

real time	0.01 seconds
cpu time	0.01 seconds

in

Page <u>3</u> of <u>4</u>

```
Study Number : AEH-11-PSUED0-02
  Study Director: Jim Luoma
  date created : 02May12 - JAL Ja-
  Verified by: _____ (Date:____)
                                                          page ____ of _
  Random allocation of mussel species to system.sas
                                                          **********/
                                                                                AEH-11-PSEUDO-02
M 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
OOTNOTE1 'Analysis performed by Jim Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
ptions /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
*Random assignment of mussel species to System*/
                                                                              2/45
                                                            Log Book / Pages
ata sps:
                                                            File Folder.
                                                                                   FNOVIL
                                                                             Date _
                                                            Initials . MW
do block = 1 to 3 by 1;
  x = ranuni(-1);
                                                                PROOFED B)
  output;
end;
                                                                        Date
                                                                NEVUENNED BY
un;
                                                           Late Distan
                                                                        Dist P
roc sort data=sps;
                                                                  Not needed
JERN 7 novi14
by x;
un;
ata block; set sps;
.f block = 1 then blocka = 'System 1';
.f block = 2 then blocka = 'System 2';
.f block = 3 then blocka = 'System 3'; run;
'ata assign_sps; set block;
if _n_ = 1 then sps = 'Blacksand shell';
                                                                          Item Number:
 if _n_ = 2 then sps = 'Plain Pocketbook';
  if _n_ = 3 then sps = 'empty';
run;
proc sort data=assign_sps;
                                                                          Page U
by block;
un;
roc print data= assign sps;
itle1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';
itle2 h=1 'juvenile mussels from seven different unionid species ';
itle3 h=1 'AEH-11-PSUED0-02';
itle4 h=1 'Random assignment of mussel species to system':
un:
```

. то поляд носоно рабооц 5/23/12 Jruvenile mussels from seven different unionid species EH-11-PSUED0-02 andom assignment of mussel species to system AEH-11-PSEUDO-02 2/49 block bs х blocka sps Log Book / Pages File Folder Initials 12.4 1 1 0.28107 System 1 Higgins eye 2 2 0.34405 System 2 empty 3 3 0.91434 System 3 empty

Date fnov ru PHOOFED BY Initials: Date: REVIEWED BY Initials: Date: Date: Act neelled WW 7WOV!

* ₁ -	

• · · · ·

Item Number:

Page of

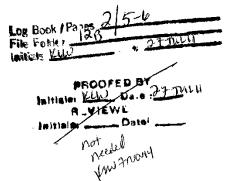
nalysis performed by Jim Luoma SAS version 9.2 07:10 23MAY12

40

2997 1-

* . .

```
* Verified by: _____ (Date:____)
5
                                                           page ____ of ____
    * Random allocation of mussel species to system.sas
3
          Ł
    DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
                                                                    AEH-11-PSEUDO-02
Ł
0
    FOOTNOTE1 'Analysis performed by Jim Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
/ARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
1
2
    options /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
3
                                                                            2/49
4
    /*Random assignment of mussel species to System*/
                                                            Log Book/Pages
5
                                                                        12A
                                                           File Folder
6
    data sps;
                                                           Initials YW
                                                                       Date Thovis
7
     do block = 1 to 3 by 1;
8
      x = ranuni(-1);
                                                                PROOFED BY
                                                           Initials: ____ Date :___
9
       output;
                                                                REVIEWED BY
:0
     end;
                                                           Initiala, Date
:1
    run;
                                                                   not necoled
                                                                    Yww ANOVE
OTE: The data set WORK.SPS has 3 observations and 2 variables.
OTE: DATA statement used (Total process time):
     real time
                 0.10 seconds
     cpu time
                       0.11 seconds
                                                       .
С.
2
    proc sort data=sps;
З
    by x;
4
    run;
OTE: There were 3 observations read from the data set WORK.SPS.
OTE: The data set WORK.SPS has 3 observations and 2 variables.
OTE: PROCEDURE SORT used (Total process time):
                                                                                 - 47
     real time
                      0.05 seconds
                                                                              C.
     cpu time
                       0.03 seconds
                                                                                  ۲i.,
                                                              Page 2
                                                                         of
5 data block; set sps;
6 if block = 1 then blocka = 'System 1';
    if block = 2 then blocka = 'System 2';
7
8
   if block = 3 then blocka = 'System 3'; run;
OTE: There were 3 observations read from the data set WORK.SPS.
OTE: The data set WORK.BLOCK has 3 observations and 3 variables.
OTE: DATA statement used (Total process time):
     real time
                       0.01 seconds
     cpu time
                       0.01 seconds
9
   data assign_sps; set block;
   if _n_ = 1 then sps = 'Higgins eye';
0
    if n = 2 then sps = 'empty';
1
2
      if _n_ = 3 then sps = 'empty';
3
     run:
```


OTE: There were 3 observations read from the data set WORK.BLOCK.

)TE: The data set WORK.ASSIGN_SPS has 3 observations and 4 variables.)TE: DATA statement used (Total process time): 2/49 0.01 seconds real time Log Book / Pages 0.01 seconds cpu time File Folder Date Truck Initials _ UNI PROOFED BY AEH-11-PSEUDO-02 proc sort data=assign_sps; Date .. 1 initials: _ REVIEWED BY 5 .by block; Date! 3 run; (nit)alsı . not reeded YWW ANOVIH DTE: There were 3 observations read from the data set WORK.ASSIGN_SPS. DTE: The data set WORK.ASSIGN_SPS has 3 observations and 4 variables. DTE: PROCEDURE SORT used (Total process time): 0.00 seconds real time 0.00 seconds cpu time proc print data= assign_sps; 7 title1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed'; 8 9 title2 h=1 'juvenile mussels from seven different unionid species '; 0 title3 h=1 'AEH-11-PSUED0-02'; 1 title4 h=1 'Random assignment of mussel species to system'; 2 run; . OTE: There were 3 observations read from the data set WORK ASSIGN_SPS. OTE: PROCEDURE PRINT used (Total process time): 0.07 seconds real time 0.07 seconds cpu time page 3 of -

```
Study Number : AEH-11-PSUED0-02
  Study Director: Jim Luoma
  date created : 23May12 - JAL JA
  Verified by: _____ (Date:____
                                                          page ____ of _
  Random allocation of mussel species to system.sas
                                                                          AEH-11-PSEUDO-02
                                                            ********
M 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
'OOTNOTE1 'Analysis performed by Jim Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
ptions /*ls=85 ps=40 formdlim='-' */ pageno = 1 nocenter nodate nosource2;
                                                                                2/4
*Random assignment of mussel species to System*/
                                                               Log Book / Pages
                                                               File Folder
                                                                                Date Thorse
                                                               Initials Im
lata sps;
do block = 1 \text{ to } 3 \text{ by } 1;
                                                            PROOFED DY
  x = ranuni(-1);
                                                                          Date :
                                                             Initialas -
  output;
                                                                  REVIEWED BY
end;
                                                                          Date
                                                              Initials:
                                                                    Not needed
un;
                                                                      Vm grovi
roc sort data=sps;
by x;
un;
                                                                               ٠n.
ata block; set sps;
f block = 1 then blocka = 'System 1';
.f block = 2 then blocka = 'System 2';
f block = 3 then blocka = 'System 3'; run;
ata assign sps; set block;
                                                                     Item Number: +
if n = 1 then sps = 'Higgins eye';
 if _n_ = 2 then sps = 'empty';
 if _n_ = 3 then sps = 'empty';
                                                                             4 of 4
                                                                     Page
run;
proc sort data=assign_sps;
                                                                               proc s
by block;
un;
roc print data= assign_sps;
itle1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';
itle2 h=1 'juvenile mussels from seven different unionid species ';
itle3 h=1 'AEH-11-PSUED0-02';
itle4 h=1 'Random assignment of mussel species to system';
un;
```

AEH-11-PSEUD0-02

1220 start PLM 11JULII 1420 End PLM 11JULII

Item Number: 2

Pg ____ of <u>7</u>____

Analysis performed by M. Gaikowski SAS version 9,2 15:39 07JUL11 MM

AEH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels Random assignment of Mucket to test tanks

Obs	round	block	tank	x	tankn	
4		0	10	0.04055	0.010	Start 1215 ISTULII PLM
1 2	1	2 2	2	0.04255 0.06564	2B10 2B2	End 1429 13 JULII FLM
2	1	1	10	0.14967	202 2A10	Eng iter is such ten
4	1	1	10	0.14907	2A10 2A1	
5	1	1	12	0.15927	2A1 2A12	
6	1	1	6	0.19244	-2A6	
7	1	1	5	0.24452	2A5	
8	1	2	8	0.28944	288	
9	1	1	3	0.40027	2A3	1
10	1	2	7	0.41455	287	2/5-6
11	1	2	4	0.47403	.284	Log Book / Pages d/ 5-0 File Folder Lab 27 JWAI
12	1	2	11	0.47609	2B11	File Polder 120 27 MLat
13	1	1	2	0.47895	2A2	Initials King e
14	1	2	6	0.51826	2B6	
15	1	1	8	0.61607	2A8	PROOFED BY
16	1	1	7	0.66369	· 2A7	Initiale: KIW Dare: 27 MULI
17	1	2	1	0.67986	2B1	H_VIEWE ;)
18	1	2	3	0.69606	283	Initiality
19	1	2	9	0,78960	289	
20	1	2	5	0.79262	2B5	not deal not deal nor growing
21	1	1 .	11	0.83901	2A11	New growing
22	1	1	4	0.85285	2A4	'W
23	1	1	9	0.95029	2A9	Ϋ́Υ.
24	1	2	12	0,96452	2B12	
25	2	2	7	0.01140	2B7	
26	2	1	12	0.01204	2A12	
27	2	1	4	0.07047	2A4	
28	2	1	11	0.13815	2A11	
29	2	1	3	0.17294	§ 2A3	
30	2	2	4	0,26088	2B4	
31	2	1	6	0.28092	2A6:	
32	2	1	9	0,28404	2A9	
33	2	2 1	9 5	0.38778	289	
34 35	2	2	5 12	0.42228	2A5	
35 36	2	2	2	0.42989 0.68228	2B12 2A2	
30	2	2	6	0.69061	.286	
38	2	1	7	0.74059	2A7	
39	2	2	10	0.75831	2B10	
40	2	1	8	0.79831	2A8	
41	2	2	5	0.80550	2B5	
42	2	1	1	0.82869	2A1	
43	2	2	3	0.86239	2B3	
44	2	2	2	0,88286	282	
45	2	1	10	0.89441	2A10	
46	2	2	8	0.90497	288	
47	2	2	11	0.96685	2811	
48	2	2	1	0.98446	2B1	Pg <u></u> of <u></u>

---2

g <u>2</u> of <u>7</u>

Analysis performed by M. Gaikowski SAS version 9.2 15:39 07JUL11 $\mu M M$

```
AEH-11-PSEUDD-D2
    * date created : 07Jul11 - MPG
     * Verified by: _____ (Date:____
                                       )
                                                          page ____ of _
    * Random allocation of mussels to tank.test 2.sas
    ***************
    DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
    FOOTNOTE1 'Analysis performed by M. Gaikowski SAS version ' &SYSVER &SYSTIME &SYSDATE;
WARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text,
    options ls=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
    /*Random distribution of mussels to experimental tanks*/
    /* tank 1 to 24 = tank A1 to A12 (1-12), tank B1 to B12 (13-24)
       round = distribution rounds 1 to 2, place one aliquot of mussel per tank per round */
    102: *********/
    /*Mussel species: Hickory nut*/
                                                      Log Book / Par
    data mussel:
                                                      File Folder
                                                                               Ww moving 12t
    do round = 1 to 2 by 1;
                                                                                チョルルロ
     do block = 1 to 2 by 1;
                                                      Initials 1
      do tank = 1 to 12 by 1;
      x = ranuni(-1);
                                                                    PROOFF
      output;
                                                             Softialar.
      end:
                                                                    REEKEWI
      end;
                                                                           Detes
     end;
                                                                      not led north
114 run:
NOTE: The data set WORK.MUSSEL has 48 observations and 4 variables.
NOTE: DATA statement used (Total process time):
     real time
                       0.00 seconds
     cpu time
                        0.00 seconds
115 data musseldist; set mussel;
116 if block = 1 and tank = 1 then tankn = ' 1A1';
      if block = 1 and tank = 2 then tankn = ' 1A2';
       if block = 1 and tank = 3 then tankn = ' 1A3';
       if block = 1 and tank = 4 then tankn = ' 1A4';
         if block = 1 and tank = 5 then tankn = ' 1A5';
          if block = 1 and tank = 6 then tankn = ' 1A6';
   if block = 1 and tank = 7 then tankn = ' 1A7';
      if block = 1 and tank = 8 then tankn = ' 1A8';
       if block = 1 and tank = 9 then tankn = ' 1A9';
        if block = 1 and tank = 10 then tankn = '1A10';
         if block = 1 and tank = 11 then tankn = '1A11'
         if block = 1 and tank = 12 then tankn = '1A12';
     if block = 2 and tank = 1 then tankn = ' 1B1';
      if block = 2 and tank = 2 then tankn = ' 1B2';
       if block = 2 and tank = 3 then tankn = 183;
       if block = 2 and tank = 4 then tankn = ' 1B4';
        if block = 2 and tank = 5 then tankn = ' 1B5';
                                                                        Pg 83 of 7
          if block = 2 and tank = 6 then tankn = ' 1B6';
     if block = 2 and tank = 7 then tankn = ' 1B7';
      if block = 2 and tank = 8 then tankn = ' 1B8';
       if block = 2 and tank = 9 then tankn = ' 1B9';
        if block = 2 and tank = 10 then tankn = '1B10';
```

90

91 92

93

94

95

96 97 98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

117 118

119 120

121

122

123

124 125

126

127

128

129

130

131

132

133

134

135

136 137

138

139

if block = 2 and tank = 11 then tankn = '1Bi1'; if block = 2 and tank = 12 then tankn = '1B12'; run;

```
AER-11-PSEUDO-02
```

```
NOTE: There were 48 observations read from the data set WORK.MUSSEL.
NOTE: The data set WORK.MUSSELDIST has 48 observations and 5 variables.
NOTE: DATA statement used (Total process time):
      real time
                        0.06 seconds
      opu time
                        0.01 seconds
140 proc sort data= musseldist;
     by round x;
141
142
     run;
NOTE: There were 48 observations read from the data set WORK.MUSSELDIST.
NOTE: The data set WORK.MUSSELDIST has 48 observations and 5 variables.
NOTE: PROCEDURE SORT used (Total process time):
     real time
                        0.01 seconds
      cpu time
                        0.01 seconds
143 proc print data = musseldist;
144 title1 h=1 'AEH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels';
145 title2 h=1 'Random assignment of Hickory nut to test tanks';
146 run;
NOTE: There were 48 observations read from the data set WORK.MUSSELDIST.
NOTE: PROCEDURE PRINT used (Total process time):
      real time
                        0.00 seconds
      opu time
                        0.00 seconds
147
148
   148! *********/
149
150 /*Mussel species: Mucket*/
                                                    Log Book / Fu
151
    data mussel;
                                                                             27-1W/1
                                                    File Folder
    do round = 1 to 2 by 1;
152
                                                    Initials 14
153
    do block = 1 to 2 by 1;
      do tank = 1 to 12 by 1;
154
                                                                   PROOFED
155
       x = ranuni(-1);
                                                             Initiale
                                                                    KIN 5. 21 MUII
156
       output;
                                                                   BEVIEWE
157
      end;
                                                                           Datei
158
      end;
                                                                         not
159
     end;
                                                                        needed
160 run;
                                                                           mony
NOTE: The data set WORK.MUSSEL has 48 observations and 4 variables.
NOTE: DATA statement used (Total process time):
     real time
                       0.01 seconds
     cpu time
                        0.01 seconds
161 data musseldist; set mussel;
    if block = 1 and tank = 1 then tankn = ' 2A1';
162
163
      if block = 1 and tank = 2 then tankn = ' 2A2';
       if block = 1 and tank = 3 then tankn = ' 2A3';
164
165
        if block = 1 and tank = 4 then tankn = ' 2A4';
                                                                  Pg 4 of 7
        if block = 1 and tank = 5 then tankn = ' 2A5';
166
167
          if block = 1 and tank = 6 then tankn = ' 2A6';
168 if block = 1 and tank = 7 then tankn = ' 2A7';
169
    if block = 1 and tank = 8 then tankn = ' 2A8';
```

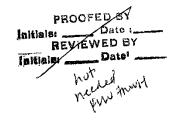
if block = 1 and tank = 9 then tankn = ' 2A9'; 171 if block = 1 and tank = 10 then tankn = '2A10'; 172 if block = 1 and tank = 11 then tankn = '2A11'; if block = 1 and tank = 12 then tankn = '2A12'; 173 174 if block = 2 and tank = 1 then tankn = ' 2B('; if block = 2 and tank = 2 then tankn = ' 282'; 175 176 if block = 2 and tank = 3 then tankn = ' 2B3'; Book / F 177 if block = 2 and tank = 4 then tankn = 2B4'; File Pol-178 if block = 2 and tank = 5 then tankn = ' 2B5'; IT TULI initiale 14m 179 if block = 2 and tank = 6 then tankn = ' 2B6'; 180 if block = 2 and tank = 7 then tankn = '2B7'; if block = 2 and tank = 8 then tankn = ' 2BB'; 181 PROOFED DY 182 if block = 2 and tank = 9 then tankn = ' 2B9'; 27 DALI if block = 2 and tank = 10 then tankn = '2B10'; 183 REVIE 184 if block = 2 and tank = 11 then tankn = '2B11'; " Datei 185 if block = 2 and tank = 12 then tankn = '2B12'; 186 run; not needed NOTE: There were 48 observations read from the data set WORK.MUSSEL. ymi Anon NOTE: The data set WORK.MUSSELDIST has 48 observations and 5 variables. NOTE: DATA statement used (Total process time): real time 0.03 seconds opu time 0.03 seconds 187 proc sort data= musseldist; by round x; 188 189 run; NOTE: There were 48 observations read from the data set WORK.MUSSELDIST. NOTE: The data set WORK.MUSSELDIST has 48 observations and 5 variables. NOTE: PROCEDURE SORT used (Total process time): real time 0.00 seconds opu time 0.00 seconds 190 proc print data = musseldist; 191 title1 h=1 'AEH-11-PSUED0-02: Effects of Pf-CL145A to juvenile mussels'; 192 title2 h=1 'Random assignment of Mucket to test tanks'; 193 run; NOTE: There were 48 observations read from the data set WORK.MUSSELDIST. NOTE: PROCEDURE PRINT used (Total process time): real time 0.00 seconds cpu time 0.00 seconds

 $Pg_5 of_7$

```
*
  Study Number : AEH-11-PSUEDO-02
* Study Director: Jim Luoma
* date created : 07Jul11 - MPG MA
* Verified by: _____ (Date:___
                                                    page ____ of ____
* Random allocation of mussels to tank.test 2.sas
DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
FOOTNOTE: 'Analysis performed by M. Gaikowski SAS version ' &SYSVER &SYSTIME &SYSDATE:
options 1s=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
/*Random distribution of mussels to experimental tanks*/
/* tank 1 to 24 = tank A1 to A12 (1-12), tank B1 to B12 (13-24)
  round = distribution rounds 1 to 2, place one aliquot of mussel per tank per round */
/*Mussel species: Hickory nut*/
data mussel;
 do round = 1 to 2 by 1;
                                                Log Booi /
 do block = 1 to 2 by 1;
                                                 File Folds
 do tank = 1 to 12 by 1;
                                                 initials
  x = ranuni(-1);
  output;
 end;
 end;
                                                                POOFED BY
 end;
                                                         Initiatas Kew Das
                                                                                 MU
run;
                                                               H_WIEWE:
data musseldist; set mussel;
                                                                      - Datel
if block = 1 and tank = 1 then tankn = ' 1A1';
                                                                  not
 if block = 1 and tank = 2 then tankn = ' 1A2';
                                                                 needed
  if block = 1 and tank = 3 then tankn = ' 1A3';
                                                                    Ŵ
   if block = 1 and tank = 4 then tankn = ' 1A4';
                                                                     mout
    if block = 1 and tank = 5 then tankn = ' 1A5'
     if block = 1 and tank = 6 then tankn = ' 1A6';
if block = 1 and tank = 7 then tankn = ' 1A7';
 if block = 1 and tank = 8 then tankn = ' 1A8':
  if block = 1 and tank = 9 then tankn = ' 1A9';
   if block = 1 and tank = 10 then tankn = '1A10';
    if block = 1 and tank = 11 then tankn = '1A11';
     if block = 1 and tank = 12 then tankn = '1A12';
 if block = 2 and tank = 1 then tankn = ' 1B1';
 if block = 2 and tank = 2 then tankn = ' 1B2':
  if block = 2 and tank = 3 then tankh = '\frac{1}{183}';
   if block = 2 and tank = 4 then tankn = ' 1B4';
    if block = 2 and tank = 5 then tankn = ' 1B5';
     if block = 2 and tank = 6 then tankn = ' 186';
 if block = 2 and tank = 7 then tankn = ' 1B7';
 if block = 2 and tank = 8 then tankn = ' 188';
  if block = 2 and tank = 9 then tankn = ' 189';
   if block = 2 and tank = 10 then tankn = '1B10';
    if block = 2 and tank = 11 then tankn = '1Bi1';
                                                                      Pg \mid of 7
     if block = 2 and tank = 12 then tankn = '1812'; run;
proc sort data= musseldist;
by round x;
run;
proc print data = musseldist;
title1 h=1 'AEH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels';
title2 h=1 'Random assignment of Hickory nut to test tanks';
```

```
run;
/*Mussel species; Mucket*/
data mussel:
 do round = 1 to 2 by 1;
 do block = 1 to 2 by 1;
                                                      Log Book / Pa
 do tank = 1 to 12 by 1;
                                                     File Folder
  x = ranuni(-1);
                                                     Witials KW
                                                                                 mili
                                                                         Usie
   output;
  end;
 end;
 end;
run;
                                                                     PROOFED BI
data musseldist; sot mussel;
                                                              Inttinine 1
 if block = 1 and tank = 1 then tankn = ' 2At';
                                                                            < D. e
                                                                                       11/41
                                                                    REVIEWE',
 if block = 1 and tank = 2 then tankn = ' 2A2';
   if block = 1 and tank = 3 then tankn = ' 2A3':
                                                                            Dater
                                                                      not
   if block = 1 and tank = 4 then tankn = ' 2A4';
                                                                      needed
    if block = 1 and tank = 5 then tankn = ' 2A5';
                                                                        in grong
     if block = 1 and tank = 6 then tankn = ' 2A6';
if block = 1 and tank = 7 then tankn = ' 2A7';
 if block = 1 and tank = 8 then tankn = ' 2A8';
  if block = 1 and tank = 9 then tankn = ' 2A9';
   if block = 1 and tank = 10 then tankn = '2A10';
    if block = 1 and tank = 11 then tankn = '2A11';
     if block = 1 and tank = 12 then tankn = '2A12';
 if block = 2 and tank = 1 then tankn = ' 2B1';
 if block = 2 and tank = 2 then tankn = ' 2B2';
  if block = 2 and tank = 3 then tankn = ^{\prime} 2B3';
   if block = 2 and tank = 4 then tankn = ' 2B4';
    if block = 2 and tank = 5 then tankn = ' 285';
     if block = 2 and tank = 6 then tankn = ' 2B6';
 if block = 2 and tank = 7 then tankn = ' 2B7';
 if block = 2 and tank = 8 then tankn = '288';
  if block = 2 and tank = 9 then tankn = ' 289';
   if block = 2 and tank = 10 then tankn = '2B10';
    if block = 2 and tank = 11 then tankn = '2B11';
     if block = 2 and tank = 12 then tankn = '2B12';
   run;
proc sort data= musseldist;
by round x;
                                                                            Item Number:
run;
proc print data = musseldist;
title1 h=1 'AEH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels';
title2 h=1 'Random assignment of Mucket to test tanks';
run;
```

MA OFINIII


Pa7 of 7

AEH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels Random assignment of Black sandshell to test tanks

AEH-11-PSEUDO-02

1

0bs	round	block	tank	x	tankn
1	1	1	8	0.08819	1A8
2	1	1	7	0,13317	1A7
3	1	2	8	0.26066	188
4		2	1	0.26783	1B1
5	1	1	10	0.27090	1A10
6	1	2	4	0.27969	1B4
7	1	1	9	0,38706	1A9
8	1	1	12	0.38986	1A12
9	1	2	12	0.41670	1B12
10	1	2	2	0.42899	1B2
11	1	1	2	0.46989	1A2
12	1	1	5	0.49699	1A5
13	1	1	4	0.53649	1A4
14	· 1	1	1	0.55111	1A1
15	1	1	11	0.62407	1A11
16	1	2	11	0.63204	1B11
17	1	2	7	0.64692	1B7
18	1	1	6	0.67828	1 A6
19	1	2	6	0.68682	1B6
20	1	2	9	0.79520	1B9
21	1	2	10	0.81684	1B10
22	1	2	3	0.83026	1B3
23	1	2	5	0.89373	1B5
24	1	1	3 ₀	0.993923	1A3
25	2	2	5	0.01817	1B5
26	2	1	2	0.05008	1A2
27	2	2	8	0.10063	1 B 8
28	2	2	2	0.16062	1B2
29	2	1	12	0.17017	1A12
30	2	2	6	0.24261	1B6
31	2	1	1	0.24885	1 A1
32	2	2	10	0.25574	1B10
33	2	1	11	0.25791	1A11
34	2	1	8	0.40757	1 A 8
35	2	1	4	0.41288	1A4
36	2	2	9	0.41439	1B9
37	2	2	7	0.45274	1B7
38	2	1	10	0.45628	1A10
39	2	1	6	0.46110	1A6
40	2	2	1	0.63965	1B1
41	2	1	З	0.74429	1 A3
42	2	1	7	0.75054	1A7
43	2	1	5	0.75628	1A5
44	2	2	4	0.76253	1B4
45	2	2	3	0.82121	1B3
46	2	2	11	0.84577	1B11
47	2	1	9	0.94941	1A9

3 Item Number:

Page _____ of ____

48 2 2 12 0.96946 1B12

> JAL 08120.2011

Analysis performed by James Luoma SAS version 9.2 10:21 08DEC11

.

AEH-11-PSEUDO-02

AEH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels Random assignment of empty to test tanks

Log Book / Pages 7/25,26 File Folder 12 p Iaitials 4W Date 3 2 Date Frevil

Initial	1	tankn	x	tank	block	round	Obs
Initial		2A4	0.00916	4	1	1	1
		2A9	0.02553	9	1,	1	2
Initial		2B9	0.03093	9	2		3
1		2A1	0.03267,	ر به بروی او این از در از	1	а 1 ман ал	4
		2B6	0.07213	6	2	1	5
		2B3	0.07288	∖ з	2	1	6
		2A8	0.11013	8	1	1	7
		2A5	0.13931	5	1	1	8
		2A7	0.17545	7	1	1	9
		2A12	0.21888	12	1	1	10
		2B1	0.33305	1 \	2	1	11
		2B5	0.40190	5	2	1	12
		2A3	0.47870	З	1	1	13
		2B4	Q. 51232	4	2	1	14
		2A10	0\52675	10	1	1	15
		2B7	0.\$4399	7	2	1	16
	•	2A11	0.5,6970	11	1	1	17
Page 2		2B10	0.62027	10	2	1	18
Faye		2B12	0.62410	. / 12 .	2	1	19
		2B11	0.718ရဲဒ	11	2	1 ~	20
		2A6	0.74915	6	1	1	21
		2B2	0.77920	2	2	1	22
		2A2	0.80916	2	1	1	23
		2B8	0.96740 \	8	2	1	24
		2A3	.0.01142 [\]	3	1	2	25
		\ 2A9	0.02725			2	26
		∖ 2 B4	0.06752	4	2	2	27
		\2B6	0.10196	6	2	2	28
		2A12	0.11772	12	1	2	29
		2B(11	0.13761	11	2	2	30
		2À8	0.13934	8	1	2	31
		2B\S	0,24154	3	2	2	32
		2B12	0.26603	12	2	2	33
	1	2A11 \	0.32967	11	1	2	34
	\	2A5 \	0.41977	5	1	2	35
		2B8	0.42640	8	2	2	36
12-12-11	\ .	2A1	0.44353	1	1	2	37
. Were	$\sum f$	2 85	0.47186	5	2	2	38
12-12-H	i Mat	282	0.50313	2	2	2	39
Sur Sur		2B1	0.62839	1	2	2	40
		2B7	0.66888	7	2	2	41

PROOFED BY BEVIEWED BY initials: . Initials Date! not needed growing

Page $\underline{\partial}$ of \underline{f}

42	2	2	. 9	0.67250	2B9 🐝	(m)
43	2	1	4	0.69179	2A4	
44	2	1	6	0.71780	2A6 ^{***}	₹
45	2	1	7	0.73718	2A7	- #
46	2	1	10	0.74096	2A10	*
47	2	1	2	0.82592	2A2 *	[*] 5 ^{Αν} AEH-11-PSEUDO-02
48	2	2	10	0.90172	2B10 *	
10	-	-	10	0.00172	2010	Log Book / Pages 2/25-26 File Folder 12 B
					4. 10	Initials 12 Date Thorn
					¥.	42 ·
					4×.	PROOFED BY
Analy	sis perfo	ormed by J	ames Luc	ma SAS vers	sion 9∛2	10 21 08DEC11 REVIEWED BY
· ···-/					4	Initials Date'
						the best
						No view Anove
AEH-1	1-PSUEDO	02: Effec	ts of Pf	-CL145A to	iuvenile	
				Tento test t		mussels 3
nanaoi	a assigni		washbo	1 -	Luniko	
0bs	round	block	tank	X	tankn	O species was not
000	round	SLOOK	Lank	^	r_{2}	
1	1	1.	12	0.04789	301048	Transfer P, Collected to
2	1	2	2	0.12942	(3B2)*	Trender reflect Mashboard sindenibs.
3	1	1	8	0.12342		
4	1	1	2	0.14843	€3A8≉ •3A2★	Re-domination is correct
5	1	1	7	0.14843	3A7	
6	1	2	, 9	0.26666		Species should be Washbourd
7	1	2	3	0.20000	(3B9)	·
8	-	2	1	0.39827	(3B3)	not Higgins eye.
9	1	2	10	0.39827	(3B1)**	12-8-11 JA-
10	1	2	7	0.42371	©3B7	12-8-11 512
11		2	6			
12	4	2	4	0.45744 0.48182	(3B6 🗰	
13	4	1	4		(BA49)	@ Tente # was not correctly identified the actual feals #'s should
14	4	1	-	0.51423	(3A1)	DI 11. HE Was not
15	1	1	11	0.51534 0.66399	(3A1199)	Conterti IPIT.
	1		9		(3A9 👽	the John Villed In
16 17	1	2	8 4	0.67415	(3B8 🗐	
18	1	2		0.74495	(3B4++++)	acked Kight the should
	1 4	-	5	0.78163	3A5	
19	-	1	10	0.78260	3A10	station 2 not a S.
20	1	2	11	0.80523		Start William concert
21	1	1 2	Эб	_ာ ပို. 8200 3	(3A6***	other wish They st
22	1			0.83151	3B12	start with a 2 not a 3. offer was they are correct 12-12-11 Ja-
23	1	2	5	0.91007	(3B5)	12-12-11 51-
24	1	1	3	0.96347	(3A3er)	Transfer 2
25	2	1	10	0.02564	3A1000	
26	2	1	12	0.06528	3A12	
27	2	1	5	0.08325	3A5	· · · ·
28	2	1	9	0.10508	(3A9)	. 2 . 7
29 20	2	1	3	0.27856	3A3	Page of
30	2	2	4	0.37252	3B4	
31	2	1	11	0.40144	3A11.	
32	2	2	11	0.42944	3B11	
33	2	2	10	0.54770	3B10 🛤	
34 05	2	2	12	0.56260	3B12***	
35	2	1	2	0.60176	👸 3A2 🕹	

36	2	2	1	0.61713	BBI	Log Book / Pages 2/25-26
37 °	2 `	1	1	0.63820	BAT	File Folder 12.13
38	2	2	З	0.66187	(3B3	Initials I'w Date INDVIA
39	2	1	7	0.72381	3A7	PPOOFEE DE
40	2	2	8	0.75218	(3B8 📲	PROOFED BY
41	2	2	2	0.84564	€3B2-€	BEVIEWED BY
42	2	1	8	0.87111	GA8	Initials: Date
43	2	2	7	0.88503	SB7	
44	2	2	5	0.92554	83B5	needed from 4
45	2	2	9	0.93060	(3B9)	1.
46	2	2	6	0.96131	(3B6-	
47	2	. 1	4	0.97070	13A4 3	
48	2	1	: 6	0.97450	(BA6	Transfer 3 ***

Analysis performed by James Luoma SAS version 9.2 10:21 08DEC11

an asi_pra а (<u>-</u> _ an di an the state of $\mathbb{R}^{m} \oplus \mathbb{R}$ ъ. с. с. <u>т</u> .9 an e **** e., 1 1.1 4 . 1944 - 1944 1949 - 1944 1.5.1 e e a 👘 👌 $\mathrm{d} \mathbf{u}_{\mathbf{k}}^{(1)} = \mathrm{d} \mathbf{v}_{\mathbf{k}}^{(1)}$ $\mathbf{c}_{\mathrm{spt}} = \underline{c}$ e. . . 8 **С**. 4 . 1 900 ¹¹ ۲., • • • 1.1 e (r. . Ar Color ¥. $t < \zeta$ 4 • •

. ofF Page

AEH-11-PSEUDO-02

.

178

÷

Ē,

```
• • • •
   Study Number ; AEH-11-PSUED0-02
   Study Director: Jim Luoma
                                           AEH-11-PSEUDO-02
   date created : O8Dec11 - JAL
* Verified by:
                   (Date:
                                      )
                                                          page ____ of ____
* Random allocation of glochidia to tank.sas
                                                                St og New W
                                   *********
DM 'LOG; CLEAR; OUTPUT; CLEAR; '; * CLEAR LOG AND OUTPUT;
FOOTNOTE1 'Analysis performed by James Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
options ls=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
/*Random distribution of mussels to experimental tanks*/
/* tank 1 to 18 = tank A1 to A6 (1-6), tank B1 to B6 (7-12), tank C1 to C6 (13-18)
   round = distribution rounds 1 to 2, place one aliquot of glochidia per tank per round */
                         *******************************
                                                                             2/25-26
                                                             Log Book / Pages
/*Mussel species: Black sandshell*/
                                                             Eile Folder
data juvenile;
                                                                            Date Invi
                                                             Initials M
 do round = 1 to 2 by 1;
 do block = 1 \text{ to } 2 \text{ by } 1;
                                                                  PROOFED BX
                                                                       __ Pore :_
 do tank = 1 to 12 by 1;
                                                            Initiais: .
                                                                  REVIEWED BY
  x = ranuni(-1);
                                                                        _ Date' .
                                                             Initials.
  output;
                                                                     not
                                                                       read
 end;
                                                                         w
 end;
end;
run;
data juveniledist; set juvenile;
if block = 1 and tank = 1 then tankn = ' 1A1';
 if block = 1 and tank = 2 then tankn = ' 1A2';
   if block = 1 and tank = 3 then tankn = ' 1A3';
    if block = 1 and tank = 4 then tankn = ' 1A4';
     if block = 1 and tank = 5 then tankn = ' 1A5';
     if block = 1 and tank = 6 then tankn = ' 1A6':
if block = 1 and tank = 7 then tankn = ' 1A7':
 if block = 1 and tank = 8 then tankn = ' 1A8':
   if block = 1 and tank = 9 then tankn = ' 1A9';
   if block = 1 and tank = 10 then tankn = '1A10';
     if block = 1 and tank = 11 then tankn = '1A11';
      if block = 1 and tank = 12 then tankn = '1A12';
if block = 2 and tank = 1 then tankn = ' 1B1';
                                                                Page 5 of 7
 if block = 2 and tank = 2 then tankn = ' 1B2';
  if block = 2 and tank = 3 then tankn = ' 1B3';
   if block = 2 and tank = 4 then tankn = ' 1B4';
     if block = 2 and tank = 5 then tankn = ' 185';
     if block = 2 and tank = 6 then tankn = ' 1B6';
if block = 2 and tank = 7 then tankn = ' 1B7';
 if block = 2 and tank = 8 then tankn = ' 1B8';
  if block = 2 and tank = 9 then tankn = ' 1B9';
   if block = 2 and tank = 10 then tankn = '1B10';
    if block = 2 and tank = 11 then tankn = '1B11';
     if block = 2 and tank = 12 then tankn' = '1B12'; run;
```

```
179
```

```
proc sort data= juveniledist;
 by round x_{i}
                                                         ボー
 run;
proc print data = juveniledist;
title1 h=1 'AEH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels';
                                                                              AEH-11-PSEUDO-02
title2 h=1 'Random assignment of Black sandshell to test tanks';
run;
                                                                  Log Book / Pages 2/25-26
/*Mussel species: washboard*/
                                                                   File Folder __
                                                                                    Date 2 NOVI
data juvenile;
                                                                   Initials 19
 do round = 1 to 2 by 1;
                                                                        PROOFED
 do block = 1 \text{ to } 2 \text{ by } 1;
                                                                             Date :
                                                                  Initials:
 do tank = 1 to 12 by 1;
                                                                        REVIEWED 8
  x = ranuni(-1);
                                                                              _ Date'
                                                                  Inițiolei ....
  output;
                                                                        not
                                                                       not necked
Km Inorly
 end;
 end;
end;
run;
data juveniledist; set juvenile;
if block = 1 and tank = 1 then tankn = ' 2A1';
 if block = 1 and tank = 2 then tankn = ' 2A2';
   if block = 1 and tank = 3 then tankn = '2A3';
    if block = 1 and tank = 4 then tankn = ' 2A4';
     if block = 1 and tank = 5 then tankn = ' 2A5';
      if block = 1 and tank = 6 then tankn = ' 2A6';
if block = 1 and tank = 7 then tankn = ' 2A7';
 if block = 1 and tank = 8 then tankn = ' 2A8';
   if block = 1 and tank = 9 then tankn = ' 2A9';
    if block = 1 and tank = 10 then tankn = '2A10';
     if block = 1 and tank = 11 then tankn = '2A11';
      if block = 1 and tank = 12 then tankn = '2A12';
 if block = 2 and tank = 1 then tankn = '2B1';
 if block = 2 and tank = 2 then tankn = ' 2B2';
  if block = 2 and tank = 3 then tankn = ' 2B3';
   if block = 2 and tank = 4 then tankn = ' 2B4';
     if block = 2 and tank = 5 then tankn = ' 2B5';
      if block = 2 and tank = 6 then tankn = ' 2B6';
 if block = 2 and tank = 7 then tankn = ' 2B7';
 if block = 2 and tank = 8 then tankn = ' 2B8';
                                                                    Page ______ of _____
   if block = 2 and tank = 9 then tankn = ' 2B9';
    if block = 2 and tank = 10 then tankn = '2B10';
     if block = 2 and tank = 11 then tankn = '2B11';
      if block = 2 and tank = 12 then tankn = '2B12';
    run;
proc sort data= juveniledist;
by round x;
run;
proc print data = juveniledist;
title1 h=1 'AEH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels';
title2 h=1 'Bandom assignment of empty to test tanks';
run;
```

```
/*********************
                                                                         **********************
/*Mussel species: Higgins eve*/
                                                 4
data glochidia;
 do round = 1 to 2 by 1;
                                                                        2125-21
                                                        Log Book / Pages
 do block = 1 to 2 by 1;
                                                        File Folder,
  do tank = 1 to 12 by 1;
                                                        Initials Vw
                                                                         Dale FNOUL
   x = ranuni(-1);
                             AEH-11-PSEUDO-02
                                                              PROOFED BY
   output;
                                                                   .... D3/E
                                                        Initials: .
  end;
                                                             REVIEWED b
  end;
                                                                    _ Date<sup>1</sup>
                                                        iaitiais:
 end;
                                                                  Meredial
New 2 month
run;
data glochidiadist; set glochidia;
 if block = 1 and tank = 1 then tankn = ' 3A1';
  if block = 1 and tank = 2 then tankn = ' 3A2';
   if block = 1 and tank = 3 then tankn = ' 3A3';
    if block = 1 and tank = 4 then tankn = ' 3A4';
     if block = 1 and tank = 5 then tankn = ' 3A5';
      if block = 1 and tank = 6 then tankn = ' 3A6';
if block = 1 and tank = 7 then tankn = ' 3A7':
  if block = 1 and tank = 8 then tankn = ' 3A8';
   if block = 1 and tank = 9 then tankn = ' 3A9';
    if block = 1 and tank = 10 then tankn = '3A10';
     if block = 1 and tank = 11 then tankn = '3A11';
      if block = 1 and tank = 12 then tankn = '3A12';
 if block = 2 and tank = 1 then tankn = ' 3B1';
  if block = 2 and tank = 2 then tankn = ' 3B2';
   if block = 2 and tank = 3 then tankn = ' 3B3';
    if block = 2 and tank = 4 then tankn = ' 3B4';
     if block = 2 and tank = 5 then tankn = ' 3B5';
      if block = 2 and tank = 6 then tankn = ' 3B6';
                                                             Item Number: \underline{5}
 if block = 2 and tank = 7 then tankn = ' 3B7';
  if block = 2 and tank = 8 then tankn = ' 3B8':
  if block = 2 and tank = 9 then tankn = ' 3B9';
    if block = 2 and tank = 10 then tankn = '3B10';
     if block = 2 and tank = 11 then tankn = '3B11';
                                                             Page
      if block = 2 and tank = 12 then tankn = '3B12';
    run;
proc sort data= glochidiadist;
by round x;
run;
proc print data = glochidiadist;
title1 h=1 'AEH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels';
title2 h=1 'Random assignment of Higgins eye to test tanks';
run;
```

EH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels JAL 1-23-2012 andom assignment of Fatmucket to teststanks bs round block tank tankn Х Initiated at 1132 1152 TKW 26TAN12 1B11 0.05229 misentry 0.05350 1A5 З 0.14661 1B1 0.14803 1A11 Log Book / Page File Folder 0.15462 1A7 0.17454 1B9 laitials 0.18201 1A2 0.18203 1A9 0.22977 1A3 0.26974 1B6 0,32757 1A12 AEH-11-PSEUDO-02 0.35430 1B8 0.39890 0.43493 1A1 0.44058 1B5 0.45628 1B10 0.49841 1B3 0.54042 1A6 0.67251 1A10 0.75495 1B12 0.78721 1A8 0.91774 1A4 0.96298 1B4 Item Number 0.97875 1B7 0.00407 1A7 З 0.02105 1A3 0.08274 1B3 0.14936 1B10 0.16474 1A2 0.24048 1B5 of 13 Page 0.25486 1B11 0.25825 1A8 0.30713 0.35824 1B2 0.38299 1A4 0.41243 1B4 0.44335 1B6 0.46827 1A6 0.54627 1A10 0.57075 1A5 0.61120 1B9 0.61430 1A1 0.61480 1B8 0.61785 1B1 0.62333 1A12 1B12 0.68431 0.91339 1A11 0.98465 1A9 Listribution completed at 1337 ST(W 26 JANIZ

nalysis performed by J. Luoma SAS version 19.2.08:55 23JAN12 J-

EH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels andom assignment of empty to test tanks

bs	round	block	tank	. 	tankn
1	1	The second descent of the second descent	2	0.02165	2A2
2	1	1	*********** 9	0.05011	2A9
3	1	1	10	0.05456	2A10
4	1	1	5	0.05564	2A5
5	1	2	9	0.07639	2B9
6	1	1	4	0.10642	2A4
7	1	Ţ	12	0.12892	2A12
8	1	2	2	0.19288	2B2
9	1	2	3	0.22020	2B3
10	1	2	4	0.22139	2B4
11	1	2	6	0.29216	2B6
12	1	2	7	0.29729	2B7
13	1	2	11	0.49387	2B11
14	t	2	8	0.52719	2B8
15	1	1	1	0,59582	2A1
16	1	2	10	0.61942	2B10
17	1	2	1	0.65911	2B1
18	1	1	8	0.69597	2A8
19	1	-1	6	0.80698	2A6
20	1	1	3	0.82152	2A3
21	1	1	11	0.84504	2A11
22	1	2	5	0.87967	2B5
23	1	1	7	0.90563	2A7
24	1	2	12	0,95022	2B12
25	2	2	9	0.06083	2B9
26	2	····-2· '0	·····	908 <mark>0</mark> .09946	2B3
27	2	1	2	0.13315	2A2
28	2	2	4	0.19519	2B4
29	2	2	1	0.23746	281
30	2	1	4	0.27140	2A4
31	2	1	10	0.27404	2A10
32	2	1	5	0.28887	2A5
33	2	1	9	0.30532	2A9
34	2	2	2	0.30964	2B2
35	2	2	5	0,31255	2B5
36	2	2	10	0.37035	2B10
37	2	2	11	0.37749	2B11
38	2	1	12	0,38735	2A12
39	2	1	7	0.40742	2A7
40	2	1	8	0,40885	2A8
41	2	2	12	0.45308	2B12
42	2	2	. 7	0.47435	2B7
43	2	1	6	0.55386	2A6

AEH-11-PSEUDO-02

2

Page <u>2</u> of <u>13</u>

	<u>د</u>	<u>-</u>	U	0.12001	- U U	
45	2	1	1	0.74589	2A1	Log book/rages 2/32
46	2	1	3	0.78353	2A3	Log book/rages 2/32 File Folder 12 8
47	2	2	6	0.80568	2B6	Initials In Date Provid
48	2	1	11	0.92611	2A11	PROOFED PT Initials: Do c REVIEWED Initigio: Date:
nalysis	performe	d by J.	Luoma S	SAS version	9.2 08:55	23JAN12 50- Nort Nechud YWW TWEWJY

 $\mathsf{EH}\text{-}11\text{-}\mathsf{PSUED0}\text{-}02\text{:}\mathsf{Effects}$ of $\mathsf{Pf}\text{-}\mathsf{CL}145\mathsf{A}$ to juvenile mussels andom assignment of empty to test tanks

bs	round	block	tank	×	tankn
1	1	1	5	0.05779	3A5
2	1	1	6	0.07354	3A6
3	1	2	12	0.14549	3B12
4	1	2	1	0.17160	3B1
5	1	1	4	0.29510	3A4
6	1	2	6	0.31459	3B6
7	1	2	5	0.31877	3B5
8	1	1	3	0.41327	3A3
9	1	1	10	0.43661	3A10
10	1	2	4	0.47980	3B4
11	1	1	11	0.54205	3A11
12	1	1	8	0.60473	3A8
13	1	2	7	0.61583	3B7
14	1	1	7	0.65664	3A7
15	1	2	8	0.70008	3B8
16	1	1	1	0.75672	3A1
17	1	2	10	0.78257	3B10
18	1	1	2	0.86129	3A2
19	1	1	9	0.91820	3A9
20	1	1	12	0,93027	3A12
21	1	2	11	0,93545	3811
22	1	2	З	0.94199	3B3
23	1	2	9	0.97823	389
24	1	2	2	0.98686	3B2
25	2	1	10	0.00180	3A10
26	2	1	5	0.00699	3A5
27	2	1	2	0.10156	3A2
28	2	2	3	0.11618	3B3
29	2	1	12	0.15138	3A12
30	2	1	4	0.15980	3A4
31	2	2	· 6 - · ·	0.16800	3B6
32	2	2	12	0.22186	3B12
33	2	2	2	0.26103	3B2
34	2	2	5	0.38462	3B5
35	2	2	11	0.50011	3B11
36	2	2	9	0.51045	3B9
37	2	1	3	0.54600	3A3
38	2	1	8	0.55944	3A8

AEH-11-PSEUDO-02

Page 3____ of 13___

39	2	2	10	0.59134	3B10	Las Duch (Dama X/3'L
40	` 2	1	. 9	0.62598	3A9	Log Book/Pages
41	2	1	6	0.63945	3A6	Initials I'm Date Fronty
42	2	· · · · 2 · · ·	7	0.64157	3B7	
43	2	1	· · ·7	0.81076	3A7	
14	2	2	8	0.84502	3B8	Initials: Date : REVIEWED BY
45	2	2	1	0.85707	3B1	Initials, Date'
46	2	1	1	0.87747	3A1	
47	2	1	11	0.93883	3A11	Not welled
18	2	2	4	0.97794	3B4	· WAW
						AEH-11-PSEUDO-02

سائل nalysis performed by J. Luoma SAS version 9.2 08:55 23JAN12

Page _____ of ____3__

Study Number : AEH-11-PSUED0-02 14 Study Director: Jim Luoma AEH-11-PSEUDO-02 date created : 23 JAN 2012 - JAL)*~ Verified by: _____ (Date:____) page ____ of Random allocation of mussels to tank.sas W 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT; COTNOTE1 'Analysis performed by J. Luoma SAS version ' & SYSVER & SYSTIME & SYSDATE: ptions ls=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2; *Random distribution of mussels to experimental tanks*/ * tank 1 to 18 = tank A1 to A6 (1-6), tank B1 to B6 (7-12), tank C1 to C6 (13-18) round = distribution rounds 1 to 2, place one aliquot of glochidia per tank per round */ ************* 2/32 Log Book / Pages *Mussel species: Fatmucket*/ File Folder _____ ata glochidia; Date movie Initials IM do round = 1 to 2 by 1;do block = 1 to 2 by 1;PROOFED BY do tank = 1 to 12 by 1; BI _____ Ba e . REVIEWED a Initials: ____ x = ranuni(-1);Date output; nitialey. not here for will here for will end; end; end; un; ata glochidiadist; set glochidia; f block = 1 and tank = 1 then tankn = ' 1A1'; if block = 1 and tank = 2 then tankn = ' 1A2'; if block = 1 and tank = 3 then tankn = ' 1A3'; if block = 1 and tank \approx 4 then tankn = ' 1A4'; if block = 1 and tank = 5 then tankn = ' 1A5'; if block = 1 and tank = 6 then tankn = ' 1A6'; f block = 1 and tank = 7 then tankn = ' 1A7'; if block = 1 and tank = 8 then tankn = ' 1A8'; if block = 1 and tank = 9 then tankn = ' 1A9'; if block = 1 and tank = 10 then tankn = '1A10' if block = 1 and tank = 11 then tankn = '1A11'; if block = 1 and tank = 12 then tankn = '1A12'; if block = 2 and tank = 1 then tankn = ' 1B1'; if block = 2 and tank = 2 then tankn = ' 1B2'; Page 5 of 13 if block = 2 and tank = 3 then_tankn = ' 1B3'; if block = 2 and tank = 4 then tankn = ' 1B4'; if block = 2 and tank = 5 then tankn = ' 1B5'; if block = 2 and tank = 6 then tankn = ' 1B6'; if block = 2 and tank = 7 then tankn = ' 1B7'; if block = 2 and tank = 8 then tankn = ' 188'; if block = 2 and tank = 9 then tankn = ' 189'; if block = 2 and tank = 10 then tankn = '1B10'; if block = 2 and tank = 11 then tankn = '1B11'; if block = 2 and tank = 12 then tankn = '1B12'; run; roc sort data= glochidiadist;

```
by round x;
                                                 Sa
run;
roc print data = glochidiadist;
itle1 h=1 'AEH-11-PSUED0-02: Effects of Pf-CL145A to juvenile mussels';
itle2 h=1 'Random assignment of Fatmucket to test tanks';
un;
                                                                  Log Book / Pages
*Mussel species: empty*/
                                                                  File Folder
                                                                                        FROVIS
                                                                                   Date
ata glochidia;
                                                                  Initials _ M
                                          AEH-11-PSEUDO-02
do round = 1 \text{ to } 2 \text{ by } 1;
do block = 1 to 2 by 1;
                                                                       PROOFEDARY
do tank = 1 to 12 by 1;
                                                                             Da e
                                                                 initials:
                                                                       REVIEWED .
 x = ranuni(-1);
                                                                             ___ Date'
                                                                  Initials: ____
 output;
                                                                        not needed
end;
                                                                          1000 7NOVIY
end;
end;
un;
ata glochidiadist; set glochidia;
if block = 1 and tank = 1 then tankn = ' 2A1';
 if block = 1 and tank = 2 then tankn = ' 2A2';
  if block = 1 and tank = 3 then tankn = ' 2A3';
   if block = 1 and tank = 4 then tankn = ' 2A4'
    if block = 1 and tank = 5 then tankn = ' 2A5';
     if block = 1 and tank = 6 then tankn = ' 2A6';
f block = 1 and tank = 7 then tankn = ' 2A7';
 if block = 1 and tank = 8 then tankn = ' 2A8';
  if block = 1 and tank = 9 then tankn = 2A9;
   if block = 1 and tank = 10 then tankn = '2A10';
    if block = 1 and tank = 11 then tankn = '2A11';
     if block = 1 and tank = 12 then tankn = '2A12';
if block = 2 and tank = 1 then tankn = ' 2B1';
 if block = 2 and tank = 2 then tankn = ' 2B2';
  if block = 2 and tank = 3 then tankn = ' 2B3';
   if block = 2 and tank = 4 then tankn = ' 2B4';
    if block = 2 and tank = 5 then tank = ' 2B5';
     if block = 2 and tank = 6 then tankn = ' 286';
if block = 2 and tank = 7 then tankn = ' 2B7';
 if block = 2 and tank = 8 then tankn = ' 2B8';
  if block = 2 and tank = 9 then tankn = ' 2B9';
   if block = 2 and tank = 10 then tankn = '2B10';
    if block = 2 and tank = 11 then tankn = '2B11';
     if block = 2 and tank = 12 then tankn = '2B12';
                                                                    Page 6 of 1.3
   run;
roc sort data= glochidiadist;
by round x;
un;
roc print data = glochidiadist;
itle1 h=1 'AEH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels';
itle2 h=1 'Random assignment of empty to test tanks';
un;
```

```
Sr
ata glochidia;
do round = 1 to 2 by 1;
do block = 1 \text{ to } 2 \text{ by } 1;
                                                          Log BOOK / Page
do tank = 1 to 12 by 1;
                                                          File Folder.
                                                                           Date
 x = ranuni(-1);
                                                          Initials ...
 output;
                                                                PROOFEDE
                               AEH-11-PSEUDO-02
end:
                                                                       Dave
end;
                                                          initiale:
                                                                REVIEWED BI
end;
                                                                       Date'
                                                                  Notneeded
                                                           initialay
un;
ata glochidiadist; set glochidia;
if block = 1 and tank = 1 then tankn = ' 3A1';
if block = 1 and tank = 2 then tankn = ' 3A2';
 if block = 1 and tank = 3 then tankn = ' 3A3';
   if block = 1 and tank = 4 then tankn = ' 3A4';
    if block = 1 and tank = 5 then tankn = ' 3A5';
     if block = 1 and tank = 6 then tankn = ' 3A6';
f block = 1 and tank = 7 then tankn = ' 3A7';
if block = 1 and tank = 8 then tankn = ' 3A8';
  if block = 1 and tank = 9 then tankn = '3A9';
   if block = 1 and tank = 10 then tankn = '3A10';
    if block = 1 and tank = 11 then tankn = '3A11':
     if block = 1 and tank = 12 then tankn = '3A12';
if block = 2 and tank = 1 then tankn = ' 3B1';
if block = 2 and tank = 2 then tankn = '3B2';
  if block = 2 and tank = 3 then tankn = ' 3B3';
   if block = 2 and tank = 4 then tankn = ' 3B4';
    if block = 2 and tank = 5 then tankn = ' 3B5';
     if block = 2 and tank = 6 then tankn = ' 3B6';
if block = 2 and tank = 7 then tankn = ' 3B7';
if block = 2 and tank = 8 then tankn = ' 3B8';
  if block = 2 and tank = 9 then tankn = ' 3B9';
   if block = 2 and tank = 10 then tankn = '3B10';
    if block = 2 and tank = 11 then tankn = '3B11';
     if block = 2 and tank = 12 then tankn = '3B12';
   run;
roc sort data= glochidiadist;
by round x;
un;
roc print data = glochidiadist;
itle1 h=1 'AEH-11-PSUED0-02: Effects of Pf-CL145A to juvenile mussels';
itle2 h=1 'Random assignment of empty to test tanks';
un;
```

Page 7 of 13

(INOV)

to spert

. .

,

.

Ŕ

.

Page <u>8</u> of <u>13</u>

.

```
uale viealen . 20 Unit 2014 - Uni gw
υυ
      Verified by: _____ (Date:_____
61
                                                             page ____ of ___
                                          )
    * Random allocation of mussels to tank.sas
62
   *******
                                                        ******************
63
    DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
64
                                                                     AEH-11-PSEUDO-02
65
    FOOTNOTE1 'Analysis performed by J. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
66
ARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
67
    options ls=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
68
69
   /*Random distribution of mussels to experimental tanks*/
70
    /* tank 1 to 18 = tank A1 to A6 (1-6), tank B1 to B6 (7-12), tank C1 to C6 (13-18)
71
       round = distribution rounds 1 to 2, place one aliquot of glochidia per tank per round */
72
73
    /*****************
74
                                                                          Z |32
74!
   *********
                                                          Log Book/Pages
75
                                                          File Folder.
                                                                          Date Invert
76
   /*Mussel species: Fatmucket*/
                                                          Initials _____
77
    data glochidia;
                                                                PHOOFED BY
78
    do round = 1 to 2 by 1;
                                                           Initials: ____ Dave :
    do block = 1 to 2 by 1;
79
                                                                REVIEWED BY
    do tank = 1 to 12 by 1;
80
                                                           juitiejer ____ Date' _
      x = ranuni(-1);
81
                                                                  noted
needed provid
      output;
82
83
      end;
84
      end;
85
     end;
86 run;
OTE: The data set WORK.GLOCHIDIA has 48 observations and 4 variables.
OTE: DATA statement used (Total process time):
     real time
                         0.01 seconds
     opu time
                         0.01 seconds
    data glochidiadist; set glochidia;
87
    if block = 1 and tank = 1 then tankn = ' 1A1';
88
      if block = 1 and tank = 2 then tankn = ' 1A2';
89
       if block = 1 and tank = 3 then tankn = ' 1A3';
90
        if block = 1 and tank = 4 then tankn = ' 1A4';
91
         if block = 1 and tank = 5 then tankn = ' 1A5';
92
          if block = 1 and tank = 6 then tankn = ' 1A6';
93
    if block = 1 and tank = 7 then tankn = ' 1A7';
94
     if block = 1 and tank = 8 then tankn = ' 1A8';
95
                                                                   Page \underline{q} of \underline{3}
96
       if block = 1 and tank = 9 then tankn = ' 1A9';
97
        if block = 1 and tank = 10 then tankn = '1A10';
98
         if block = 1 and tank = 11 then tankn = '1A11';
99
          if block = 1 and tank = 12 then tankn = '1A12';
     if block = 2 and tank = 1 then tankn = '1B1';
00
      if block = 2 and tank = 2 then tankn = ' 1B2';
01
      if block = 2 and tank = 3 then tankn = ' 1B3';
02
        if block = 2 and tank = 4 then tankn = ' 1B4';
03
         if block = 2 and tank = 5 then tankn = ' 1B5';
04
          if block = 2 and tank = 6 then tankn = ' 1B6';
05
     if block = 2 and tank = 7 then tankn = ' 1B7';
06
```

```
190
```

```
if block = 2 and tank = 8 then tankn = ' 1B8';
                                                                             2154
                                                     100
07
                                                               Log Book / Pages
    if block = 2 and tank = 9 then tankn = ' 189';
08
                                                               File Folder.
                                                                              Date movi
       if block = 2 and tank = 10 then tankn = '1B10';
09
                                                              Initials _ M
        if block = 2 and tank = 11 then tankn = '1B11';
10
                                                                            PROOFED BY
         if block = 2 and tank = 12 then tankn = '1B12'; run;
                                                                                  _ Dave':
11
                                                                       Initials: ...
                                                                            REVIEWED BY
                                                                       Initiaja. ____ Date
DTE: There were 48 observations read from the data set WORK.GLOCHIDIA.
DTE: The data set WORK.GLOCHIDIADIST has 48 observations and 5 variables.
                                                                            not needed
                                                                             PW Frov14
OTE: DATA statement used (Total process time):
                       0.03 seconds
    real time
                       0.03 seconds
    cpu time
                                                    AEH-11-PSEUDO-02
12 proc sort data= glochidiadist;
13
   by round x;
14
    run;
DTE: There were 48 observations read from the data set WORK.GLOCHIDIADIST.
DTE: The data set WORK.GLOCHIDIADIST has 48 observations and 5 variables.
>TE: PROCEDURE SORT used (Total process time):
    real time
                       0.00 seconds
    cpu time
                       0.00 seconds "
                      15 proc print data = glochidiadist;
16 title1 h=1 'AEH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels';
17 title2 h=1 'Random assignment of Fatmucket to test tanks';
18 run;
DTE: There were 48 observations read from the data set WORK.GLOCHIDIADIST.
>TE: PROCEDURE PRINT used (Total process time):
                       0.00 seconds
    real time
                       0.00 seconds
    cpu time
19
20! *******/
21
   /*Mussel species: empty*/
22
   data glochidia;
23
   do round = 1 \text{ to } 2 \text{ by } 1;
24
   do block = 1 to 2 by 1;
25
    do tank = 1 to 12 by 1;
26
      x = ranuni(-1);
27
28
      output;
              1.1
                                                            Page 10 of 1.3
29
     end:
30
     end;
31
     end;
32 run;
DTE: The data set WORK.GLOCHIDIA has 48 observations and 4 variables.
DTE: DATA statement used (Total process time):
    real time
                       0.01 seconds
                       0.01 seconds
    cpu time
```

```
:33 data glochidiadist; set glochidia;
    if block = 1 and tank = 1 then tankn = ' 2A1';
34
                                                                              2/32
     if block = 1 and tank = 2 then tankn = ' 2A2';
:35
                                                              LOB BOOK / FARES
                                                                            120
       if block = 1 and tank = 3 then tankn = ' 2A3';
:36
                                                               File Folder.
                                                                                Date Thirl
:37
        if block = 1 and tank = 4 then tankn = ' 2A4';
                                                              jpitials
38
         if block = 1 and tank = 5 then tankn = '2A5';
                                                                    PROOFED BY
39
          if block = 1 and tank = 6 then tankn = ' 2A6';
                                                                            Date :
    if block = 1 and tank = 7 then tankn = ' 2A7';
                                                                    REVIEWED BY
40
                                                               Initials: -
41
     if block = 1 and tank = 8 then tankn = ' 2A8';
                                                                             Date
                                                               initials:
42
       if block = 1 and tank = 9 then tankn = ' 2A9';
                                                                           ww
43
        if block = 1 and tank = 10 then tankn = '2A10';
                                                                              \mathcal{X}_{\mathcal{U}_{\mathcal{D}_{\mathcal{D}_{q}}}}
44
         if block = 1 and tank = 11 then tankn = '2A11';
                                                                           (inni
45
          if block = 1 and tank = 12 then tankn = '2A12';
46
     if block = 2 and tank = 1 then tankn = ' 2B1';
      if block = 2 and tank = 2 then tankn = ' 2B2';
47
       if block = 2 and tank = 3 then tankn = '2B3';
48
        if block = 2 and tank = 4 then tankn = ' 2B4';
49
                                                                     AEH-11-PSEUDO-02
         if block = 2 and tank = 5 then tankn = '2B5';
50
          if block = 2 and tank = 6 then tankn = '2B6';
51
     if block = 2 and tank = 7 then tankn = ' 2B7';
52
     if block = 2 and tank = 8 then tankn = ' 2B8';
53
       if block = 2 and tank = 9 then tankn = ' 2B9';
54
        if block = 2 and tank = 10 then tankn = '2B10';
55
        if block = 2 and tank = 11 then tankn = '2B11';
56
57
          if block = 2 and tank = 12 then tankn = '2B12';
58
        run;
OTE: There were 48 observations read from the data set WORK, GLOCHIDIA.
OTE: The data set WORK.GLOCHIDIADIST has 48 observations and 5 variables.
OTE: DATA statement used (Total process time):
     real time
                          0.03 seconds
                          0.03 seconds
     cpu time
59 proc sort data= glochidiadist;
    by round x;
60
61 run;
OTE: There were 48 observations read from the data set WORK.GLOCHIDIADIST.
OTE: The data set WORK.GLOCHIDIADIST has 48 observations and 5 variables.
OTE: PROCEDURE SORT used (Total process time):
                                                                           Page_11_of 13
     real time
                          0.01 seconds
                          0.01 seconds
     cpu time
62 proc print data = glochidiadist;
63 title1 h=1 'AEH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels';
64 title2 h=1 'Random assignment of empty to test tanks';
65 run;
OTE: There were 48 observations read from the data set WORK.GLOCHIDIADIST.
OTE: PROCEDURE PRINT used (Total process time):
     real time
                         0.00 seconds
                         0.00 seconds
     cpu time
```

-36 37 37! *******/ 2/32 Log Book / Pages Elle Folder 12 B 38 /*Mussel species: empty*/ 39 mari Difiels Im 70 data glochidia; do round = 1 to 2 by 1; 71 PROOFED do block = 1 to 2 by 1; 72 AEH-11-PSEUDO-02 Dase Initials: do tank = 1 to 12 by 1; 73 REVIEWED B x = ranuni(-1);74 _ Date' initiaja: 75 output; not needed FNUNH 76 end; 77 end; 78 end; 79 run;)TE: The data set WORK.GLOCHIDIA has 48 observations and 4 variables.)TE: DATA statement used (Total process time): 0.01 seconds real time 0.01 seconds cpu time data glochidiadist; set glochidia; 30 if block = 1 and tank = 1 then tankn = '3A1'; 31 if block = 1 and tank = 2 then tankn = ' 3A2'; 32 if block = 1 and tank = 3 then tankn = ' 3A3'; 33 if block = 1 and tank = 4 then tankn = ' 3A4'; 34 if block = 1 and tank = 5 then tankn = ' 3A5'; 35 if block = 1 and tank = 6 then tankn = ' 3A6'; 36 if block = 1 and tank = 7 then tankn = ' 3A7'; 37 if block = 1 and tank = 8 then tankn = ' 3A8'; 38 if block = 1 and tank = 9 then tankn = ' 3A9'; 39 if block = 1 and tank = 10 then tankn = '3A10'; 90 if block = 1 and tank = 11 then tankn = '3A11'; 91 if block = 1 and tank = 12 then tankn = '3A12'; 92 if block = 2 and tank = 1 then tankn = ' 3B1'; 33 if block = 2 and tank = 2 then tankn = ' 3B2'; 94 if block = 2 and tank = 3 then tankn = ' 3B3'; 95 if block = 2 and tank = 4 then tankn = '3B4'; 96 if block = 2 and tank = 5 then tankn = ' 3B5'; 37 if block = 2 and tank = 6 then tankn = ' 3B6'; 98 if block $\stackrel{\text{\tiny tr}}{=}$ 2 and tank = 7 then tankn = ' 3B7'; 99 Page 12 of 13 if block = 2 and tank = 8 then tankn = ' 3B8'; 00 if block = 2 and tank = 9 then tankn = ' 3B9'; 01 if block = 2 and tank = 10 then tankn = '3B10'; 32 if block = 2 and tank = 11 then tankn = '3B11'; 93 if block = 2 and tank = 12 then tankn = '3B12'; 04 95 run; OTE: There were 48 observations read from the data set WORK.GLOCHIDIA. OTE: The data set WORK.GLOCHIDIADIST has 48 observations and 5 variables. DTE: DATA statement used (Total process time): 0.03 seconds real time 0.03 seconds opu time

06 proc sort data= glochidiadist; 07 by round x; 08 run; OTE: There were 48 observations read from the data set WORK.GLOCHIDIADIST. OTE: The data set WORK.GLOCHIDIADIST has 48 observations and 5 variables. OTE: PROCEDURE SORT used (Total process time): real time 0.00 seconds 0.00 seconds cpu time AEH-11-PSEUDO-02 09 proc print data = glochidiadist; 10 title1 h=1 'AEH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels'; 11 title2 h=1 'Random assignment of empty to test tanks'; 12 run; OTE: There were 48 observations read from the data set WORK.GLOCHIDIADIST. OTE: PROCEDURE PRINT used (Total process time): real time 0.00 seconds 0.00 seconds cpu time

Log Book / Pages File Folder 12.0 NEO SAGAGE loitials m Dale 21/011

PROOFED BY Initials: Date REVEWED Initials Date

Item Number:

Pr. 13 of 13

EH-11-PSUED0-02: Effects of Pf-CL145A to juvenile mussels andom assignment of Black sandshell to test tanks

128 (12	3					
54-	tankn	х	tank	block	round	bs
	2 A 9#	0.04158	9	1	1	1
	2B1 🐔	0,06698	1	2	1	2
	2B3	0.09349	3	2	1	3
	2B12 🥓	0.09652	12	2	1	4
	2B10#*	0.17358	10	2 [°]	1	5
	2A11	0.17971	11	1	1	6
	2A5	0.26713	5	1	1	7
	∗2B5 ≪	0.30466	5	2	1	8
	2A4	0.35557	4	1	1	9
Lõg Book/P	-2A10**	0.42195	10	1	1	10
File Folder	*284**	0.49442	4	2	1	11
Igiuals P	#2B9**	0.54311	9	2	1	12
	2B7	0.56173	7	2	1	13
	2A2***	0.57738	2	1	1	14
	2A6	0.58710	6	1	1	15
P	2A12	0.75776	12	1	1	16
Initials:	2A8	0.76146	8	1	1	17
ri i i	2B2#	0.79612	2	2	1	18
Amitiaia	286*3	0.81999	6	2	1	19
P	2A1#	0.82296	1	1	1	20
	2A3	0.82826	3	1	1	21
	2B8	0.85686	8	2	1	22
	2B11	0.87090	11	2	1	23
.4	2A7*	0.89267	7	1	1	24
1320	2B5	0.00486	5	2	2	25
	2B12 >	0.01782	12	2	2	26
	2A7*	0.04565	7	1	2	27
	2 87 .	0,09234	7	2	2	28
	2B9***	0.13769	9	2	2	29
	2B6	0.17562	6	2	2	30
	2A10#	0.20670	10	1	2	31
		0.26008	12	1	2	32
Item N	2B11	0.30709	11	2	2	33
	2A2***	0.33732	2	1	2	34
	2A9-***	0.44648	9	1	2	35
	2A1	0.48938	1	1	2	36
Daga	2A11	0.53360	11	1	2	37
Page	2A4	0.57842	4	1	2	38
	2B3	0.67185	3	2	2	39
	2B10.3**	0.67357	10	2	2	40
	2B1 *	0.77314	1	2	2	41
	2A8-	0.79665	8	1	2	42
	2A6	0,79956	6	1	2	43
	2A3	0.83320	3	1	2	44
	2B4	0.86492	4	2	2	45
	2B8	0.91040	8	2	2	46
	2B2 ి	0.93700	2	2	2	47
1.4.4	2A5 /	0.99319	5	1	2	48
-140g						

shop

AEH-11-PSEUDO-02

1

age Dale DAPPED

PRODVED BEVIEWE BI Not receid Liw Frievia

Number: <u>5</u>

____ of _____

2/39-40 Log Book / Pages _____ File Folder _____12_B Initials _____ Date Frovid AEH-11 SEUL YUN MONT REVIEWED BY Initials: Not we provid Initials: ^\$ AEH-11-PSEUDO-02 б, e_{i} $\{u_i\}_{i=1}^{n} \in \{v_i\}_{i=1}^{n}$ 1.3 - ***** 8. 1997 * 201 · • • • • • • ر الم 34 · · · ŝ. ~ ~**x** . . . , ÷ 1 . Page 🤂 of Warmuld moth . н., æ., Page of ${\mathcal O}_{\{i\}}$

w. *

nalysis performed by J. Luoma SAS version 9.2 08:45 28MAR12

.

```
ULLO OF GALLOU . LOWALTE OTHE
5 U
                                     3.-
   * Verified by: _____ (Date:_____
29
                                        -)
                                                            page ____ of
   * Random allocation of mussel to exposure chambers.sas
30
    *********
31
   DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
                                                                        AEH-11-PSEUDO-02
32
33
34 FOOTNOTE1 'Analysis performed by J. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
ARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
35
36 options ls=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
37.
38 /*Random distribution of Mussels to experimental tanks*/
39 /* tank 1 to 18 = tank A1 to A6 (1-6), tank B1 to B6 (7-12), tank C1 to C6 (13-18)
      round = distribution rounds 1 to 2, place one aliquot of glochidia per tank per round */
40
41
    42
42! ********/
                                                                            2/37-40
43
                                                             Log Book / Pages
44 /*Mussel species: Black sandshell*/
                                                             File Folder
                                                                            Date In July
                                                             pattials 1/1/
45 data mussel;
   do round = 1 to 2 by 1;
46
    do block = 1 \text{ to } 2 \text{ by } 1;
47
                                                                  PROOFED BY
                                                            Initials:
48
    do tank = 1 to 12 by 1;
                                                                      🖌 Dare 🔒
                                                                 REVIEWED
    x = ranuni(-1);
49
                                                            Initiala: _____ Date:
     output;
50
                                                                   not needed
your friend
51
     end;
52
     end;
53
    end;
54 run;
DTE: The data set WORK.MUSSEL has 48 observations and 4 variables.
OTE: DATA statement used (Total process time):
    real time
                        0.01 seconds
                        0.01 seconds
    cpu time
55 data musseldist; set mussel;
56
   if block = 1 and tank = 1 then tankn = ' 2A1';
     if block = 1 and tank = 2 then tankn = 2A2^{+};
57
58
      if block = 1 and tank = 3 then tankn = ' 2A3';
       if block = 1 and tank = 4 then tankn = ' 2A4';
59
                                                              Page 3 of 6
60
        if block = 1 and tank = 5 then tankn = ' 2A5';
         if block = 1 and tank = 6 then tankn = ' 2A6';
61
   if block = 1 and tank = 7 then tankn = ' 2A7';
62
63
     if block = 1 and tank = 8 then tankn = ' 2A8';
      if block = 1 and tank = 9 then tankn = ' 2A9';
64
65
       if block = 1 and tank = 10 then tankn = '2A10';
        if block = 1 and tank = 11 then tankn = '2A11'
66
67
         if block = 1 and tank = 12 then tankn = '2A12';
68
    if block = 2 and tank = 1 then tankn = ' 2B1';
     if block = 2 and tank = 2 then tankn = ' 2B2';
69
70
      if block = 2 and tank = 3 then tankn = ' 2B3';
71
       if block = 2 and tank = 4 then tankn = ' 2B4';
72
        if block = 2 and tank = 5 then tankn = ' 2B5';
73
         if block = 2 and tank = 6 then tankn = ' 2B6';
74
    if block = 2 and tank = 7 then tankn = ' 2B7';
```

 if block = 2 and tank = 8 then tankn if block = 2 and tank = 9 then tankn if block = 2 and tank = 10 then tan if block = 2 and tank = 11 then tan if block = 2 and tank = 12 then tan 	n = ' 289'; nkn = '2810'; ankn = '2811';	
OTE: There were 48 observations read from t OTE: The data set WORK.MUSSELDIST has 48 ob OTE: DATA statement used (Total process tim real time 0.03 seconds cpu time 0.03 seconds	bservations and 5 var me): J	
80 proc sort data= musseldist; A 81 by round x; 82 run;	EH-M-PSEUDO-02	PROOFEDER Initials: De e BEVIEWED Br Jailiels: Date' Not needed Ww Frooviul
OTE: There were 48 observations read from to OTE: The data set WORK.MUSSELDIST has 48 ob OTE: PROCEDURE SORT used (Total process time real time 0.00 seconds cpu time 0.00 seconds	bservations and 5 var	SELUISI.
<pre>83 proc print data = musseldist; 84 title1 h=1 'AEH-11-PSUEDO-02: Effects of 85 title2 h=1 'Random assignment of Black 86 run;</pre>		
OTE: There were 48 observations read from t OTE: PROCEDURE PRINT used (Total process ti real time 0.01 seconds cpu time 0.01 seconds		SSELDIST.

to conserve Page 4 of 6

```
Study Number : AEH-11-PSUEDO-02
  Study Director: Jim Luoma
  date created : 28Mar12 - JAL 50
  Verified by: _
                 _____ (Date:_____
                                                         page ____ of _
  Random allocation of mussel to exposure chambers, sas
**********
                                                                          AEH-11-PSEUDO-02
M 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
OOTNOTE1 'Analysis performed by J. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
ptions ls=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
*Random distribution of Mussels to experimental tanks*/
* tank 1 to 18 = tank A1 to A6 (1-6), tank B1 to B6 (7-12), tank C1 to C6 (13-18)
  round = distribution rounds 1 to 2, place one aliquot of glochidia per tank per round */
*******
                                                                            2/31-40
*Mussel species: Black sandshell*/
                                                             Log Book / Pages
                                                             Eile Folder ....
ata mussel;
                                                                             Dave Jnov 14
                                                             Initials _ /w/_
do round = 1 \text{ to } 2 \text{ by } 1;
do block = 1 to 2 by 1;
                                                                  PROOFED
 do tank = 1 to 12 by 1;
                                                                       Date :
                                                             Initials: ...
                                                                  REVIEWED B
 x = ranuni(-1);
                                                                          Date'
 output;
                                                             laitielai -
                                                                    not needed
from the the
 end;
 end;
end;
un;

    somul/i mail

ata musseldist; set mussel;
f block = 1 and tank = 1 then tankn = ' 2A1';
 if block = 1 and tank = 2 then tankn = ' 2A2';
  if block = 1 and tank = 3 then tankn = ' 2A3';
   if block = 1 and tank = 4 then tankn_{eff} ' 2A4';
    if block = 1 and tank = 5 then tankn = '2A5';
     if block = 1 and tank = 6 then tankn = ' 2A6';
f block = 1 and tank = 7 then tankn = ' 2A7';
 if block = 1 and tank = 8 then tankn = ' 2A8';
  if block = 1 and tank = 9 then tankn = ' 2A9';
   if block = 1 and tank = 10 then tankn = '2A10';
    if block = 1 and tank = 11 then tankn = '2A11';
     if block = 1 and tank = 12 then tankn = '2A12';
if block = 2 and tank = 1 then tankn = '2B1';
                                                              Page <u>5</u> of <u>6</u>
 if block = 2 and tank = 2 then tankn = ' 2B2';
  if block = 2 and tank = 3 then tankn = ' 2B3';
   if block = 2 and tank = 4 then tankn = ' 2B4';
    if block = 2 and tank = 5 then tankn = ' 2B5';
     if block = 2 and tank = 6 then tankn = ' 2B6';
if block = 2 and tank = 7 then tankn = '2B7';
 if block = 2 and tank = 8 then tankn = ' 2B8';
  if block = 2 and tank = 9 then tankn = ' 2B9':
  if block = 2 and tank = 10 then tankn = '2B10';
    if block = 2 and tank = 11 then tankn = '2B11';
     if block = 2 and tank = 12 then tankn = '2B12'; run;
roc sort data= musseldist;
```

by round x; run; roc print data = musseldist; itle1 h=1 'AEH-11-PSUED0-02: Effects of Pf-CL145A to juvenile mussels'; itle2 h=1 'Random assignment of Black sandshell to test tanks'; un;

> : ۲۰۱۹ کې د د د د د د د د د

.

Log Book / Pages	2/39-40
File Folder 12.8	
Initials free	Date FNOV14

AEH-11-PSEUDO-02

PROOFED BY Initials: Date: REVIEWED : Initials: Date: Not needed Your Trovid

5 Item Number:

Page 6 of 6

EH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels andom assignment of Plain pocketbook to test tanks

bs	round	block	tank	x	tankn
1	1	1	3	0.01634	1A3 😒
2	1	2	1	0.03207	1B1 🔬
3	1	2	3	0.04182	1B3
4	1	1	8	0.13377	1A8
5	1	2	2	0.22266	1B2 🐨
6	1	1	4	0.25000	1A4
7	1	2	10	0.28958	1B10 🖄
8	1	1	12	0.33047	1A12 🝘
9	1	2	6	0.36351	1B6 🔬
10	1	1	11	0.42768	1A11 🐲
11	1	1	10	0.45335	1A10 🎯
12	1	1	9	0.47432	1A9 🚳
13	1	1	2	0.49810	1A2 😼
14	1	2	11	0.59294	1B11 🙀
15	1	1	5	0.63427	1A5 🖉
16	1	2	7	0.68453	1B7 🧐
17	1	2	12	0.74188	1B12 👓
18	1	1	1	0.74579	1A1 ్యునిసి
19	1	1	6	0.77796	1A6 🏹
20	1	1	7	0.79174	1A7 👾
21	1	2	8	0,82138	1B8 🐖
22	1	2	4	0.84963	1B4 🕬
23	1	2	9	0.85118	1B9
24	1	2	5	0.93257	1B5 age
25	2	2	10	0.16294	1B10-22
26	2	1	7	0.19780	1A7 👾
27	2	2	7	0.21217	1B7
28	2	1	5	0.33650	1A5
29	2	1	6	0.42623	1A6
30	2	1	10	0.59381	1A10
31	2	2	8	0.62300	1B8 (#)
32	2	1	2	0.66415	1A2
33	2	1	3	0.67417	1A3 4
34	2	1	1	0.68734	1A1 ®
35	2	2	4	0.69945	1B4
36	2	2	9	0.71842	1B9
37	2	1	9	0.73644	1A9
38	2	2	2	0.73743	1B2 -
39	2	2	6	0.77213	1B6
40	2	1	11	0,78958	1A11 🗤
41	2	2	11	0.83529	1B11
42	2	2	3	0.85147	1B3
43	2	2	5	0.86661	1B5
44	2	1	8	0.87796	1A8
45	2	2	1	0.89901	1B1
46	2	1	4	0.90528	1A4
47	2	2	12	0,92613	1B12
48	2	1	12	0.99655	1A12

s 5/1/10	AEH-11-PS	EUDO-02
5~-		1230
Distribution in:	tiated at	KW
Log Book / Pages File Folder 12 Jailials How	z/45 Date <u></u> Эл	2214
PROOFEDE Initials: Dat REVIEWED Initials: Dat Net Needle YW	8 HY 9 d'	
	16	

1

Item Number: 6

Page _____ of _____

Completed Distribution at 1410h 2000

Log Book / Pages <u>2/45</u> File Folder <u>12 B</u> Initials <u>Hw</u> Date <u>Howly</u> : ***** 3 AEH-11-PSEUDO-02 2.5 . PROOFED BY Initials: _____ Date :____ REVIEWED BY منعن والمراج 4 4 . . Initials: _ Date! not neared . ¹²⁴ 1 Ww Fround ÷. 1 3 3 **** 10 \$.A **第**9 **松**爆 1.0 ; **n** # ** ø. **%** • 2 Page _____ of ____ ø ŝ, 2 è . }ac 4 , \$A Home V mon ∘ હો-. 1 : "Pfi ····· · • • • • • £. - 1

nalysis performed by J, Luoma SAS version 9.2 14:35 02MAY12

```
Vale Greater , VEMayie - UNE
    * Verified by: _____ (Date:_____)
i
                                                               page ____ of __
    * Random allocation of mussel to exposure chambers.sas
ì
                                                              ************
        ******
                                                                            AEH-11-PSEUDO-02
ł
    DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
1
    FOOTNOTE1 'Analysis performed by J. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
0
ARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
1
2
    options 1s=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
з
4
    /*Random distribution of Mussels to experimental tanks*/
5
    /* tank 1 to 18 = tank A1 to A6 (1-6), tank B1 to B6 (7-12), tank C1 to C6 (13-18)
       round = distribution rounds 1 to 2, place one aliquot of glochidia per tank per round */
6
7
    /*******
                 *****
8
8 ! *********/
                                                                           2/45
9
                                                           Log Book / Pages .
                                                          Eile Folder_
                                                                     T2 B
:0
    /*Mussel species: Plain Pocketbook*/
                                                          Initials In
                                                                                 Inovi
                                                                          _Date
:1
    data mussel;
2
    do round = 1 to 2 by 1;
                                                                 PROOFED BY
3
     do block = 1 \text{ to } 2 by 1;
                                                                       Dave ._
                                                           Initials: ....
                                                                REVIEWED BY
4
      do tank = 1 to 12 by 1;
                                                           Initiaini _____ Datei .
·5
      x = ranuni(-1);
                                                                 not needed
from Friend
    output;
:6
:7
      end;
:8
      end;
<u>9</u>
     end;
ı0
    run;
IOTE: The data set WORK.MUSSEL has 48 observations and 4 variables.
IOTE: DATA statement used (Total process time):
     real time
                         0.03 seconds
     cpu time
                         0.03 seconds
-1
    data musseldist; set mussel;
                                                                  Page 3 of k
.2
    if block = 1 and tank = 1 then tankn = ' 1A1';
.3
      if block = 1 and tank = 2 then tankn = ' 1A2';
.4
       if block = 1 and tank = 3 then tankn = ' 1A3';
5
        if block = 1 and tank = 4 then tankn = ' 1A4';
6
         if block = 1 and tank = 5 then tankn = ' 1A5';
7
          if block = 1 and tank = 6 then tankn = ' 1A6';
    if block = 1 and tank = 7 then tankn = ' 1A7';
8
9
      if block = 1 and tank = 8 then tankn = ' 1A8';
0
       if block = 1 and tank = 9 then tankn = ' 1A9';
1
        if block = 1 and tank = 10 then tankn = '1A10';
2
         if block = 1 and tank = 11 then tankn = '1A11';
3
          if block = 1 and tank = 12 then tankn = '1A12';
4
     if block = 2 and tank = 1 then tankn = ' 1B1';
5
      if block = 2 and tank = 2 then tankn = ' 1B2';
6
       if block = 2 and tank = 3 then tankn = ' 1B3';
.7
        if block = 2 and tank = 4 then tankn = ' 1B4';
8
         if block = 2 and tank = 5 then tankn = ' 1B5';
9
          if block = 2 and tank = 6 then tankn = ' 1B6';
0
     if block = 2 and tank = 7 then tankn = ' 1B7';
```

if block = 2 and tank = 8 then tankn = ' 1B8'; 1 if block = 2 and tank = 9 then tankn = ' 189'; 2 if block = 2 and tank = 10 then tankn = '1B10'; з if block = 2 and tank = 11 then tankn = '1B11'; 4 if block = 2 and tank = 12 then tankn = '1B12'; run; 5 OTE: There were 48 observations read from the data set WORK.MUSSEL. OTE: The data set WORK.MUSSELDIST has 48 observations and 5 variables. OTE: DATA statement used (Total process time): 0.03 seconds real time 2/45 Log Book / Pages 0.01 seconds cpu time File Folder Date movie pitials . PROOFED BY AEH-11-PS2000-02 proc sort data= musseldist; 6 Initials: _____ Date :____ REV EWED BY 7 by round x; 8 run; Date! Initials: not needed Mur though OTE: There were 48 observations read from the data set WORK.MUSSELDIST. OTE: The data set WORK.MUSSELDIST has 48 observations and 5 variables. OTE: PROCEDURE SORT used (Total process time): 0.01 seconds real time 0.00 seconds cpu time and the second proc print data = musseldist; 9 title1 h=1 'AEH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels'; 0 title2 h=1 'Random assignment of Plain pocketbook to test tanks'; 1 2 run; OTE: There were 48 observations read from the data set WORK.MUSSELDIST. OTE: PROCEDURE PRINT used (Total process time): 0.03 seconds real time 0.03 seconds cpu time

4 of le Page

20

-906 Q

```
Study Number : AEH-11-PSUEDO-02
  Study Director: Jim Luoma
  date created : 02May12 - JAL Ju
  Verified by:
                 _____ (Date:____
                                    )
                                                       page ____ of _
  Random allocation of mussel to exposure chambers.sas
AEH-11-PSEUDO-02
M 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
OOTNOTE1 'Analysis performed by J. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
ptions 1s=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2:
*Random distribution of Mussels to experimental tanks*/
* tank 1 to 18 = tank A1 to A6 (1-6), tank B1 to B6 (7-12), tank C1 to C6 (13-18)
  round = distribution rounds 1 to 2, place one aliquot of glochidia per tank per round */
             Log Book / Pages .
                                                                            2/45
*Mussel species: Plain Pocketbook*/
                                                             File Folder _____12
ata mussel;
                                                             Initials the
                                                                           Date Inor
do round = 1 \text{ to } 2 \text{ by } 1;
do block = 1 to 2 by 1;
                                                                  PROOFED BY
                                                             Initials:
 do tank = 1 to 12 by 1;
                                                                        Date 1_
                                                                                         12
                                                                  REVIEWED BY
 x = ranuni(-1);
                                                             Initiais:
                                                                        _ Date!
 output;
                               - "estraid" nau!
                                                                 not needed
 end;
                                                                    Un Inovit
 end;
end;
un;
ata musseldist; set mussel;
f block = 1 and tank = 1 then tankn = ' 1A1';
 if block = 1 and tank = 2 then tankn = 1A2;
  if block = 1 and tank = 3 then tankn = ' 1A3';
   if block = 1 and tank = 4 then tankn = ' 1A4';
    if block = 1 and tank = 5 then tankn = ' 1A5';
     if block = 1 and tank = 6 then tankn = ' 1A6';
f block = 1 and tank = 7 then tankn = ' 1A7';
 if block = 1 and tank = 8 then tankn = ' 1A8';
                                                                Page <u>5</u> of <u>b</u>
  if block = 1 and tank = 9 then tankn = ' 1A9';
   if block = 1 and tank = 10 then tankn = '1A10';
    if block = 1 and tank = 11 then tankn = '1A11';
     if block = 1 and tank = 12 then tankn = '1A12';
if block = 2 and tank = 1 then tankn = ' 1B1';
 if block = 2 and tank = 2 then tankn = ' 1B2';
  if block = 2 and tank = 3 then tankn = ' 1B3';
   if block = 2 and tank = 4 then tankn = ' 1B4';
    if block = 2 and tank = 5 then tankn = ' 1B5';
     if block = 2 and tank = 6 then tankn = ' 1B6';
if block = 2 and tank = 7 then tankn = ' 1B7';
 if block = 2 and tank = 8 then tankn = ' 1B8';
  if block = 2 and tank = 9 then tankn = ' 1B9';
   if block = 2 and tank = 10 then tankn = '1B10';
    if block = 2 and tank = 11 then tankn = '1B11';
     if block = 2 and tank = 12 then tankn = '1B12'; run;
roc sort data= musseldist;
```

by round x; run; roc print data = musseldist; itle1 h=1 'AEH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels'; itle2 h=1 'Random assignment of Plain pocketbook to test tanks'; un;

AEH-11-PSEUDO-02

Log Book / Pages 2/49 File Folder 12 B Initials KW Date 3100/14

.....

PROOFEL CI Initials: _____ Deve ____ REVIEWED BY Initials: _____ Date ____ not needed pour friend

المراجع في المراجع الم مراجع في مراجع المراجع محمد المراجع ال

Item Number: _(/____

Page 6 of b

.EH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels

andom assignment of Higgins eye to test tanks

bs	round	block	tank	x	tankn
1	1	2	11	0.05770	1B11
2	1	2	10	0,06182	1B10
3	1	2	1	0.19315	1B1
4	1	1	12	0.20937	1A12
5	1	1	4	0.28057	1A4
6	1	2	2	0.30568	1B2
7	1	1	2	0.33715	1A2
8	1	1	6	0,45297	1A6
9	1	2	9	0.46169	1B9
10	1	1	1	0.48828	1A1
11	1	1	10	0.55625	1A10
12	1	2	3	0.56393	1B3
13	1	1	7	0.56662	1A7
14	1	2	12	0.57017	1B12
15	1	2	6	0.62933	1B6
16	1	2	5	0.63384	1B5
17	1	1	5	0.64733	1A5
18	1	2	4	0.71694	1B4
19	1	1	9	0.73324	1A9
20	1	1	8	0.76333	1A8
21	1	2	7	0.77003	1B7
22	1	1	11	0.82031	1A11
23	1	1	3	0.84377	1A3
24	1	2	8	0.96479	1B8
25	2	2	4	0.04316	1B4
26	2	2	· 6	0.06922	186
27	2	1 1	5	0.07321	1A5
28	2	1	7	0.13096	1A7
29	2	2	9	0.13138	1B9
30	2	1	4	0.14899	1A4
31	2	2	8	0,23886	1B8
32	2	2	2	0.27164	1B2
33	2	2	7	0.29896	1B7
34	2	1	8	0.30386	1A8
35	2	2	12	0.30735	1B12
36	2	1	11	0.41922	1A11
37	2	2	10	0.57385	1B10
38	2	1	1	0.70536	1A1
39	2	2	5	0.71358	1B5
40	2	1	12	0.74459	1A12
41	2	1	6	0.78166	1A6
42	2	1	9	0.80370	1A9
43	2	2	1	0.80677	1B1
44	2	2	11	0.82516	1B11
45	2	2	3	0.84184	1B3
46	2	1	2	0.85650	1 A 2
47	2	1	10	0.86259	1A10
48	2	1	3	0,93492	1 A3

АЕН-11-PSEUDO-02 JI-

Began distribution at 1400 a JKW 25 MARTIZ

1

	2/49	
Log	Book / Pages	والمعادية ومنتشائي المعارفين بالمعادية فالمعادية فالمعاد
		merit
Initia	als _ <u>m</u> Date	

PROOFED BY REVIEWED BY Initialise Dato' not needed you trevie

Item Number: 8

of 8 Page _

Completed Posts bishin at 1630 5/25/12 50nalysis performed by J. Luoma SAS version 9.2 07:17 23MAY12

AEH-11-PSEUDO-02

Z/49 Log Book/Pages . File Folder_____ Initials____W Date Inevill d. 112... PROOFED BY Initialar 🚄 Date! not needed you though

10 D 1000

Page _ of _ C

```
* Verified by: _____ (Date:_____)
7
                                       )
                                                          page of
8
   * Random allocation of mussel to exposure chambers.sas
   9
   DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
0
                                                                      AEH-11-PSEUDO-02
1
2
   FOOTNOTE1 'Analysis performed by J. Luoma SAS version ' & SYSVER & SYSTIME & SYSDATE;
ARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
З
4
   options 1s=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
5
   /*Random distribution of Mussels to experimental tanks*/
6
7
   /* tank 1 to 18 = tank A1 to A6 (1-6), tank B1 to B6 (7-12), tank C1 to C6 (13-18)
      round = distribution rounds 1 to 2, place one aliquot of mussels per tank per round */
8
9
    0
0 ! ********/
                                                          Log Book / Pages
                                                                         Z/49
1
                                                          File Folder_
                                                                      12 8
2
   /*Mussel species: Higgins eye*/
                                                          Initials m
                                                                     Date Thovi-
з
   data mussel;
4
    do round = 1 to 2 by 1;
                                                              PROOFED
                                                        Initiais:
5
    do block = 1 to 2 by 1;
                                                                    Date :
    do tank = 1 to 12 by 1;
                                                             REVIEWED BY
6
                                                        Initia)er
7
     x = ranuni(-1);
                                                                   Date
8
     output;
                                                               not needed
                                                               In Frovia
9
     end;
0
     end;
1
    end;
2
   run;
OTE: The data set WORK.MUSSEL has 48 observations and 4 variables.
OTE: DATA statement used (Total process time):
    real time
                       0.01 seconds
                                                                             . . .
    cpu time
                       0.01 seconds
   data musseldist; set mussel;
з
4
   if block = 1 and tank = 1 then tankn = ' 1A1';
     if block = 1 and tank = 2 then tankn = ' 1A2';
5
                                                                 Page <u>3</u> of <u>8</u>
      if block = 1 and tank = 3 then tankn = ' 1A3';
6
7
       if block = 1 and tank = 4 then tankn = ' 1A4';
        if block = 1 and tank = 5 then tankn = ' 1A5';
8
9
         if block = 1 and tank = 6 then tankn = ' 1A6';
   if block = 1 and tank = 7 then tankn = ' 1A7';
00
     if block = 1 and tank = 8 then tankn = ' 1A8';
01
      if block = 1 and tank = 9 then tankn = ' 1A9';
02
       if block = 1 and tank = 10 then tankn = '1A10';
03
        if block = 1 and tank = 11 then tankn = '1A11';
04
05
         if block = 1 and tank = 12 then tankn = '1A12';
06
    if block = 2 and tank = 1 then tankn = ' 1B1';
07
     if block = 2 and tank = 2 then tankn = ' 1B2';
      if block = 2 and tank = 3 then tankn = ' 1B3';
08
09
       if block = 2 and tank = 4 then tankn = ' 1B4';
10
        if block = 2 and tank = 5 then tankn = ' 1B5';
11
         if block = 2 and tank = 6 then tankn = ' 1B6';
12
    if block = 2 and tank = 7 then tankn = ' 1B7';
```

if block = 2 and tank = 8 then tankn = ' 188'; 13 if block = 2 and tank = 9 then tankn = ' 1B9'; 14 if block = 2 and tank = 10 then tankn = '1B10'; 15 if block = 2 and tank = 11 then tankn = '1B11'; 16 if block = 2 and tank = 12 then tankn = '1B12'; run; 17 OTE: There were 48 observations read from the data set WORK.MUSSEL. OTE: The data set WORK.MUSSELDIST has 48 observations and 5 variables. OTE: DATA statement used (Total process time): Log Book / Pages 0.03 seconds real time 128 File Folder Date hovi 0.03 seconds cpu time Initials _ un AEH-11-PSEUDO-02 PROOFEDEY 18 proc sort data= musseldist; 19 by round x; _ Date' initials: not needed 20 run; Yin Front OTE: There were 48 observations read from the data set WORK.MUSSELDIST. OTE: The data set WORK.MUSSELDIST has 48 observations and 5 variables. OTE: PROCEDURE SORT used (Total process time): 0.01 seconds real time 0.01 seconds cpu time 21 proc print data = musseldist; 22 title1 h=1 'AEH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels'; 23 title2 h=1 'Random assignment of Higgins eye to test tanks'; 24 run; OTE: There were 48 observations read from the data set WORK.MUSSELDIST. OTE: PROCEDURE PRINT used (Total process time): real time 0.01 seconds cpu time 0.01 seconds . 1

Page _____ of ____

```
Study Number : AEH-11-PSUED0-02
                                                                Log Book / Pages
  Study Director: Jim Luoma
                                                                Eile Folder
  date created : 23May12 - JALJY
                                                                Initials _
                                                                                Date Front
  Verified by:
                 _____ (Date:_
                                    _)
                                                        page
                                                                of
                                                                               PROOFED BY
  Random allocation of mussel to exposure chambers.sas
                                                                         Initials: _
                                                                                  Date :
**********
                                                                              REVIEWED BY
M 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
                                                                         laitialei "
                                                                                  Date!
                                                                               not needed
OOTNOTE1 'Analysis performed by J. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE: WW Thous
ptions ls=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
                                                                          AEH-11-PSEUDO-02
*Random distribution of Mussels to experimental tanks*/
* tank 1 to 18 = tank A1 to A6 (1-6), tank B1 to B6 (7-12), tank C1 to C6 (13-18)
  round = distribution rounds 1 to 2, place one aliquot of mussels per tank per round */
                     1
                                              *****
*Mussel species: Higgins eye*/
ata mussel;
do round = 1 to 2 by 1;
do block = 1 to 2 by 1;
 do tank = 1 to 12 by 1;
 x = ranuni(-1);
 output;
 end;
 end;
end;
un;
ata musseldist; set mussel;
f block = 1 and tank = 1 then tankn = ' 1A1';
 if block = 1 and tank = 2 then tankn = ' 1A2';
  if block = 1 and tank = 3 then tankn = ' 1A3';
   if block = 1 and tank = 4 then tankn = ' 1A4';
                                                                  Page 5 of 8
    if block = 1 and tank = 5 then tankn = ' 1A5';
     if block = 1 and tank = 6 then tankn = ' 1A6';
f block = 1 and tank = 7 then tankn = ' 1A7';
 if block = 1 and tank = 8 then tankn = ' 1A8':
                                                         0
  if block = 1 and tank = 9 then tankn = ' 1A9';
   if block = 1 and tank = 10 then tankn = '1A10';
    if block \approx 1 and tank = 11 then tankn = '1A11';
     if block = 1 and tank = 12 then tankn = '1A12';
if block = 2 and tank = 1 then tankn = ' 1B1';
 if block = 2 and tank = 2 then tankn = ' 1B2';
  if block = 2 and tank = 3 then tankn = '1B3';
   if block = 2 and tank = 4 then tankn = ' 1B4';
    if block = 2 and tank = 5 then tankn = ' 1B5';
     if block = 2 and tank = 6 then tankn = ' 1B6';
if block = 2 and tank = 7 then tankn = ' 1B7';
 if block = 2 and tank = 8 then tankn = ' 1B8';
 if block = 2 and tank = 9 then tankn = ' 1B9';
   if block = 2 and tank = 10 then tankn = '1B10';
    if block = 2 and tank = 11 then tankn = '1B11';
    if block = 2 and tank = 12 then tankn = '1B12'; run;
roc sort data= musseldist;
```

by round x; run; roc print data = musseldist; itle1 h=1 'AEH-11-PSUEDO-02: Effects of Pf-CL145A to juvenile mussels'; itle2 h=1 'Random assignment of Higgins eye to test tanks'; un;

2/49 Log Book/Pages File Folder 12 F Initials 10 C Date Frueviy

5/23/12

51-

AEH-11-PSEUDO-02

. .

î۵

....i

Page 6

PROOFED Initials: Date: REVIEWED BY Initials: Date: Not needed Www growing

```
Study Number : AEH-11-PSUEDO-02
  Study Director: Jim Luoma
  date created : 23 MAY 2012 - JAL JA
  Verified by: _____ (Date:____
                                   _)
                                                        page ____ of _
  Random allocation of treatment to tank.sas
AEH-11-PSEUDO-02
M 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
OOTNOTE1 'Analysis performed by j. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
ptions 1s=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
*Random assignment of treatment to experimental tanks*/
                                                                           2/49
*Mussel speces: Higgins Eye*/
                                                          Log Book / Pages
                                                                         12
                                                                      12
                                                          File Folder.
ata BSS;
                                                                                 TNOVI
                                                                          Date
                                                          igitials _ fw
do block = 1 to 2 by 1;
 do tank = 1 to 12 by 1;
                                                               PROOFEDBY
 x = ranuni(-1);
                                                                     🖉 Date 🚛
                                                          Initials: _
 output;
                                                               REVIEWED BY
 end;
                                                          initialsi _
                                                                      Date: .
end;
                                                                not needed
un;
                                                                  New
ata BSS2; set BSS;
if block = 1 and tank = 1 then tankn = ' 1A1';
 if block = 1 and tank = 2 then tankn = ' 1A2';
 if block = 1 and tank = 3 then tankn = ' 1A3';
   if block = 1 and tank = 4 then tankn = ' 1A4';
    if block = 1 and tank = 5 then tankn = ' 1A5';
     if block = 1 and tank = 6 then tankn = ' 1A6';
f block = 1 and tank = 7 then tankn = ' 1A7';
 if block = 1 and tank = 8 then tankn = ' 1A8';
  if block = 1 and tank = 9 then tankn = ' 1A9';
   if block = 1 and tank = 10 then tankn = '1A10';
    if block = 1 and tank = 11 then tankn = '1A11';
     if block = 1 and tank = 12 then tankn = '1A12';
if block = 2 and tank = 1 then tankn = ' 1B1';
 if block = 2 and tank = 2 then tankn = ' 1B2';
  if block = 2 and tank = 3 then tanknight (1B3)(p)
   if block = 2 and tank = 4 then tankn = ' 1B4';
    if block = 2 and tank = 5 then tankn = ' 1B5';
     if block = 2 and tank = 6 then tankn = ' 1B6':
if block = 2 and tank = 7 then tankn = ' 1B7';
 if block = 2 and tank = 8 then tankn = ' 1B8';
  if block = 2 and tank = 9 then tankn = ' 1B9';
   if block = 2 and tank = 10 then tankn = '1B10';
    if block = 2 and tank = 11 then tankn = '1B11';
     if block = 2 and tank = 12 then tankn = '1B12';
  run;
roc sort data=BSS2;
by block x;
un;
ata assign_trt_BSS; set BSS2;
if _n_ = 1 then trt = 'control';
if _n_ = 2 then trt = 'control';
```

```
if _n_ = 3 then trt = '50';
   if _n_ = 4 then trt = '50';
if _n_ = 5 then trt = '100';
 if _n_ = 6 then trt = '100';
  if _n_ = 7 then trt = '200';
                                                                              2/49
                                                             Log Book / Pages
   if _n_ = 8 then trt = '200';
                                                             File Folder.
                                                                              Date _ 712017
if n = 9 then trt = '300';
                                                                     in
                                                             loitials ___
 if _n_ = 10 then trt = '300';
  if _n_ = 11 then trt = '300-HD';
                                                                   PROOFEDBY
                                                             Initials: _____Date :_____
REVIEWED BY
   if _n_ = 12 then trt = '300-HD';
 if _n_ = 13 then trt = 'control';
 if _n_ = 14 then trt = 'control';
                                                             laitiets: ____ Date!
                                                                   not needed
  if _n_ = 15 then trt = '50';
                                                                    YNW THOUH
   if _n_ = 16 then trt = '50';
if _n_ = 17 then trt = '100';
 if _n = 18 then trt = '100';
  if _n_ = 19 then trt = '200';
   if _n_ = 20 then trt = '200';
if _n_ = 21 then trt = '300';
                                            AEH-11-PSEUDO-02
 if _n_ = 22 then trt = '300';
  if _n_ = 23 then trt = '300-HD';
   if _n_ = 24 then trt = '300-HD';
                                        run;
roc sort data= assign trt_BSS;
y_block tank; run;
roc print data= assign_trt_BSS;
itle1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';
itle2 h=1 'juvenile mussels from seven different unionid species';
itle3 h=1 'AEH-11-PSUEDO-02';
itle4 h=1 'Random assignment of treatment to experimental tanks';
itle5 h=1 'Mussel speces: Higgins eye';
un:
```

1.2.5.4 Normal State

8 Item Number:

Page & of 8

AEH-11-P\$EUD0-02

iuven				•	45A) to new1 mid species	y metamorphosed
•	1-PSUEDO-					and the set of the set
Rando	m assignm	ent of t	reatment to	experime	ntal tanks	·
Musse	1 speces:	Hickory	nut			
Obs	block	tank	х	tankn	trt	
1	1	1	0.61968	1A1	200	File Folder 12C Base 27-744
2	1	2	0.11103	1A2	control	Los Book / Pages
3	1	з	0.89970	1A3	300	File Folder Jac
4	1	4	0.31044	1A4	50	Initials KLW Bais ALT
5	1	5	0.13691	1A5	control	
6	1	6	0.53315	1A6	100	
7	1	7	0.25764	1A7	50	
8	1	8	0.96382	1A8	300 - HD	
9	1	9	0.49104	1A9	100	BROOM
10	1	10	0.92950	1A10	300-HD	PROOFED BY
11	1	11	0.55420	1A11	200	REVIEWED OF
12	1	12	0.90159	1A12	300	
13	2	1	0.76848	1B1	300	Dete:
14	· 2	2	0.07605	1B2	control	not d
15	2	3	0.27403	1B3	100	necket
16	2	4	0.74329	1B4	300	Www Those
17	2	5	0.65231	1B5	200	1
18	2	6	0.78238	1B6	300 - HD	
19	2	7	0.92026	1B7	300-HD	
20	2	8	0.68612	188	200	
21	2	9	0.21278	1B9	50	
22 -	2	10	0.25922	1810	100	
23	2.	11	0.25107	1811	50	
24	2	12	0.20788	1B12	control	

DOFED BY W Date : 27 DAU WED BY eeded Twork

Item Number: 2

Pg <u>1</u> of <u>10</u>

Analysis performed by M. Gaikowski SAS version 9.2 15:39 07JUL11 μM

_____ Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed 2 juvenile mussels from seven different unionid species AEH-11-PSUEDO-02 Random assignment of treatment to experimental tanks Mussel speces: Mucket 0bs block tank tankn х trt Log Book / P File Folder 1 1 1 0.37946 2A1 200 2 2 0.53122 2A2 300 t 27 JUL 1 witials <u>K</u> 6 3 1 3 0.30255 2A3 50 4 4 0.12079 2A4 control 1 5 1 5 0.49781 2A5 200 6 6 0.36211 2A6 100 1 7 7 0.34188 2A7 100 1 PROOFED 8 0.80502 1 8 2A8 300-HD Intigior Lin Dene :27 Mul 9 1 9 0.65471 2A9 300 REVIEWED BY 10 0.24673 2A10 50 10 1 daitiai ac 11 1 11 0.15408 2A11 control Datel 12 0.77460 300-HD 1 12 2A12 not che frevit 13 2 0.97200 2B1 300 - HD ň 2 14 2 0.91681 2B2 300 15 2 3 0.61409 2B3 100 0.89827 2 16 2B4 300 4 17 2 5 0.30278 2B5 50 286 18 2 6 0.93071 300 - HD 19 2 7 0.00100 287 control 20 2 0.73872 288 100 8

•

21

22

23

24

2

2

2

2

9

10

11

12

0.32982

0.20051

0.82685

0,79338

289

2B10

2B11

2B12

50

200

200

control

Pg <u></u>
- of <u>10</u>

Analysis performed by M. Gaikowski SAS version 9.2 15:39 07JUL11 My

AEH-11-PSEUD0-02

```
197 * date created : 07Jul11 - MPG
198 * Verified by: _____ (Date:_
                                          )
                                                              page ____ of ____
 199 * Random allocation of treatment to tank.test 2.sas
    200
201 DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
202
203 FOOTNOTE1 'Analysis performed by M. Gaikowski SAS version ' &SYSVER &SYSTIME &SYSDATE:
WARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
204
205 options ls=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
206
207
     /*Random assignment of treatment to experimental tanks*/
208
     /*Mussel speces: Hickory nut*/
209
     data HNT;
210
     do block = 1 to 2 by 1;
211
       do tank = 1 to 12 by 1;
                                                           og Book / Pa
212
       x = ranuni(-1);
                                                          File Folder,
                                                                                    7-141-11
213
        output;
                                                          Mitials Kill
214
      end;
215
      end;
216 run;
                                                                        PROOFED BY
NOTE: The data set WORK.HNT has 24 observations and 3 variables.
                                                                 In Maler Line Date is
                                                                                         FAULI
NOTE: DATA statement used (Total process time):
                                                                        HEXIEWED BY
      real time
                         0.01 seconds
      opu time
                         0.01 seconds
217 data HNT2; set HNT;
218
      if block = 1 and tank = 1 then tankn = ' 1A1';
       if block = 1 and tank = 2 then tankn = ' 1A2';
219
220
        if block = 1 and tank = 3 then tankn = ' 1A3';
221
         if block = 1 and tank = 4 then tankn = ' 1A4';
222
          if block = 1 and tank = 5 then tankn = 145^{\circ};
           if block = 1 and tank = 6 then tankn = ' 1A6';
223
    if block = 1 and tank = 7 then tankn = ' 1A7';
224
      if block = 1 and tank = 8 then tankn = ' 1A8';
225
226
       if block = 1 and tank = 9 then tankn = ' 1A9':
227
         if block = 1 and tank = 10 then tankn = '1A10';
228
          if block = 1 and tank = 11 then tankn = '1A11';
229
           if block = 1 and tank = 12 then tankn = '1A12';
     if block = 2 and tank = 1 then tankn = ' (B1');
230
231
       if block = 2 and tank = 2 then tankn = ' 1B2';
       if block = 2 and tank = 3 then tankn = 183^{\circ};
232
233
         if block = 2 and tank = 4 then tankn = ' 1B4';
234
         if block = 2 and tank = 5 then tankn = ' 1B5';
235
           if block = 2 and tank = 6 then tanks = ' 1B6';
236
      if block = 2 and tank = 7 then tankn = ' 1B7':
237
       if block = 2 and tank = 8 then tankn = ' 1B8';
238
       if block = 2 and tank = 9 then tankn = '1B9';
239
         if block = 2 and tank = 10 then tankn = '1B10';
         if block = 2 and tank = 11 then tankn = '1B11';
240
241
           if block = 2 and tank = 12 then tankn = '1812';
242
         run:
                                                                       Pg 3 of b
NOTE: There were 24 observations read from the data set WORK.HNT.
NOTE: The data set WORK.HNT2 has 24 observations and 4 variables.
NOTE: DATA statement used (Total process time):
      real time
                         0.01 seconds
     opu time
                         0.01 seconds
```

```
243 proc sort data=HNT2;
244
     by block x;
245 run;
NOTE: There were 24 observations read from the data set WORK.HNT2.
NOTE: The data set WORK.HNT2 has 24 observations and 4 variables.
NOTE: PROCEDURE SORT used (Total process time);
      real time
                          0.00 seconds
      cpu time
                          0.00 seconds
246
                                                            File Fol
247 data assign_trt_HNT; set HNT2;
                                                                                     27 MLI
                                                                   Km
                                                            le<sup>ria</sup>
248
     if _n_ = 1 then trt = 'control';
249
       if _n_ = 2 then trt = 'control';
250
        f_n = 3 then trt = '50';
251
         if _n_ = 4 then trt = '50';
                                                                          PROOFEC BY
      if n = 5 then trt = '100';
                                                                                 Dare
252
       if _n = 6 then trt = '100';
253
                                                                         REV/EWED .
        if _n_ = 7 then trt = '200';
254
                                                                       ين أذ
                                                                                  Detei
         if _n_ = 8 then trt = '200';
255
      if _n_ = 9 then trt = '300';
256
       if ____ = 10 then trt = '300';
257
        if _n_ = 11 then trt = '300-HD';
258
259
         if _n_ = 12 then trt = '300-HD';
       if _n_ = 13 then trt = 'control';
260
261
       if _n_ = 14 then trt = 'control';
        if _n_ = 15 then trt = '50';
262
         if _n_ = 16 then trt = '50';
263
      if n = 17 then trt = '100';
264
       if _n_ = 18 then trt = '100';
265
266
        if _n = 19 then trt = '200';
         if _n_ = 20 then trt = '200';
267
      if _n_ = 21 then trt = '300';
268
       if _n_ = 22 then trt = '300';
269
        if _n_ = 23 then trt = '300-HD';
270
271
         if _n_ = 24 then trt = '300-HD';
                                             run;
NOTE: There were 24 observations read from the data set WORK.HNT2.
NOTE: The data set WORK.ASSIGN_TRT_HNT has 24 observations and 5 variables.
NOTE: DATA statement used (Total process time):
      real time
                          0.01 seconds
      cpu time
                          0.01 seconds
272 proc sort data= assign_trt_HNT;
273 by block tank; run;
NOTE: There were 24 observations read from the data set WORK.ASSIGN TRT HNT.
NOTE: The data sot WORK.ASSIGN_TRT_HNT has 24 observations and 5 variables.
NOTE: PROCEDURE SORT used (Total process time):
                                                                            Pg 4 of 10
      real time
                          0.00 seconds
      cpu time
                          0.00 seconds
274
275 proc print data= assign_trt_HNT;
276 title: h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';
277 title2 h=1 'juvenile mussels from seven different unionid species';
278 title3 h=1 'AEH-11-PSUEDO-02';
```

```
AEH-11-PSEUDO-02
279 title4 h=1 'Random assignment of treatment to experimental tanks';
280 title5 h=1 'Mussel speces: Hickory nut';
281 run;
NOTE: There were 24 observations read from the data set WORK.ASSIGN_TRT_HNT.
NOTE: PROCEDURE PRINT used (Total process time):
                          0.00 seconds
      real time
      cpu time
                          0.00 seconds
282
      283
                           ******
                                                             **********
283! **********************
284 /*Mussel speces: Mucket*/
285 data MKT;
                                                              Book / Pages
286
     do block = 1 \text{ to } 2 \text{ by } 1;
287
      do tank = 1 to 12 by 1;
                                                          File Folder
                                                                                      FINUL
      x = ranuni(-1);
288
                                                          Initials Lin
289
       output;
290
      end;
291
      end;
                                                                                      Έ¥
292 run;
                                                                                           7-7441
                                                                   initials: R
                                                                               W Dave d
                                                                          REXIEWED BY
NOTE: The data set WORK.MKT has 24 observations and 3 variables.
                                                                   លោះ ខេត់ 🖬
                                                                                   Detei
NOTE: DATA statement used (Total process time):
                                                                            Not el
      real time
                                                                                provid
                     0.00 seconds
      opu time
                          0.00 seconds
293 data MKT2; set MKT;
      if block = 1 and tank = 1 then tankn = ' 2A1';
294
       if block = 1 and tank = 2 then tankn = ' 2A2';
295
296
        if block = 1 and tank = 3 then tankn = ' 2A3';
         if block = 1 and tank = 4 then tankn = ' 2A4';
297
298
          if block = 1 and tank = 5 then tankn = ' 2A5';
           if block = 1 and tank = 6 then tankn = ' 2A6';
299
300
     if block = 1 and tank = 7 then tankn \approx ' 2A7':
      if block = 1 and tank = 8 then tankn = ' 2A8';
301
302
        if block = 1 and tank = 9 then tankn = ' 2A9';
303
         if block = 1 and tank = 10 then tankn = '2A10';
304
          if block = 1 and tank = 11 then tankn = '2A11';
305
           if block = 1 and tank = 12 then tankn = '2A12';
306
      if block = 2 and tank = 1 then tankn = ' 2B1';
       if block = 2 and tank = 2 then tankn = ' 2B2';
307
        if block = 2 and tank = 3 then tankn = '2B3';
308
309
         if block = 2 and tank = 4 then tankn = ' 2B4';
          if block = 2 and tank = 5 then tankn = ' 2B5';
310
311
           if block = 2 and tank = 6 then tankn = ' 2B6';
      if block = 2 and tank = 7 then tankn = ' 2B7';
312
313
       if block = 2 and tank = 8 then tankn = ' 2B8';
        if block = 2 and tank = 9 then tankn = '2B9';
314
315
         if block = 2 and tank = 10 then tankn = '2B10';
         if block = 2 and tank = 11 then tankn = '2B11';
316
317
          if block = 2 and tank = 12 then tankn = '2B12';
318
         run:
NOTE: There were 24 observations read from the data set WORK,MKT.
                                                                         Pg <u>5</u> of <u>10</u>
NOTE: The data set WORK.MKT2 has 24 observations and 4 variables.
NOTE: DATA statement used (Total process time):
      real time
                         0.03 seconds
     cpu time
                         0.03 seconds
```

AEH-11-PSEUDO-02

320 by block x; 321 run: NOTE: There were 24 observations read from the data set WORK.MKT2. NOTE: The data set WORK.MKT2 has 24 observations and 4 variables. NOTE: PROCEDURE SORT used (Total process time): real time 0.00 seconds cpu time 0.00 seconds 322 Kog Book / Pad 323 data assign_treat_MKT; set MKT2; File Folder 324 if _n_ = 1 then trt = 'control'; 17-MU Initiale X ふんる if _n_ = 2 then trt = 'control'; 325 326 if _n_ = 3 then trt = '50'; 327 if _n_ = 4 then trt = '50'; if _n_ = 5 then trt = '100'; 328 PROOFED BY if _n_ = 6 then trt = '100'; 329 Initialor Kill Deta: 27 JULI if _n_ = 7 then trt = '200'; 330 REVIEWED BY if _n_ = 8 then trt = '200'; 331 initial. 332 if _n_ = 9 then trt = '300'; Date: hot elegnoury if _n_ = 10 then trt = '300'; 333 334 if _n_ = 11 then trt = '300-HD'; if _n_ = 12 then trt = '300-HD'; 335 336 if _n_ = 13 then trt = 'control'; if _n_ = 14 then trt = 'control'; 337 if _n_ = 15 then trt = '50'; 338 if _n_ = 16 then trt = '50'; 339 if _n_ = 17 then trt = '100'; 340 341 if _n_ = 18 then trt = '100'; 342 if _n_ = 19 then trt = '200'; 343 if _n_ = 20 then trt = '200'; 344 if _n_ = 21 then trt = '300'; 345 if _n_ = 22 then trt = '300'; 346 if _n_ = 23 then trt = '300-HD'; 347 if _n_ = 24 then trt = '300-HD'; run; NOTE: There were 24 observations read from the data set WORK.MKT2. NOTE: The data set WORK.ASSIGN_TREAT_MKT has 24 observations and 5 variables. NOTE: DATA statement used (Total process time): real time 0.01 seconds cpu time 0.01 seconds 348 349 proc sort data = assign_treat_MKT; 350 by block tank; run; NOTE: There were 24 observations read from the data set WORK.ASSIGN_TREAT_MKT. NOTE: The data set WORK.ASSIGN_TREAT_MKT has 24 observations and 5 variables. NOTE: PROCEDURE SORT used (Total process time): real time 0.07 seconds Pg 6 of 10 opu time 0.00 seconds 351 352 proc print data = assign_treat_MKT; 353 title1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';

.

319 proc sort data=MKT2;

354 titlo2 h=1 'juvenile mussels from seven different unionid species';

AEH-11-PSEUDD-02

355 title3 h=1 'AEH-11-PSUEDO-02';

356 title4 h=1 'Random assignment of treatment to experimental tanks';

- 357 title5 h≕1 'Mussel speces: Mucket';
- 358 run;

NOTE: There were 24 observations read from the data sot WORK.ASSIGN_TREAT_MKT.

- NOTE: PROCEDURE PRINT used (Total process time):
 - real time 0.01 seconds cpu time 0.00 seconds

Log Book / Pa File Folder e 17-MLI

- PROOFED BY Intialer King Date , 27 Mill REVIEWED B Initiale, _ Date! ___ Not ded avily

Pg 7 of 10

```
·
                                                                         AEH-11-PSEUD0-02
* Study Number : AEH-11-PSUEDO-02
                                                                                               ... .
   Study Director: Jim Luoma
  date created : 07Julii - MPG /m//
* Verified by: _____ (Date:____
                                   )
                                                      page ____ of ____
* Random allocation of treatment to tank.test 2.sas
DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
FOOTNOTE1 'Analysis performed by M. Gaikowski SAS version ' &SYSVER &SYSTIME &SYSDATE:
options ls=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
/*Random assignment of treatment to experimental tanks*/
/*Mussel speces: Hickory nut*/
data HNT;
                                                       Log Book / Pa
 do block = 1 to 2 by 1;
 do tank = 1 to 12 by 1;
                                                       File Folder.
  x ≂ ranuni(-1);
                                                                               27 TULI
                                                                           ... B
                                                       mitials LW
  output;
 end;
 end;
                                                                   PROOFED BY
run;
data HNT2; set HNT;
                                                            Iniver LW Dore 27-MULI
 if block = 1 and tank = 1 then tankn = ' 1A1';
                                                                   REVIEWEDE
                                                                  not Needer
  if block = 1 and tank = 2 then tankn = ' 1A2';
                                                            Apaltiel 🖕 🖌
  if block = 1 and tank = 3 then tankn = ' 1A3';
                                                                    im provit
   if block = 1 and tank = 4 then tankn = ' 1A4';
    if block = 1 and tank = 5 then tankn = ' 1A5';
     if block = 1 and tank = 6 then tankn = ' 1A6';
if block = 1 and tank = 7 then tankn = ' 1A7';
  if block = 1 and tank = 8 then tankn = ' 1A8';
  if block = 1 and tank = 9 then tankn = ' 1A9';
   if block = 1 and tank = 10 then tankn = '1A10';
    if block = 1 and tank = 11 then tankn = '1A11'
     if block = 1 and tank = 12 then tankn = '1A12';
 if block = 2 and tank = 1 then tankn = ' 1B1';
 if block = 2 and tank = 2 then tankn = ' 1B2';
  if block = 2 and tank = 3 then tankn = ' 1B3';
   if block = 2 and tank = 4 then tankn = ' 1B4';
    if block = 2 and tank = 5 then tankn = ' 185';
     if block = 2 and tank = 6 then tankn = ' 1B6';
 if block = 2 and tank = 7 then tankn = ' 1B7';
 if block = 2 and tank = 8 then tankn = ' 1B8';
  if block = 2 and tank = 9 then tankn = ' 189';
   if block = 2 and tank = 10 then tankn = '1B10';
    if block = 2 and tank = 11 then tankn = '1Bi1';
     if block = 2 and tank = 12 then tankn = '1B12';
   run;
proc sort data=HNT2;
by block x;
run;
data assign_trt_HNT; set HNT2;
if _n_ = 1 then trt = 'control'
 if _n_ = 2 then trt = 'control';
  if _n_ = 3 then trt = '50';
   if _n_ = 4 then trt = '50';
                                                                  Pg 8 of 10
 if _n_ = 5 then trt = '100';
 if _n_ = 6 then trt = '100';
  if n_{1} = 7 then trt = '200';
```

```
if _n_ = 8 then trt = '200';
 if _n_ = 9 then trt = '300';
  if _n_ = 10 then trt = '300';
   if _n_ = 11 then trt = '300-HD';
    if _n_ = 12 then trt = '300-HD';
  if _n_ = 13 then trt = 'control':
  if _n_ = 14 then trt = 'control';
   if_{n} = 15 then trt = '50';
                                                          Can Book / Pa
    if _n_ = 16 then trt = '50';
                                                          File Fol-
                                                                   t
 if _n_ = 17 then trt = '100';
                                                                                    29 1111
                                                          Inition KWW
  if _n_ = 18 then trt = '100';
   if _n_ = 19 then trt = '200';
    if _n_ = 20 then trt = '200';
                                                                             PROOFED BY
 if _n_ = 21 then trt = '300';
                                                                      lattigian Hun Bate : 27 THUI
  if n = 22 then trt = '300';
                                                                            REVIEWED BY
   if _n_ = 23 then trt = '300-HD';
                                                                      Initiales
                                                                                    - Date!
   if _n_ = 24 then trt = '300-HD';
                                       run:
proc sort data= assign_trt_HNT;
by block tank; run:
proc print data= assign_trt_HNT;
title1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed':
title2 h=1 'juvenile mussels from seven different unionid species';
title3 h=1 'AEH-11-PSUED0-02';
title4 h=1 'Random assignment of treatment to experimental tanks';
title5 h=1 'Mussel speces: Hickory nut';
run:
/*Mussel speces: Mucket*/
data MKT:
 do block = 1 \text{ to } 2 \text{ by } 1;
 do tank = 1 to 12 by 1;
  x = ranuni(-1);
  output;
 end;
 end;
run;
data MKT2; set MKT;
if block = 1 and tank = 1 then tankn = ' 2A1';
 if block = 1 and tank = 2 then tankn = ' 2A2';
  if block = 1 and tank = 3 then tankn = ' 2A3';
   if block = 1 and tank = 4 then tankn = ' 2A4';
    if block = 1 and tank = 5 then tankn = ' 2A5':
     if block = 1 and tank = 6 then tankn = ' 2A6';
if block = 1 and tank = 7 then tankn = ' 2A7';
 if block = 1 and tank = 8 then tankn = ' 2A8':
  if block = 1 and tank = 9 then tankn = ' 2A9';
   if block = 1 and tank = 10 then tankn = '2A10^{\circ};
    if block = 1 and tank = 11 then tankn = '2A11':
     if block = 1 and tank = 12 then tankn = '2A_{12}';
 if block = 2 and tank = 1 then tankn = ' 2B1';
 if block = 2 and tank = 2 then tankn = ' 2B2';
  if block = 2 and tank = 3 then tankn = ' 2B3';
   if block = 2 and tank = 4 then tankn = '2B4';
                                                                                 _of_lb
    if block = 2 and tank = 5 then tankn = \frac{1}{285};
     if block = 2 and tank = 6 then tankn = ' 2B6';
 if block = 2 and tank = 7 then tankn = ' 2B7';
 if block = 2 and tank = 8 then tankn = ' 288';
  if block = 2 and tank = 9 then tankn = ' 2B9';
   if block = 2 and tank = 10 then tankn = '2810';
```

if block = 2 and tank = 11 then tankn = '2B11'; if block = 2 and tank = 12 then tankn = '2B12'; run; proc sort data=MKT2; by block x; run; data assign_treat_MKT; set MKT2; if _n_ = 1 then trt = 'control'; if _n_ = 2 then trt = 'control'; if _n_ = 3 then trt = '50'; if _n_ = 4 then trt = '50'; if _n_ = 5 then trt = '100'; if _n_ = 6 then trt = '100'; if _n_ = 7 then trt = '200'; if _n_ = B then trt = '200'; if _n_ = 9 then trt = '300'; if $n_ = 10$ then trt = '300'; if _n = 11 then trt = '300-HD'; if _n_ = 12 then trt = '300-HD'; if _n_ = 13 then trt = 'control';
if _n_ = 14 then trt = 'control'; if _n_ = 15 then trt = '50'; if _n_ = 16 then trt = '50'; if _n_ = 17 then trt = '100'; if _n_ = 18 then trt = '100'; if _n_ = 19 then trt = '200'; if _n_ = 20 then trt = '200'; if _n_ = 21 then trt = '300'; if _n_ = 22 then trt = '300'; if _n_ = 23 then trt = '300-HD'; if _n_ = 24 then trt = '300-HD'; run;

Eg Book/R: 2/5-6 File Folder IRC Initials Kuw : 27-74211

PROOFEI h Heler Ville De RFV/EWE Date: (a)tiale

proc sort data = assign_treat_MKT; by block tank; run;

proc print data = assign_treat_MKT; title1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL14SA) to newly metamorphosed'; title2 h=1 'juvcnile mussels from seven different unionid species'; title3 h=1 'AEH-11-PSUEDO-02'; title4 h=1 'Random assignment of treatment to experimental tanks'; title5 h=1 'Mussel speces: Mucket'; run;

MA \$75ull1

Item Number: ___

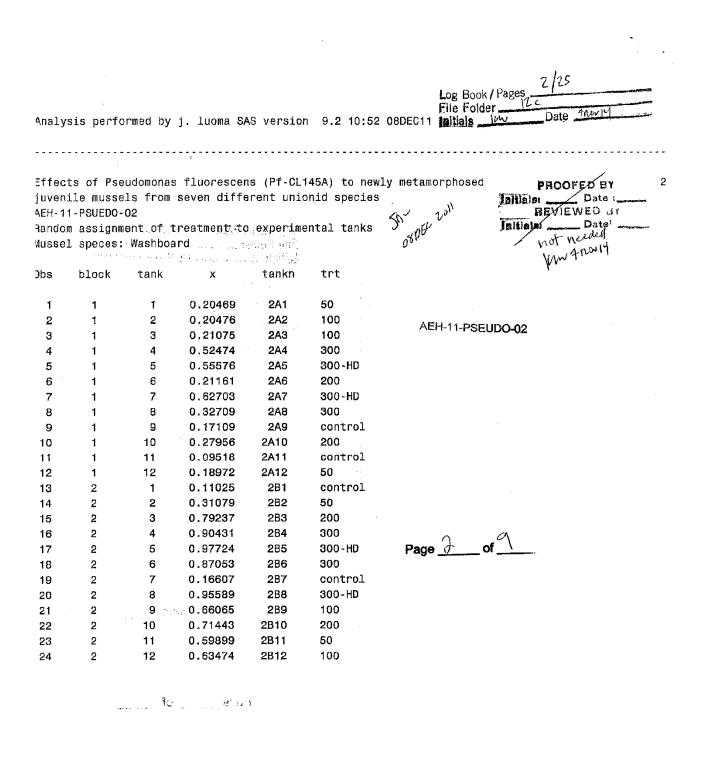
Pg_10_of_10

Mussel speces: Black sandshell

0bs	block	tank	×	tankn	trt
1	1	1	0.08123	1 A1	control
2	1	2	0.27640	1A2	50
3	1	3	0.79469	1A3	300
4	1	4	0.93741	1A4	300-HD
5	1	5	0.95103	1A5	300-HD
6	1	6	0.66770	1A6	200
7	1	7	0.89685	1A7	300
8	1	8	0.72661	1A8	200
9	1	9	0.50898	1A9	100
10	1	10	0.33095	1A10	50
11	1	. 11	0.07960	1A11	control
12	1	12	0.51785	1A12	100
13	2	1	0.20344	1B1	50
14	2	2	0.33223	1B2	100
15	2	3	0.04673	1B3	control
16	2	4	0.45194	1B4	2 0 0
17	2	5	0.92635	1 B 5	300-HD
18	2	6	0.91847	1B6	300-HD
19	2	7	0.08267	1 B7	control
20	· 2	8	0.27547	1 B 8	100
21	2	9	0.52226	1B9	20 0
22	2	10	0.78741	1B10	30 0
23	2	11		1B\(\?\% ^{CQ}	300
24	2	12	0.21386	1B12	50

AEH-11-PSEUDO-02

1


.

File Folder 12C File Folder 12C Initials HW Date HDEGI PROOFED BY

Initials: Date: REVIEWED BY Initials: Date: Not Wether Anorth

Item Number: <u>3</u>

Page _____ of ____9

		f		· .		Elle Fol Initials	kn Date thous
				• ,		<u> </u>	ROOFED BY
						Initials: . RE	
						foitialar,	Date!
				-		U	noted with
				1 - ₁			not deved novit
Analy	/sis perfo	nmed by	j. luoma S/	AS versior	9.2 10:52		
			-				AEH-11-PSEUDO-02
ETTec juver	ile musse	udomona: ls from	s fluorescer seven diffe	ns (Pf-CL1 erent unic	45A) to new mid species	ly metamorpho:	sed
4EH - 1	1 - PSUED0 -	02				To-	
			reatment to) experime	ntal tanks	0800 2011	
uusse	al speces:	not use	d				
Obs	block	tank	x	tankn	trt		
1	1	1	0.64657	3A1	200		
2	1	2	0.21751	3A2	50		
3	1	3	0.63033	3A 3	200		
4	1	4	0.98358	3A4	300-HD		
5	1	5	0.09538	3A5	control		
6	1	6	0.83695	3A6	300		
7	1	7	0.59136	3A7	100		
8	1	8	0.07278	3 A8	control		
9	1	9	0.11770	- 3A9	50 ₀₅ 9		
10	1	10	0.93890	3A10	300-HD		Page 3 of
	1	11	0.24048	3A11	1 0 0		Page 01
11	1	12	0.73885	3A12	300		
11 12	2	1	0.86072	3B1	300		
	2	2	0.59571	3B2	100		
12	2	3	0.92769	3B3	300-HD		
12 13 14 15	2		0.66057	3B4	100		
12 13 14 15 16		4	0.00007		control		
12 13 14 15 16 17	2	4 5	0.02587	3B5	00111101		
12 13 14 15 16 17 18	2 2			3B5 3B6	50		
12 13 14 15 16 17	2 2 2	5	0.02587				
12 13 14 15 16 17 18	2 2 2 2	5 6	0.02587 0.05322	386	50		
12 13 14 15 16 17 18 19	2 2 2 2 2	5 6 7	0.02587 0.05322 0.90498	386 387	50 300 control		
12 13 14 15 16 17 18 19 20	2 2 2 2 2 2	5 6 7 8	0.02587 0.05322 0.90498 0.02587	386 387 388	50 300		
12 13 14 15 16 17 18 19 20 21	2 2 2 2 2 2 2 2 2	5 6 7 8 9	0.02587 0.05322 0.90498 0.02587 0.93896	386 387 388 389	50 300 control 300-HD		

Log Book / Pages 2 25 File Folder De e 2NovH
Initials: Date: BEVIEWED BY Initials: Date: Not needed Ww Inorth

.

AEH-11-PSEUDO-02

Analysis performed by j. luoma SAS version 9.2 10:52 08DEC11

of_Q Ц Page .

/

```
`
   Study Number : AEH-11-PSUED0-02
   Study Director: Jim Luoma
   date created : 08 Dec 2011 - MPG
   Verified by: _____ (Date:_____
                                                         page ____ of _
   Random allocation of treatment to tank.sas
*********************************
                                                                         AEH-11-PSEUDO-02
DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
                                                         08 PELOII
                                                    The-
FOOTNOTE1 'Analysis performed by j. luoma SAS version
                                                      &SYSVER &SYSTIME &SYSDATE;
options 1s=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
                                                                                 125
/*Random assignment of treatment to experimental tanks*/
                                                                Log Book / Pages
                                                               File Folder
/*Mussel speces: Black sandshell*/
                                                                                Date grow
                                                                loitials.
data BSS;
 do block = 1 to 2 by 1;
  do tank = 1 to 12 by 1;
                                                                   PROOFEDBY
                                                              Initials: _
   x = ranuni(-1);
                                                                       🚄 Date :,
                                                                   REVIEWED BY
   output;
                                                              [n]t]aim
                                                                          Date
  end;
                                                                    not needy
                                                                     Um Therit
 end;
run;
data BSS2; set BSS;
 if block = 1 and tank = 1 then tankn = ' 1A1';
  if block = 1 and tank = 2 then tankn = ' 1A2';
   if block = 1 and tank = 3 then tankn = ' 1A3';
    if block = 1 and tank = 4 then tankn = ' 1A4';
     if block = 1 and tank = 5 then tankn = ' 1A5';
      if block = 1 and tank = 6 then tankn = ' 1A6';
if block = 1 and tank = 7 then tankn = ' 1A7';
  if block = 1 and tank = 8 then tankn = ' 1A8';
   if block = 1 and tank = 9 then tankn = ' 1A9';
    if block = 1 and tank = 10 then tankn = '1A10';
                                                                     Page 5 of 9
     if block = 1 and tank = 11 then tankn = '1A11';
      if block = 1 and tank = 12 then tankn = '1A12';
 if block = 2 and tank = 1 then tankn = ' 1B1';
  if block = 2 and tank = 2 then tankn = ' 1B2';
   if block = 2 and tank = 3 then tankn = ' 1B3';
    if block = 2 and tank = 4 then tankn = ' 1B4';
     if block = 2 and tank = 5 then tankn = ' 1B5';
      if block = 2 and tank = 6 then tankn = ' 1B6';
 if block = 2 and tank = 7 then tankn = ' 1B7';
  if block = 2 and tank = 8 then tankn = ' 1B8';
   if block = 2 and tank = 9 then tankn = ' 1B9';
    if block = 2 and tank = 10 then tankn = '1B10';
    if block = 2 and tank = 11 then tankn = '1B11';
     if block = 2 and tank = 12 then tankn = '1B12';
   run;
proc sort data=BSS2;
 by block x;
run;
data assign_trt_BSS; set BSS2;
if _n_ = 1 then trt = 'control';
```

```
::if _n_ = 2 then trt = 'control';
   if _n_ = 3 then trt = '50';
                                                                          2/25
   if n = 4 then trt = '50';
                                                            Log Book / Pages
                                                                            120
 if n = 5 then trt = '100';
                                                           File Folder
                                                                                "Ynew
                                                                            Date_
  if _n_ = 6 then trt = '100';
                                                           juitials_
   if n = 7 then trt = '200';
                                                                  PROOFED
    if _n_ = 8 then trt = '200';
                                                                         Date
                                                            Initials: .
                                                                 REVLEWED .
 if _n_ = 9 then trt = '300';
                                                                         Date
  if n = 10 then trt = '300';
                                                            Initials,
                                                                     not neede
  if n = 11 then trt = '300-HD';
                                                                      Im fron
   if _n_ = 12 then trt = '300-HD';
  if _n_ = 13 then trt = 'control';
  if _n_ = 14 then trt = 'control';
                                          AEH-11-PSEUDO-02
  if _n_ = 15 then trt = '50';
   if n = 16 then trt = '50';
 if _n_ = 17 then trt = '100';
  if _n_ = 18 then trt = '100';
  if _n_ = 19 then trt = '200';
    if _n_ = 20 then trt = '200';
if _n_ = 21 then trt = '300';
 if n = 22 then trt = '300';
  if n = 23 then trt = '300-HD';
   if _n_ = 24 then trt = '300-HD';
                                        run;
proc sort data= assign_trt_BSS;
by block tank; run;
proc print data= assign_trt_BSS;
title1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';
title2 h=1 'juvenile mussels from seven different unionid species';
title3 h=1 'AEH-11-PSUEDO-02';
title4 h=1 'Random assignment of treatment to experimental tanks';
title5 h=1 'Mussel speces: Black sandshell';
run;
/****************************
/*Mussel speces: Washboard*/
data WAS;
do block = 1 to 2 by 1;
 do tank = 1 to 12 by 1;
  x = ranuni(-1);
                                                         Page 0
  output;
 end;
end;
run;
Jata WAS2; set WAS;
if block = 1 and tank = 1 then tankn = ' 2A1';
 if block = t and tank = 2 then tankn = ' 2A2';
  if block = 1 and tank = 3 then tankn = ' 2A3';
    if block = 1 and tank = 4 then tankn = ' 2A4';
     if block = 1 and tank = 5 then tankn = ' 2A5';
      if block = 1 and tank = 6 then tankn = ' 2A6';
if block = 1 and tank = 7 then tankn = ' 2A7';
  if block = 1 and tank = 8 then tankn = ' 2A8';
  if block = 1 and tank = 9 then tankn = ' 2A9';
    if block = 1 and tank = 10 then tankn = '2A10';
```

```
if block = 1 and tank = 11 then tankn = '2A11';
                                                         JAL
      if block = 1 and tank = 12 then tankn = '2A12':
 if block = 2 and tank = 1 then tankn = ' 2B1';
  if block = 2 and tank = 2 then tankn = ' 2B2';
   if block = 2 and tank = 3 then tankn = ' 2B3';
    if block = 2 and tank = 4 then tankn = ' 2B4';
     if block = 2 and tank = 5 then tankn = ' 2B5';
                                                                 Initials: -
      if block = 2 and tank = 6 then tankn = ' 2B6';
                                                                  Initials
 if block = 2 and tank = 7 then tankn = ' 2B7';
  if block = 2 and tank = 8 then tankn = ' 2B8';
   if block = 2 and tank = 9 then tankn = ' 2B9';
    if block = 2 and tank = 10 then tankn = '2B10';
     if block = 2 and tank = 11 then tankn = '2B11';
      if block = 2 and tank = 12 then tankn = '2B12';
    run;
proc sort data=WAS2;
 by block x;
run;
data assign_treat_WAS; set WAS2;
 if _n_ = 1 then trt = 'control';
  if n = 2 then trt = 'control';
   if n = 3 then trt = '50';
    if _n_ = 4 then trt = '50';
 if _n_ = 5 then trt = '100';
  if n = 6 then trt = '100';
   if _n_ = 7 then trt = '200';
    if _n_ = 8 then trt = '200';
 if _n_ = 9 then trt = '300';
  if _n_ = 10 then trt = '300';
   if _n_ = 11 then trt = '300-HD';
    if n = 12 then trt = '300-HD';
  if _n_ = 13 then trt = 'control';
  if _n_ = 14 then trt = 'control';
   if _n_ = 15 then trt = '50';
    if _n_ = 16 then trt = '50';
 if _n_ = 17 then trt = '100';
  if n = 18 then trt = '100';
   if _n_ = 19 then trt = '200';
    if _n_ = 20 then trt = '200';
 if _n_ = 21 then trt = '300';
  if _n_ = 22 then trt = 10300 ;
   if _n_ = 23 then trt = '300-HD';
    if n = 24 then trt = '300-HD';
                                        run;
proc sort data = assign treat WAS;
by block tank; run;
proc print data = assign treat WAS;
title1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';
title2 h=1 'juvenile mussels from seven different unionid species';
title3 h=1 'AEH-11-PSUED0-02';
title4 h=1 'Random assignment of treatment to experimental tanks';
title5 h=1 'Mussel speces: Washboard';
run;
```

LOR Book / Pages File Folder Initials M Date Thevis PROOFED Date : REVIEWED BY

Date

AEH-11-PSEUDO-02

Page 7 of 9

231

/*************** /*Mussel speces: NOT USED*/ data was; do block = 1 to 2 by 1; do tank = 1 to 12 by 1; x = ranuni(-1);output; end; AEH-11-PSEUDO-02 end; run; data was2; set was; data was2; set was; if block = 1 and tank = 1 then tankn = ' 3A1'; if block = 1 and tank = 2 then tankn = ' 3A2'; if block = 1 and tank = 3 then tankn = ' 3A3'; if block = 1 and tank = 4 then tankn = ' 3A4'; if block = 1 and tank = 5 then tankn = ' 3A5'; if block = 1 and tank = 6 then tankn = ' 3A6'; if block = 1 and tank = 7 then tankn = ' 3A7'; if block = 1 and tank = 8 then tankn = ' 3A8'; if block = 1 and tank = 9 then tankn = ' 3A9'; if block = 1 and tank = 10 then tankn = '3A10'; if block = 1 and tank = 11 then tankn = '3A11' if block = 1 and tank = 12 then tankn = '3A12'; if block = 2 and tank = 1 then tankn = '3B1'; if block = 2 and tank = 2 then tankn = '3B2'; if block = 2 and tank = 3 then tankn = ' 3B3'; if block = 2 and tank = 4 then tankn = ' 3B4'; if block = 2 and tank = 5 then tankn = ' 3B5'; if block = 2 and tank = 6 then tankn = ' 3B6'; if block = 2 and tank = 7 then tankn = ' 3B7'; if block = 2 and tank = 8 then tankn = ' 3B8'; if block = 2 and tank = 9 then tankn = ' 3B9'; if block = 2 and tank = 10 then tankn = '3B10'; if block = 2 and tank = 11 then tankn = '3B11'; if block = 2 and tank = 12 then tankn = '3B12'; run; 6111 proc sort data=was2; by block x; run; jata assign_treat_was; set was2; if _n_ = 1 then trt = 'control'; if n = 2 then trt = 'control'; if _n_ = 3 then trt = '50'; if _n_ = 4 then trt = '50'; if _n_ = 5 then trt = '100'; if _n_ = 6 then trt = '100'; if _n_ = 7 then trt = '200'; if _n_ = 8 then trt = '200'; if _n_ = 9 then trt = '300'; if _n_ = 10 then trt = '300'; if _n_ = 11 then trt = '300-HD'; if _n_ = 12 then trt = '300-HD';

45 2125 Log Book / Pages File Folder **Initials** Date Thour PROOFEDET Date 1.

Initials: REVIEWED BY Initials: Date' not neck

Page & of

232

<pre>.if _n_ = 13 then trt = 'control'; .if _n_ = 14 then trt = 'control'; if _n_ = 15 then trt = '50'; if _n_ = 16 then trt = '50'; if _n_ = 17 then trt = '100'; if _n_ = 18 then trt = '100'; if _n_ = 19 then trt = '200'; if _n_ = 20 then trt = '200'; if _n_ = 21 then trt = '300'; if _n_ = 22 then trt = '300'; if _n_ = 23 then trt = '300-HD'; if _n_ = 24 then trt = '300-HD'; run;</pre>	Log Book/Pages 2/25 File Folder <u>12</u> Jaitials <u>12</u> Date <u>Inevig</u> PROOFED BY Date <u>12</u> Taitials: <u>Date</u> Net Needed Inv Incvig Act Needed Inv Incvig
proc sort data= assign_treat_HGE;	AEH-11-PSEUDO-02
by block tank; run;	
proc print data= assign_treat_HGE; title1 h=1 'Effects of Pseudomonas fluorescens title2 h=1 'juvenile mussels from seven differe title3 h=1 'AEH-11-PSUED0-02'; title4 h=1 'Random assignment of treatment to e title5 h=1 'Mussel speces: not used';	ent unionid species';

```
run;
```

Item Number: 3____

Page ______ of _____

ffects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed uvenile mussels from seven different unionid species andom assignment of treatment to experimental tanks 502 - 1-23 - 20/2 ussel speces: Fatmucket

AEH-11-PSEUDO-02

1

bs	block	tank	х	tankn	trt
1	1	1	0.10629	1A1	control
2	1	2	0.53642	1A2	100
З	-1	3	0.29359	1A3	50
4	1	4	0.74942	1A4	300
5	1	5	0.57556	1A5	200
6	1	6	0.92546	1A6	300-HD
7	1	7	0.10495	1A7	control
8	1	8	0.92001	1A8	300-HD
9	1	9	0.17152	1A9	50
10	1	10	0.67085	1A10	300
11	1	11	0.35870	1A11	100
12	1	12	0.56099	1A12	200
13	2	1	0.59707	1B1	5 0
14	2	2	0.99429	1B2	300-HD
15	2	3	0.64389	1B3	100
16	2	4	0.87976	1B4	300
17	2	5	0.11919	1B5	control
18	2	6	0.63597	1 B 6	50
19	2	7	0.73238	1B7	2 0 0
20	2	8	0.97830	1B8	300-HD
21	2	9	0.72753	1 B 9	200
22	2	10	0.54373	1B10	control
23	2	11	0.71449	1B11	100
24	2	12	0.94742	1B12	30 0

LOG BOOK / Pañes 2/32 File Folder 12C Initials Inc. Date: REVIEWED B Initials: Date: Not Neckel WW TROUT
Page of§

Item Number: ____

an de la compañía de

nalysis performed by J. Luoma SAS version 9.2 09:24 23JAN12 AEH-11-PSEUDO-02 _____

ffects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed uvenile mussels from seven different unionid species EH-11-PSUED0-02 andom assignment of treatment to experimental tanks

ussel speces: EMPTY							
bs	block	tank	x	tankn	trt		
1	1	1	0.94651	2A1	300-HD		
2	1	2	0.87643	2A2	300		

2	1	2	0.87643	2A2	300
3	1	3	0.99231	2A3	300-HD
4	1	4	0.65411	2A4	100
5	1	5	0.93754	2A5	300
6	1	6	0.38770	2A6	50
7	1	7	0.56469	2A7	100
8	1	8	0.71558	2A8	200
9	1	9	0.26923	2A9	control
10	1	10	0.17910	2A10	control
11	.1	11	0.80709	2A11	200
12	1	12	0.33467	2A12	50
13	2	1	0.55683	2B1	300
14	2	2	0.23203	2B2	50
15	2	3	0.84485	2B3	300-HD
16	2	4	0.16394	2B4	50
17	2	~~5~~~~	0.48920	@\$#2 B 5	200
18	2	6	0.29551	2B6	100
19	2	7	0.47238	2B7	200
20	2	8	0.61734	2B8	300-HD
21	2	9	0.29549	1100 2 B9	100
22	2	10	0.06658	2B10	control
23	2	11	0.51106	2B11	300
24	2	12	0.13056	2B12	control

		2/32	
Log	Book / Pages		
File		Oate	Trout
laiti	als <u>Mar</u>	Date Date	

r

2

PROOFED BY REVIEWED By Ibitials Date: Noted nort

Page _____ of __18___

Log Book / Pages File Folder Date 200004 PROOFED Initials: Date :. REVIEWED BY Not necded Not necded Your Anort _ Date' . Initials:

nalysis performed by J. Luoma SAS version 9.2 09:24 23JAN12

ffects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed uvenile mussels from seven different unionid species EH-11-PSUEDD-02 andom assignment of treatment to experimental tanks ussel speces: not used

bs	block	tank	х	tankn	trt
1	1	1	0.34819	3A1	200
2	1	2	0.88571	3A2	300-HD
3	1	3	0.32645	3A3	100
4	1	4	0.57912	3A4	300
5	1	5	0.26084	3A5	50
6	1	6	0.68970	3A6	300-HD
7	1	7	0.33684	3A7	100
8	1	8	0.13531	3A8	control
9	1	9	0.45655	3A9	200
10	1	10	0.18908	3A10	50
11	1	11	0.47692	3A11	300
12	1	12	0.05053	3A12	control
13	2	1	0.60194	3B1	100
14	2	2	0.70112	3B2	300
15	2	3	0.68794	3B3	200
16	2	4	0.53866	3B4	50
17	2	5	0.68238	3B5	200
18	2	6	0.01059	3B 6	control
19	2	7	0.73946	3B7	300
20	2	8	0.64360	3B8	100
21	2	9	0.31520	`3B9 _∕≈	, 50
22	2	10	0.13145	3B10	control
23	2	11	0.99594	3B11	300-HD
24	2	12	0.92953	3B12	300-HD

AEH-11-PSEUDO-02

З

Page <u>3</u> of <u>18</u>

ю. ^с. с 2/32 Log Book / Pages 12 File Folder Date TOM жê PROOFED BY Date : NEV EWED BY AEH SEUDO-02 MM twent Welder Jreit Thillola AEH-11-PSEUDO-02 Ng halysis performed by J. Luoma SAS version 9.2 09:24 23JAN12

٠,

Page 4 of 18

- 14 - <u>1</u>

```
Study Number : AEH-11-PSUED0-02
 Study Director: Jim Luoma
 ່date created : 23 JAN 2012 - JAL ເງົາ
  Verified by: (Date:
                                    )
                                                        page ____ of __
  Random allocation of treatment to tank.sas
M 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
                                                                      AEH-11-PSEUDO-02
OOTNOTE1 'Analysis performed by J. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
ptions ls=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
                                                                            2/32
*Random assignment of treatment to experimental tanks*/
                                                             Log Book / Pages
                                                             File Folder
*Mussel speces: Fatmucket*/
                                                                           Date mail
                                                             Initials _
                                                                      iw
ata FAM;
do block = 1 to 2 by 1;
                                                                  PROOFED
 do tank = 1 to 12 by 1;
                                                            Initials: _____ Date :_____
REVIEWED Gr
 x = ranuni(-1);
 output;
                                                             Initiater ...... Dater .
 end;
                                                                   hot needy
end;
                                                                   Ww Frout
un:
ata FAM2; set FAM;
if block = 1 and tank = 1 then tankn = ' 1A1';
 if block = 1 and tank = 2 then tankn = ' 1A2';
 if block = 1 and tank = 3 then tankn = ' 1A3';
   if block = 1 and tank = 4 then tankn = ' 1A4';
    if block = 1 and tank = 5 then tankn = ' 1A5';
     if block = 1 and tank = 6 then tankn = ' 1A6';
f block = 1 and tank = 7 then tankn = ' 1A7';
 if block = 1 and tank = 8 then tankn = ' 1A8';
  if block = 1 and tank = 9 then tankn = ' 1A9';
   if block = 1 and tank = 10 then tankn = '1A10';
    if block = 1 and tank = 11 then tankn = '1A11';
     if block = 1 and tank = 12 then tankn = '1A12';
if block = 2 and tank = 1 then tankn = '1B1';
 if block = 2 and tank = 2 then tankn = ' 1B2';
 if block = 2 and tank = 3 then tankn = ' 1B3';
                                                                      Page 5 of 18
   if block = 2 and tank = 4 then tankn = ' 1B4';
    if block = 2 and tank = 5 then tankn = ' 1B5';
     if block = 2 and tank = 6 then tankn = ' 1B6':
if block = 2 and tank = 7 then tankn = ' 1B7';
if block = 2 and tank = 8 then tankn = ' 1B8';
 if block = 2 and tank = 9 then tankn = ' 1B9';
  if block = 2 and tank = 10 then tankn = '1B10';
    if block = 2 and tank = 11 then tankn = '1B11';
    if block = 2 and tank = 12 then tankn = '1B12';
  run;
roc sort data=FAM2;
by block x;
un;
ata assign_trt_FAM; set FAM2;
if _n_ = 1 then trt = 'control';
if _n_ = 2 then trt = 'control';
```

```
if n = 3 then trt = '50';
  if _n_ = 4 then trt = '50';
if _n_ = 5 then trt = '100';
                                                            11
 if _n_ = 6 then trt = '100';
 if n = 7 then trt = '200';
  if _n_ = 8 then trt = '200';
                                                 Kog Book/Pages
if _n_ = 9 then trt = '300';
 if n = 11 then trt = '300-HD', AEH-11-PSEUDO-02 Eile Folder
 if _n_ = 10 then trt = '300';
                                                                   \gamma' \vartheta
  if _n_ = 12 then trt = '300-HD';
 if _n_ = 13 then trt = 'control';
                                                       PROOFER
 if _n_ = 14 then trt = 'control';
                                                 laltials: .
                                                              Dave
                                                       REVEWED OY
 if _n_ = 15 then trt = '50';
                                                            ..... Dato
                                                  Takialay .....
                                if n_{1} = 16 then trt = '50';
                                                         Not needed
                               if _n_ = 17 then trt = '100';
 if _n_ = 18 then trt = '100';
 if _n_ = 19 then trt = '200';
   if n = 20 then trt = '200';
if _n_ = 21 then trt = '300';
 if _n_ = 22 then trt = "300";
 if _n_ = 23 then trt = '300-HD';
  if _n_ = 24 then trt = '300-HD';
                                      run;
roc sort data= assign_trt_FAM;
y block tank; run;
roc print data= assign_trt_FAM;
itle1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';
itle2 h=1 'juvenile mussels from seven different unionid species';
itle3 h=1 'AEH-11-PSUED0-02';
itle4 h=1 'Random assignment of treatment to experimental tanks';
itle5 h=1 'Mussel speces: Fatmucket';
un:
                                   **********************
****************
*Mussel speces: empty*/
ata EMP;
do block = 1 to 2 by 1;
 do tank = 1 to 12 by 1;
 x = ranuni(-1);
 output;
 end;
end;
                                                                               Page 16
un;
ata EMP2; set EMP;
if block = 1 and tank = 1 then tankn = ' 2A1';
 if block = 1 and tank = 2 then tankn = ' 2A2';
  if block = 1 and tank = 3 then tankn = ' 2A3';
   if block = 1 and tank = 4 then tankn = ' 2A4';
    if block = 1 and tank = 5 then tankn = ' 2A5';
     if block = 1 and tank = 6 then tankn = ' 2A6';
f block = 1 and tank = 7 then tankn = ' 2A7';
 if block = 1 and tank = 8 then tankn = ' 2A8';
  if block = 1 and tank = 9 then tankn = ' 2A9';
   if block = 1 and tank = 10 then tankn = '2A10';
    if block = 1 and tank = 11 then tankn = '2A11';
     if block = 1 and tank = 12 then tankn = '2A12';
```

239

```
LI DIDON - Z AND CANN - I CHON CANNA - ZDI ,
 if block = 2 and tank = 2 then tankn = ' 2B2';
 if block = 2 and tank = 3 then tankn = ' 2B3';
 if block = 2 and tank = 4 then tankn = ' 2B4';
                                                            Log Book / Pages
    if block = 2 and tank = 5 then tankn = ' 2B5';
                                                            File Folder,
     if block = 2 and tank = 6 then tankn = ' 2B6';
                                                                         Date INOUT
                                                            Initials _ W
if block = 2 and tank = 7 then tankn = ' 2B7';
 if block = 2 and tank = 8 then tankn = ' 2B8';
                                                                 PROOFED BY
  if block = 2 and tank = 9 then tankn = ' 2B9';
                                                           if block = 2 and tank = 10 then tankn = '2B10';
    if block = 2 and tank = 11 then tankn = '2B11';
                                                            Initialar_
                                                                      Date<sup>i</sup>
                                                                Not needed
     if block = 2 and tank = 12 then tankn = '2B12';
   run;
roc sort data=EMP2;
by block x;
un;
ata assign_treat_EMP; set EMP2;
                                                               AEH-11-PSEUDO-02
if n = 1 then trt = 'control';
 if _n_ = 2 then trt = 'control';
 if _n_ = 3 then trt = '50';
   if _n_ = 4 then trt = '50';
if _n_ = 5 then trt = '100';
 if _n_ = 6 then trt = '100';
 if n = 7 then trt = '200';
   if _n_ = 8 then trt = '200';
if _n_ = 9 then trt = '300';
 if _n_ = 10 then trt = '300';
 if _n_ = 11 then trt = '300-HD';
  if _n_ = 12 then trt = '300-HD';
 if _n_ = 13 then trt = 'control';
 if _n_ = 14 then trt = 'control';
                                                                      7 of 18
 if _n_ = 15 then trt = '50';
  if _n_ = 16 then trt = '50';
if n = 17 then trt = '100';
 if _n_ = 18 then trt = '100';
 if _n_ = 19 then trt = '200';
   if _n_ = 20 then trt = '200';
if _n_ = 21 then trt = '300';
 if _n_ = 22 then trt = '300';
 if n = 23 then trt = '300-HD';
  if n = 24 then trt = '300-HD';
                                      run:
roc sort data = assign_treat_EMP;
y block tank; run;
roc print data = assign_treat_EMP;
itle1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';
itle2 h=1 'juvenile mussels from seven different unionid species';
itle3 h=1 'AEH-11-PSUEDO-02';
itle4 h=1 'Random assignment of treatment to experimental tanks';
itle5 h=1 'Mussel speces: EMPTY';
un;
***
```

```
*Mussel speces: NOT USED*/
```

ata NOT; do block = 1 to 2 by 1; do tank = 1 to 12 by 1; x = ranuni(-1);output; AEH-11-PSEUDO-02 end; end; un; ata NOT2; set NOT; ata NOT2; set NOT; if block = 1 and tank = 1 then tankn = ' 3A1'; if block = 1 and tank = 2 then tankn = ' 3A2'; if block = 1 and tank = 3 then tankn = ' 3A3'; if block = 1 and tank = 4 then tankn = ' 3A4'; if block = 1 and tank = 5 then tankn = ' 3A5'; if block = 1 and tank = 6 then tankn = ' 3A6'; f block = 1 and tank = 7 then tankn = ' 3A7'; if block = 1 and tank = 8 then tankn = ' $3A8^{\circ}$; if block = 1 and tank = 9 then tankn = ' 3A9'; if block = 1 and tank = 10 then tankn = '3A10'; if block = 1 and tank = 11 then tankn = '3A11'; if block = 1 and tank = 12 then tankn = '3A12'; if block = 2 and tank = 1 then tankn = ' 3B1'; if block = 2 and tank = 2 then tankn = ' 3B2'; if block = 2 and tank = 3 then tankn = ' 3B3'; if block = 2 and tank = 4 then tankn = ' 3B4'; if block = 2 and tank = 5 then tankn = ' 3B5'; if block = 2 and tank = 6 then tankn = ' 3B6'; if block = 2 and tank = 7 then tankn = ' 3B7'; if block = 2 and tank = 8 then tankn = ' 3B8'; if block = 2 and tank = 9 then tankn = ' 3B9'; if block = 2 and tank = 10 then tankn = '3B10'; if block = 2 and tank = 11 then tankn = '3B11'; if block = 2 and tank = 12 then tankn = '3B12'; run; roc sort data=NOT2; by block x; un; ata assign_treat_NOT; set NOT2; if __n_ = 1 then trt = 'control'; if _n_ = 2 then trt = 'control'; if $n_{...} = 3$ then trt = '50'; if _n_ = 4 then trt = '50'; if n = 5 then trt = '100'; if _n_ = 6 then trt = '100'; if _n_ = 7 then trt = '200'; if _n_ = 8 then trt = '200'; if _n_ = 9 then trt = '300'; if _n_ = 10 then trt = '300'; if _n_ = 11 then trt = '300-HD'; if _n_ = 12 then trt = '300-HD'; if _n_ = 13 then trt = 'control'; if _n_ = 14 then trt = 'control'; if _n_ = 15 then trt = '50'; if _n_ = 16 then trt = '50';

Log Book / Pages File Folder ... Date HW Initials WW PROOFED BY Date i... milliol . *(EWED BY* неу Date fait lais:

6 of 14 Page

```
If D \perp U \cup V = A and tank - I then tanks - ADI,
 if block = 2 and tank = 2 then tankn = ' 2B2';
 if block = 2 and tank = 3 then tankn = '2B3';
                                                              Log Book / Page
  if block = 2 and tank = 4 then tankn = ' 2B4';
                                                              File Folder,
    if block = 2 and tank = 5 then tankn = ' 2B5':
                                                                               Date <u>1/w/</u>E
                                                              initials _____
     if block = 2 and tank = 6 then tankn = ' 2B6';
if block = 2 and tank = 7 then tankn = ' 2B7';
                                                                - PROOFER BY
 if block = 2 and tank = 8 then tankn = ' 2B8';
  if block = 2 and tank = 9 then tankn = ' 2B9';
                                                             Initials:
                                                                        🚄 Da e
                                                                  REVIEWES
   if block = 2 and tank = 10 then tankn = '2B10';
                                                              Initipiti _
                                                                         _ Date
    if block = 2 and tank = 11 then tankn = '2B11';
                                                                    not needed
     if block = 2 and tank = 12 then tankn = '2B12';
                                                                    10 front
   run;
roc sort data=EMP2;
by block x;
un;
                                                                    AEH-11-PSEUDO-02
ata assign_treat_EMP; set EMP2;
if n = 1 then trt = 'control';
 if _n_ = 2 then trt = 'control';
  if _n_ = 3 then trt = '50';
   if __n_ = 4 then trt = '50';
if n = 5 then trt = '100';
 if _n_ = 6 then trt = '100';
  if n = 7 then trt = '200';
   if _n_ = 8 then trt = '200';
if _n_ = 9 then trt = '300';
 if _n_ = 10 then trt = '300';
  if _n_ = 11 then trt = '300-HD';
   if _n_ = 12 then trt = '300-HD';
 if _n_ = 13 then trt = 'control';
 if _n_ = 14 then trt = 'control';
  if _n_ = 15 then trt = '50';
   if _n_ = 16 then trt = '50';
                                                                               of 18
if _n = 17 then trt = '100';
 if _n_ = 18 then trt = '100';
  if _n_ = 19 then trt = '200';
   if _n_ = 20 then trt = '200';
if _n_ = 21 then trt = '300';
 if _n_ = 22 then trt = '300';
  if _n_ = 23 then trt = '300-HD';
   if _n = 24 then trt = '300-HD';
                                       run:
roc sort data = assign_treat_EMP;
y block tank; run;
roc print data = assign_treat_EMP;
itle1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';
itle2 h=1 'juvenile mussels from seven different unionid species';
itle3 h=1 'AEH-11-PSUED0-02';
itle4 h=1 'Random assignment of treatment to experimental tanks';
itle5 h=1 'Mussel speces: EMPTY';
un;
*******************
```

```
*Mussel speces: NOT USED*/
```

```
ata NOT;
io block = 1 to 2 by 1;
do tank = 1 to 12 by 1;
 x = ranuni(-1);
 output;
                           AEH-11-PSEUDO-02
end;
∋nd;
un;
ata NOT2; set NOT;
sta NOT2; set NOT;
if block = 1 and tank = 1 then tankn = ' 3A1';
if block = 1 and tank = 2 then tankn = ' 3A2';
 if block = 1 and tank = 3 then tankn = ' 3A3';
  if block = 1 and tank = 4 then tankn = ' 3A4';
    if block = 1 and tank = 5 then tankn = ' 3A5'
     if block = 1 and tank = 6 then tankn = '3A6';
f block = 1 and tank = 7 then tankn = ' 3A7';
if block = 1 and tank = 8 then tankn = ' 3A8';
 if block = 1 and tank = 9 then tankn = ' 3A9';
  if block = 1 and tank = 10 then tankn = '3A10';
    if block = 1 and tank = 11 then tankn = '3A11';
     if block = 1 and tank = 12 then tankn = '3A12';
if block = 2 and tank = 1 then tankn = ' 3B1';
if block = 2 and tank = 2 then tankn = ' 3B2';
 if block = 2 and tank = 3 then tankn = ' 3B3';
  if block = 2 and tank = 4 then tankn = '3B4';
    if block = 2 and tank = 5 then tankn = ' 3B5';
     if block = 2 and tank = 6 then tankn = ' 3B6';
if block = 2 and tank = 7 then tankn = ' 3B7';
if block = 2 and tank = 8 then tankn = ' 3B8';
 if block = 2 and tank = 9 then tankn = ' 3B9';
  if block = 2 and tank = 10 then tankn = '3B10';
   if block = 2 and tank = 11 then tankn = '3B11';
     if block = 2 and tank = 12 then tankn = '3B12';
              the spec
  run:
roc sort data=NOT2;
block x;
in;
ata assign_treat_NOT; set NOT2;
if _n_ = 1 then trt = 'control';
if _n_ = 2 then trt = 'control';
 if _n_ = 3 then trt = '50';
  if _n_ = 4 then trt = '50';
if _n_ = 5 then trt = '100';
if n = 6 then trt = '100';
 if n = 7 then trt = '200';
  if _n_ = 8 then trt = '200';
if _n_ = 9 then trt = '300';
if _n_ = 10 then trt = '300';
 if _n_ = 11 then trt = '300-HD';
  if _n_ = 12 then trt = '300-HD';
 if _n_ = 13 then trt = 'control';
 if _n_ = 14 then trt = 'control';
 if _n_ = 15 then trt = '50';
  if _n_ = 16 then trt = '50';
```

```
Log Book / Pages 2/32

File Folder 12 c

Ipitials <u>tw</u> Date <u>Aviv</u>M

PROOFED BY

Initials: Date:

REVIEWED BY

Toitials: Aviv

With

With

With

With
```

Page 10 of 18

```
11 \_ 11 = 17 coon 110 = -100 ,
 if _n_ = 18 then trt = '100';
                                                                                      2/32
                                                                     Log Book / Pages
File Folder 12
Initials
 if _n_ = 19 then trt = '200';
                                                                                   120
 ' if _n_ = 20 then trt = '200';
                                                                                      Date Front
if _n_ = 21 then trt = '300';
 if _n_ = 22 then trt = '300';
 if _n_ = 23 then trt = '300-HD';
                                                                         PROOFED BY
                                                                   Initials: _____ Date :____
REVLEWED BY
   if _n_ = 24 then trt = '300-HD';
                                          run;
                                                                    Initiala: ____ Date: _
roc sort data= assign_treat_NOT;
                                                                           Not nechel
1000 7nov11
y block tank; run;
roc print data= assign treat NOT;
itle1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';
itle2 h=1 'juvenile mussels from seven different unionid species';
itle3 h=1 'AEH-11-PSUEDO-02';
itle4 h=1 'Random assignment of treatment to experimental tanks';
itle5 h=1 'Mussel speces: not used';
                                                                           AEH-11-PSEUDO-02
un;
```

Page 11 of 18

```
e 1
       date produced . Le prim more
                       _____ (Date:_
48
       Verified by:
                                                              page ____ of __
49
    * Random allocation of treatment to tank.sas
    50
    DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
51
52
    FOOTNOTE1 'Analysis performed by J. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
53
ARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text,
54
55
    options ls=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
                                                                                AEH-11-PSEUDO-02
56
57
    /*Random assignment of treatment to experimental tanks*/
                                                                Log Brok/Pages
58
   /*Mussel speces: Fatmucket*/
                                                               File Folder 121
Initiale Km Eare
59
    data FAM;
    do block = 1 \text{ to } 2 \text{ by } 1;
60
                                                                                      Theve
61
     do tank = 1 to 12 by 1;
62
     x = ranuni(-1);
                                                                   PRODECTBY
                                                             millala:
63
       output;
                                                                        Coate r
                                                                  REFEWED BY
64
      end;
                                                             Initialo
                                                                     not needed
1/W twoving
65
     end;
66
    run;
OTE: The data set WORK.FAM has 24 observations and 3 variables.
OTE: DATA statement used (Total process time):
     real time
                         0.00 seconds
     cpu time
                         0.00 seconds
67
   data FAM2; set FAM;
    if block = 1 and tank = 1 then tankn = ' 1A1';
68
      if block = 1 and tank = 2 then tankn = ' 1A2';
69
       if block = 1 and tank = 3 then tankn = ' 1A3';
70
        if block = 1 and tank = 4 then tankn = ' 1A4';
71
72
         if block = 1 and tank = 5 then tankn = ' 1A5';
73
          if block = 1 and tank = 6 then tankn = ' 1A6';
74
    if block = 1 and tank = 7 then tankn = ' 1A7';
75
      if block = 1 and tank = 8 then tankn = ' 1A8';
76
       if block = 1 and tank \approx 9 then tankn = ' 1A9';
77
        if block = 1 and tank = 10 then tankn = '1A10';
78
         if block = 1 and tank = 11 then tankn = '1A11';
79
          if block = 1 and tank = 12 then tankn = '1A12';
                                                                       Page 12 of 18
80
     if block = 2 and tank = 1 then tankn = ' 181';
81
     if block = 2 and tank = 2 then tankn = ' 1B2';
82
       if block = 2 and tank = 3 then tankn = ' 1B3';
83
        if block = 2 and tank = 4 then tankn = ' 1B4';
84
         if block = 2 and tank = 5 then tankn = ' 1B5';
85
          if block = 2 and tank = 6 then tankn = ' 1B6';
86
     if block = 2 and tank = 7 then tankn = ' 1B7';
87
     if block = 2 and tank = 8 then tankn = ' 188';
88
      if block = 2 and tank = 9 then tankn = ' 1B9';
89
       if block = 2 and tank = 10 then tankn = '1B10';
         if block = 2 and tank = 11 then tankn = '1B11';
90
91
         if block = 2 and tank = 12 then tankn = '1B12';
92
        run;
```

OTE: There were 24 observations read from the data set WORK.FAM.

)TE: The data set WORK.FAM2 has 24 observations and 4 variables.)TE: DATA statement used (Total process time): 0.03 seconds real time 2/32 0.03 seconds opu time Log Book / Pages File Folder, That Date _ AEH-11-PSEUDO-02 Initials h PROOFER BY proc sort data=FAM2; 33 Date : 34 by block x; initials: REVIEWED BY 95 run; Date initials:)TE: There were 24 observations read from the data set WORK.FAM2.)TE: The data set WORK.FAM2 has 24 observations and 4 variables.)TE: PROCEDURE SORT used (Total process time): 0.01 seconds real time cpu time 0.01 seconds **36** data assign_trt_FAM; set FAM2; 37 if _n_ = 1 then trt = 'control'; 98 99 if _n_ = 2 then trt = 'control'; if _n_ = 3 then trt = '50'; 00 if _n_ = 4 then trt = '50'; 21 if _n_ = 5 then trt = '100'; 32 if _n_ = 6 then trt = '100'; 33 if _n_ = 7 then trt = '200'; Э4 if _n_ = 8 then trt = '200'; 05 if _n_ = 9 then trt = '300'; 96 if _n_ = 10 then trt = '300'; 37 if _n_ = 11 then trt = '300-HD'; 38 if _n_ = 12 then trt = '300-HD'; 09 if _n_ = 13 then trt = 'control'; 10 if _n_ = 14 then trt = 'control'; 11 if _n_ = 15 then trt = '50'; 12 if _n_ = 16 then trt = '50'; 13 if _n_ = 17 then trt = '100'; 14 if _n_ = 18 then trt = '100'; 15 if _n_ = 19 then trt = '200'; 16 if _n_ = 20 then trt = '200'; 17 Page <u>15</u> of <u>18</u> if _n_ = 21 then trt = '300'; 18 if _n_ = 22 then trt = '300'; 19 if _n_ = 23 then trt = '300-HD'; 20 if _n_ = 24 then trt = '300-HD'; run; 21 OTE: There were 24 observations read from the data set WORK.FAM2. OTE: The data set WORK.ASSIGN_TRT_FAM has 24 observations and 5 variables. OTE: DATA statement used (Total process time): real time 0.04 seconds 0.04 seconds cpu time 22 proc sort data= assign_trt_FAM; 23 by block tank; run; OTE: There were 24 observations read from the data set WORK.ASSIGN_TRT_FAM. OTE: The data set WORK.ASSIGN_TRT_FAM has 24 observations and 5 variables.

```
VIE, ENVOLUUNE DONE USED (EVERT PLOVESS LINE).
     real time
                        0.01 seconds
                                                              Log Book / Pages
                        0.01 seconds
     cou time
                                                              File Folder
                                                              Initials .
                                                                              Date They
24
25
   proc print data= assign_trt_FAM;
   title1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';
26
27 title2 h=1 'juvenile mussels from seven different unionid species';
                                                                             PROOFERBY
28 title3 h=1 'AEH-11-PSUED0-02';
                                                                       Initials: ____ Date :
29 title4 h=1 'Random assignment of treatment to experimental tanks';
                                                                            REVIEWED 3
30 title5 h=1 'Mussel speces: Fatmucket';
                                                                       Initiels. ____ Date:
31 run;
                                                                           not needed
                                                                             lin Frait
OTE: There were 24 observations read from the data set WORK.ASSIGN_TRT_FAM.
OTE: PROCEDURE PRINT used (Total process time):
     real time
                        0.01 seconds
     cpu time
                        0.01 seconds
                                                                        AEH-11-PSEUDO-02
32
33
   33! *****************/
34 /*Mussel speces: empty*/
35 data EMP;
36
    do block = 1 to 2 by 1;
     do tank = 1 to 12 by 1;
37
38
    x = ranuni(-1);
39
      output;
40
     end;
41
    end;
42 run;
OTE: The data set WORK.EMP has 24 observations and 3 variables.
OTE: DATA statement used (Total process time):
    real time
                       0.00 seconds
    cpu time
                        0.01 seconds
43 data EMP2; set EMP;
    if block = 1 and tank = 1 then tankn = ' 2A1';
44
45
     if block = 1 and tank = 2, then tankn = ' 2A2';
                                                                  Page 14 of 18
      if block = 1 and tank = 3 then tankn = ' 2A3';
46
47
       if block = 1 and tank = 4 then tankn = ' 2A4';
        if block = 1 and tank = 5 then tankn = ' 2A5'
48
49
         if block = 1 and tank = 6 then tankn = ' 2A6';
50
   if block = 1 and tank = 7 then tankn = 2A7';
51
     if block = 1 and tank = 8 then tankn = ' 2A8';
52
      if block = 1 and tank = 9 then tankn = ' 2A9';
53
       if block = 1 and tank = 10 then tankn = '2A10';
54
        if block = 1 and tank = 11 then tankn = '2A11';
55
         if block = 1 and tank = 12 then tankn = '2A12';
56
    if block = 2 and tank = 1 then tankn = ' 2B1';
57
    if block = 2 and tank = 2 then tankn = ' 2B2';
    if block = 2 and tank = 3 then tankn = ' 2B3';
58
59
       if block = 2 and tank = 4 then tankn = '2B4';
```

```
if block = 2 and tank = 5 then tankn = ' 2B5';
60
          if block = 2 and tank = 6 then tankn = 2B6';
51
     if block = 2 and tank = 7 then tankn = ' 2B7';
32
      if block = 2 and tank = 8 then tankn = ' 2B8';
-63
     if block = 2 and tank = 9 then tankn = ' 2B9';
34
                                                              Log Book / Page
        if block = 2 and tank = 10 then tankn = '2B10';
35
                                                              File Folder,
         if block = 2 and tank = 11 then tankn = '2B11';
36
                                                                               Date Truv
                                                              Initials <u>MA</u>
          if block = 2 and tank = 12 then tankn = '2B12';
37
38
        run;
                                                                           PROCFED BY
                       1.1
                                                                                 🖌 Date :
                                                                     İnklalsı .
DTE: There were 24 observations read from the data set WORK.EMP.
                                                                           REVIEWED BI
DTE: The data set WORK.EMP2 has 24 observations and 4 variables.
                                                                                   Date
                                                                      initiels:
>TE: DATA statement used (Total process time):
                                                                                ₹
                         0.03 seconds
     real time
     cpu time
                         0.03 seconds
                                             AEH-11-PSEUDO-02
39 proc sort data=EMP2;
   by block x;
70
71
   run;
DTE: There were 24 observations read from the data set WORK.EMP2.
DTE: The data set WORK.EMP2 has 24 observations and 4 variables.
DTE: PROCEDURE SORT used (Total process time):
                         0.00 seconds
     real time
                         0.00 seconds
     cpu time
72
    data assign_treat_EMP; set EMP2;
73
     if n = 1 then trt = 'control';
74
      if _n_ = 2 then trt = 'control';
75
       if _n_ = 3 then trt = '50';
76
        if _n_ = 4 then trt = '50';
77
     if __n_ = 5 then trt = '100';
78
      if _n_ = 6 then trt = '100';
79
       if _n_ = 7 then trt = '200';
30
81
       if _n_ = 8 then trt = '200';
     if _n_ = 9 then trt = '300';
82
      if _n_ = 10 then trt = '300';
83
      if _n_ = 11 then trt = '300-HD';
84
                                                        Page 15 of 18
       if _n_ = 12 then trt = '300-HD';
85
      if _n_ = 13 then trt = 'control';
86
      if n = 14 then trt = 'control';
87
       if _n_ = 15 then trt = '50';
88
       if _n_ = 16 then trt = '50';
89
     if _n_ = 17 then trt = '100';
90
      if _n_ = 18 then trt = '100';
91
       if _n_ = 19 then trt = '200';
92
        if _n_ = 20 then trt = '200';
93
     if _n_ = 21 then trt = '300';
94
      if _n_ = 22 then trt = '300';
95
       if _n_ = 23 then trt = '300-HD';
96
        if n = 24 then trt = '300-HD';
97
                                             run;
OTE: There were 24 observations read from the data set WORK.EMP2.
```

OTE. THE GARA SET WORK, MOULTING THE HAS 24 OBSETVALIDIS AND O VALIADIES. OTE: DATA statement used (Total process time): real time 0.03 seconds 0.03 seconds Log Book / Pages cpu time File Folder Dave 111-11 Initials Hou 98 PROOFED BY 99 proc sort data = assign treat EMP; Date : Initials: REVIEWED BI 00 by block tank; run; Initiales Date' Not needed OTE: There were 24 observations read from the data set WORK.ASSIGN TREAT EMP. Im Think OTE: The data set WORK.ASSIGN_TREAT_EMP has 24 observations and 5 variables. OTE: PROCEDURE SORT used (Total process time): real time 0.01 seconds cpu time 0.01 seconds AEH-11-PSEUDO-02 01 02 proc print data = assign treat EMP; 03 title1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed'; 04 title2 h=1 'juvenile mussels from seven different unionid species'; 05 title3 h=1 'AEH-11-PSUEDO-02'; 06 title4 h=1 'Random assignment of treatment to experimental tanks'; 07 title5 h=1 'Mussel speces: EMPTY'; 08 run; OTE: There were 24 observations read from the data set WORK.ASSIGN_TREAT_EMP. OTE: PROCEDURE PRINT used (Total process time): 0.01 seconds real time opu time 0.01 seconds 09 10 10! ********************** 11 /*Mussel speces: NOT USED*/ 12 data NOT: do block = 1 to 2 by 1;13 14 do tank = 1 to 12 by 1; 15 x = ranuni(-1); 16 output; 17 end; 18 end; 19 run; Page 1/2 of 18 OTE: The data set WORK.NOT has 24 observations and 3 variables. OTE: DATA statement used (Total process time): real time 0.01 seconds cpu time 0.01 seconds 20 data NOT2; set NOT; OTE: There were 24 observations read from the data set WORK.NOT. OTE: The data set WORK.NOT2 has 24 observations and 3 variables. OTE: DATA statement used (Total process time):

```
0.01 seconds
real time
cpu time
                    0.01 seconds
```

```
data NOT2; set NOT;
21
                                                          Log Book / Pages
     if block = 1 and tank = 1 then tankn = ' 3A1';
22
                                                          Eile Folder
      if block = 1 and tank = 2 then tankn = ' 3A2';
23
                                                          initials
       if block = 1 and tank = 3 then tankn = ' 3A3';
24
        if block = 1 and tank = 4 then tankn = ' 3A4';
25
                                                                     PROOFEDBY
         if block = 1 and tank = 5 then tankn = '3A5';
26
                                                               hitinis
          if block = 1 and tank = 6 then tankn = ' 3A6';
27
                                                                    REVIEWED BI
    if block = 1 and tank = 7 then tankn = ' 3A7';
28
                                                               altialo
      if block = 1 and tank = 8 then tankn = ' 3A8';
29
                                                                       not needed
       if block = 1 and tank = 9 then tankn = ' 3A9';
30
        if block = 1 and tank = 10 then tankn = '3A10';
31
         if block = 1 and tank = 11 then tankn = '3A11';
32
          if block = 1 and tank = 12 then tankn = '3A12';
33
     if block = 2 and tank = 1 then tankn = ' 3B1';
34
                                                               AEH-11-PSEUDO-02
      if block = 2 and tank = 2 then tankn = ' 3B2';
35
       if block = 2 and tank = 3 then tankn = ' 3B3';
36
        if block = 2 and tank = 4 then tankn = ' 3B4';
37
         if block = 2 and tank = 5 then tankn = ' 3B5';
38
          if block = 2 and tank = 6 then tankn = ' 3B6';
39
     if block = 2 and tank = 7 then tankn = ' 3B7';
40
      if block = 2 and tank = 8 then tankn = ' 3B8';
41
42
       if block = 2 and tank = 9 then tankn = ' 3B9';
        if block = 2 and tank = 10 then tankn = '3B10';
43
         if block = 2 and tank = 11 then tankn = '3B11';
44
          if block = 2 and tank = 12 then tankn = '3B12';
45
46
        run:
OTE: There were 24 observations read from the data set WORK.NOT.
OTE: The data set WORK.NOT2 has 24 observations and 4 variables.
OTE: DATA statement used (Total process time):
                         0.01 seconds
     real time
                         0.01 seconds
     cpu time
47 proc sort data=NOT2;
48
    by block x;
49 run;
OTE: There were 24 observations read from the data set WORK.NOT2.
OTE: The data set WORK.NOT2 has 24 observations and 4 variables.
OTE: PROCEDURE SORT used (Total process time):
                         0.01 seconds
     real time
                         0.01 seconds
     cpu time
50
    data assign_treat_NOT; set NOT2;
51
    if n = 1 then trt = 'control';
52
      if _n_ = 2 then trt = 'control';
53
54
      if _n_ = 3 then trt = '50';
       if _n_ = 4 then trt = '50';
55
56
    if _n_ = 5 then trt = '100';
```

250

Date <u>Inevi</u>

Date.

Date

Page 17 of 18

im In

```
...
                             100,
       if _n_ = 7 then trt = '200';
58
                                                               Log Book / Pages
        if _n_ = 8 then trt = '200';
59
                                                               File Folder.
60
     if n = 9 then trt = '300';
                                                               laitials
                                                                        in
                                                                               Date <u>4 Nuci-</u>
61
      if _n_ = 10 then trt = '300';
      if _n_ = 11 then trt = '300-HD';
62
                                                                     PROOFEDBY
63
        if n = 12 then trt = '300-HD';
                                                               Initials: ____ Date :___
64
      if _n_ = 13 then trt = 'control';
                                                                     REVIEWED BY
      if _n_ = 14 then trt = 'control';
65
                                                                Initiais: Date:
       if _n_ = 15 then trt = '50';
66
                                                                     not needed
        if _n_ = 16 then trt = '50';
67
                                                                       in thaily
68
     if _n_ = 17 then trt = '100';
      if n = 18 then trt = '100';
69
70
       if _n_ = 19 then trt = '200';
                                                                     AEH-11-PSEUDO-02
        if _n_ = 20 then trt = '200';
71
72
     if _n_ = 21 then trt = '300';
73
      if _n_ = 22 then trt = '300';
74
       if _n_ = 23 then trt = '300-HD';
75
        if _n = 24 then trt = '300-HD';
                                            run:
OTE: There were 24 observations read from the data set WORK.NOT2.
OTE: The data set WORK.ASSIGN_TREAT_NOT has 24 observations and 5 variables.
OTE: DATA statement used (Total process time):
     real time
                       0.03 seconds
     cpu time
                         0.03 seconds
76
77 proc sort data= assign_treat_NOT;
78 by block tank; run;
OTE: There were 24 observations read from the data set WORK.ASSIGN_TREAT_NOT.
OTE: The data set WORK.ASSIGN_TREAT_NOT has 24 observations and 5 variables.
OTE: PROCEDURE SORT used (Total process time):
     real time
                        0.01 seconds
     cpu time
                        0.01 seconds
                                                                     Item Number:
79
B0 proc print data= assign_treat_NOT;
   title1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';
81
82 title2 h=1 'juvenile mussels from seven different unionid species';
83 title3 h=1 'AEH-11-PSUEDO-02';
84 title4 h=1 'Random assignment of treatment to experimental tanks':
85 title5 h=1 'Mussel speces: not used';
                                                                           Page 18 of 18
86 run;
OTE: There were 24 observations read from the data set WORK.ASSIGN_TREAT_NOT.
OTE: PROCEDURE PRINT used (Total process time);
    real time
                        0.01 seconds
    cou time
                        0.01 seconds
```

ffects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed uvenile mussels from seven different unionid species EH-11-PSUED0-02 51andom assignment of treatment to experimental tanks ussel speces: Black sandshell

3-28-	}	5
-------	---	---

AEH-11-PSEUDO-02

bs	block	tank	x	tankn	trt
1	1	1	0.63090	2A1	200
2	1	2	0.94409	2A2	300-HD
3	1	З	0.53735	2A3	100
4	1	4	0.55006	2A4	200
5	1	5	0,54753	2A5	100
6	1	6	0.08917	2A6	control
7	1	7	0.89247	2A7	300-HD
8	1	8	0.00692	2A8	control
9	1	9	0.30195	2A9	50
10	1	10	0.85526	2A10	300
11	1	11	0.66831	2A11	300
12	1	12	0.29897	2A12	50
13	2	1	0.68325	2B1	300
14	2	2	0.40302	2B2	100
15	· 2	3	0.91076	2B3	300-HD
16	2	4	0.67824	2B4	300
17	2	5	0.28857	2B5	50
18	2	6	0.48831	2B6	200
19	2	7	0.37269	2B7	100
20	2	8	0.27647	2B8	50
21	2	9	0.18099	2B9	control
22	2	10	0.76544	2B10	3 00 - HD
23	2	11	0.12836	2811	control
24	2	12	0.58795	2B12	200

Ling Book / Pages 2134 File Folder 12 Initials 12 ve e PAPED

1

Initials: Date: REVIEWED BY Initials: Dato: Initials: Dato: Not needed Imitials: Marked Not needed Imitials: Marked Imitials: Dato: I PROOFEDIBY

_____N___________

.

Item Number: _5

Page 1 of 7

nalysis performed by j. Luoma SAS version 9.2 08:56 28MAR12

Log Bock / Pages <u>Z/39</u> File Folder <u>12 C</u> Initials <u>W</u> Date <u>Theory</u> PROOFED BY Initials: _____ Date :_____ REVIEWED By Initials: ____ Date' n an an ann an ann an an Arrien a Arrien an Arrien an Arrien an Arrien an Arrien an Arrien an Arrien an Arrien an Arrien an Arrien an Arrien an A hot l needed provide WWW & Provide . AEH-11-PSEUDO-02

. . . .

Page _ d____of _ }

and the set of the set

io _____

.

253

.

```
" UALE CLEALED , 20 WAR 2012 - UAL
    * Verified by: _____ (Date:_____) \mathcal{J}^{\sim}
                                                              page of

    * Random allocation of treatment to tank.sas

    DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
    FOOTNOTE1 'Analysis performed by j. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
0
ARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
1
                                                                            AEH-11-PSEUDO-02
2
    options ls=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
3
                                                                              2/30
4
                                                              Log Book / Pages
    /*Random assignment of treatment to experimental tanks*/
                                                              File Folder
                                                                             122
5
    /*Mussel speces: Black sandshell*/
                                                                             Date Jhurit
                                                              Initials FW
6
    data BSS:
     do block = 1 to 2 by 1;
7
                                                                   PROOFED BY
8
      do tank = 1 to 12 by 1;
                                                              9
      x = ranuni(-1);
                                                                   REVIEWED BY
O.
       output;
                                                              Initials Date
1
      end;
                                                                    not needed from the training
2
     end:
з
    run;
OTE: The data set WORK.BSS has 24 observations and 3 variables.
OTE: DATA statement used (Total process time):
     real time
                         0.03 seconds
     cpu time
                         0.03 seconds
    data BSS2; set BSS;
4
5
     if block = 1 and tank = 1 then tankn = ' 2A1';
      if block = 1 and tank = 2 then tankn = ' 2A2';
6
7
       if block = 1 and tank = 3 then tankn = ' 2A3';
8
        if block = 1 and tank = 4 then tankn = 2A4^{\circ};
q
         if block = 1 and tank = 5 then tankn = ' 2A5';
0
          if block = 1 and tank = 6 then tankn = ' 2A6';
1
    if block = 1 and tank = 7 then tankn = ' 2A7';
2
      if block = 1 and tank = 8 then tankn = ' 2A8';
з
       if block = 1 and tank = 9 then tankn = ' 2A9';
4
        if block = 1 and tank = 10 then tankn = '2A10';
5
         if block = 1 and tank = 11 then tankn = '2A11';
6
          if block = 1 and tank = 12 then tankn = '2A12':
     if block = 2 and tank = 1 then tankn = ' 2B1';
7
8
     if block = 2 and tank = 2 then tankn = ' 2B2';
9
      if block = 2 and tank = 3 then tankn = ' 2B3';
        if block = 2 and tank = 4 then tankn = ' 2B4';
0
        if block = 2 and tank = 5 then tankn = ' 2B5';
1
                                                                       Page 3____ of \frac{7}{7}
2
          if block = 2 and tank = 6 then tankn = ' 2B6';
З
     if block = 2 and tank = 7 then tankn = ' 2B7';
4
     if block = 2 and tank = 8 then tankn = ' 2B8';
5
      if block = 2 and tank = 9 then tankn = ' 2B9';
       if block = 2 and tank = 10 then tankn = '2B10';
6
7
        if block = 2 and tank = 11 then tankn = '2B11';
8
         if block = 2 and tank = 12 then tankn = '2B12';
9
       run:
```

OTE: There were 24 observations read from the data set WORK.BSS.

OTE: The data set WORK.BSS2 has 24 observations and 4 variables. OTE: DATA statement used (Total process time): 0.04 seconds real time 0.03 seconds cpu time Log Book / Pages File Folder movig Date . Initials _____ proc sort data=BSS2; ۵ PROOF SO BY by block x; 1 Initials: Date REVIEWED B run; 2 Initials: ___ Date[;] DTE: There were 24 observations read from the data set WORK.BSS2. not needed Kw grony DTE: The data set WORK.BSS2 has 24 observations and 4 variables. OTE: PROCEDURE SORT used (Total process time): 0.00 seconds real time 0.00 seconds cpu time 3 AEH-11-PSE0.00-02 data assign_trt_BSS; set BSS2; 4 5 if n = 1 then trt = 'control'; if _n_ = 2 then trt = 'control'; 6 if _n_ = 3 then trt = '50'; 7 if _n_ = 4 then trt = '50'; В if _n_ = 5 then trt = '100'; 9 if _n = 6 then trt = '100'; D if _n_ = 7 then trt = '200'; 1 2 if _n_ = 8 then trt = '200'; 3 if _n_ = 9 then trt = '300'; if _n_ = 10 then trt = '300'; 4 if _n_ = 11 then trt = '300-HD'; 5 if _n_ = 12 then trt = '300-HD'; 6 if _n_ = 13 then trt = 'control'; 7 8 if _n_ = 14 then trt = 'control'; 9 if _n_ = 15 then trt = '50'; if _n_ = 16 then trt = '50'; D if n = 17 then trt = '100'; 1 if _n_ = 18 then trt = '100'; 2 if _n_ = 19 then trt = '200'; 3 if _n_ = 20 then trt = '200'; 4 Page 1 of 7 if n = 21 then trt = '300'; 5 if _n_ = 22 then trt = '300'; 6 if _n_ = 23 then trt = '300-HD'; 7 if _n_ = 24 then trt = '300-HD'; 8 run; OTE: There were 24 observations read from the data set WORK.BSS2. OTE: The data set WORK.ASSIGN_TRT_BSS has 24 observations and 5 variables. OTE: DATA statement used (Total process time): 0.03 seconds real time 0.01 seconds cpu time proc sort data= assign trt BSS; 9 by block tank; run; 0 OTE: There were 24 observations read from the data set WORK.ASSIGN_TRT_BSS. OTE: The data set WORK.ASSIGN_TRT_BSS has 24 observations and 5 variables.

UIE	: PHODEDDHE SVI	ni used (lotar process time):	,
	real time	0.01 seconds	2/39
	cpu time	0.01 seconds	Log Book / Pages 2/39 File Folder 1726 Initials from Date 370004
1			
2	proc print dat	ta≕ assign_trt_BSS;	
3	title1 h=1 'E1	ffects of Pseudomonas fluores	cens (Pf-CL145A) to newly metamorphosed';
4		uvenile mussels from seven di	fferent unionid species';
5	title3 h=1 'AE	EH-11-PSUEDO-02';	PROOFELLBY
6	title4 h=1 'Ra	andom assignment of treatment	to experimental tanks'; initials: Date
7	title5 h=1 'Mu	ssel speces: Black sandshell	; REVIEWED BY
8	run;		initiality Date Dat
OTE	There were 24	observations read from the e	lata set WORK.ASSIGN TRT BSS. NW TONT
		INT used (Total process time)	
	real time	0.03 seconds	
	cpu time	0.03 seconds	

AEH-11-PSEUDO-02

Page <u>5</u> of <u>7</u>

```
Study Number: : AEH-11-PSUED0-02
 Study Director: Jim Luoma
  date created : 28 MAR 2012 - JAL ^{
m yr}
 Verified by: _____ (Date:_____
                                    page ____ of _
 Random allocation of treatment to tank.sas
AEH-11-PSEUDO-02
M 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
OOTNOTE1 'Analysis performed by j. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE;
ptions ls=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
*Random assignment of treatment to experimental tanks*/
                                                             Log Book / Pages
                                                             Eile Folder
*Mussel speces: Black sandshell*/
                                                                             Date Hovin
                                                             laitiais _
                                                                     WW
ata BSS;
do block = 1 to 2 by 1;
                                                                 PROOFEDEY
 do tank = 1 to 12 by 1;
                                                            Initials: ____ Date :.
 x = ranuni(-1);
                                                                 REVIEWED BI
 output;
                                                            Initialer ____ Date',
                                                                  not needed
MW Front
 end;
end;
un;
ata BSS2; set BSS;
if block = 1 and tank = 1 then tankn = ' 2A1';
 if block = 1 and tank = 2 then tankn = ' 2A2';
 if block = 1 and tank = 3 then tankn = ' 2A3';
   if block = 1 and tank = 4 then tankn = ' 2A4';
    if block = 1 and tank = 5 then tankn = ' 2A5';
     if block = 1 and tank = 6 then tankn = ' 2A6';
f block = 1 and tank = 7 then tankn = ' 2A7';
 if block = 1 and tank = 8 then tankn = ' 2A8';
  if block = 1 and tank = 9 then tankn = ' 2A9';
   if block = 1 and tank = 10 then tankn = '2A10';
    if block = 1 and tank = 11 then tankn = '2A11';
     if block = 1 and tank = 12 then tankn = '2A12';
if block = 2 and tank = 1 then tankn = ' 2B1';
 if block = 2 and tank = 2 then tankn = ' 2B2';
  if block = 2 and tank = 3 then tankn = ' 283';
   if block = 2 and tank = 4 then tankn = '2B4';
    if block = 2 and tank = 5 then tankn = ' 2B5';
     if block = 2 and tank = 6 then tankn = ' 2B6';
if block = 2 and, tank = 7 then tankn = ' 2B7';
 if block = 2 and tank = 8 then tankn = ' 2B8';
 if block = 2 and tank = 9 then tankn = ' 2B9';
   if block \approx 2 and tank = 10 then tankn = '2B10';
    if block = 2 and tank = 11 then tankn = '2B11';
                                                              Page _____ of 7
     if block = 2 and tank = 12 then tankn = '2B12';
   run:
roc sort data=BSS2;
by block x;
un;
ata assign trt BSS; set BSS2;
if n = 1 then trt = 'control';
 if _n_ = 2 then trt = 'control';
```

```
257
```

if _n_ = 3 then trt = '50';	
if _n_ = 4 then trt = '50';	ب و
if _n_ = 5 then trt = '100';	7/72
if _n_ = 6 then trt = '100';	Log Book/Pages
if _n_ = 7 then trt = '200';	File Folder
if _n_ = 8 then trt = '200';	pitials hu wale mour
if _n_ = 9 then trt = '300';	
if _n_ = 10 then trt = '300';	PROOFEDBY
if _n_ = 11 then trt = '300-HD';	Initials: Date 1
if _n_ = 12	Initiale: REVIEWED BY
if _n_ = 13 then trt = 'control';	Initials, Date
if _n_ = 14 then trt = 'control';	not neleound
if _n_ = 15 then trt = '50';	REVIEWED BY Taitials Dates not needed Www gnovily
if _n_ = 16 then trt = '50';	AEH-11-PSEUDO-02
if _n_ = 17 then trt = '100';	
if _n_'= 18 then trt == 100';	
if _n_ = 19 then trt = '200';	
if _n_ = 20 then trt = '200';	
if _n_ = 21 then trt = '300';	
if _n_ = 22 then trt = '300';	
if _n_ = 23 then trt = '300-HD';	
if _n_ = 24 then trt = '300-HD';	
roc sort data= assign_trt_BSS;	
y block tank; run;	
roc print data= assign_trt_BSS;	
itle1 h=1 'Effects of Pseudomonas fluorescen	
itle2 h=1 'juvenile mussels from seven diffe	rent unionid species';
<pre>itle3 h=1 'AEH-11-PSUED0-02';</pre>	
itle4 h=1 'Random assignment of treatment to	experimental tanks';
itle5 h=1 'Mussel speces: Black sandshell';	

un;

Item Number: 5

Page 7 of 7

---- to _____ 67,69

:ffects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed uvenile mussels from seven different unionid species .EH-11-PSUEDO-02 .endom assignment of treatment to experimental tasks

andom assignment of treatment to experimental tanks lussel speces: Plain Pocketbook

bs	block	tank	х	tankn	trt
1	1	1	0.06985	1 A1	control
2	1	2	0.88913	1A2	300-HD
з	1	3	0.16235	1A3	control
4	1	4	0.87236	1A4	300-HD
5	1	5	0.54779	1A5	200
6	1	6	0.39142	1A6	100
7	1	7	0.39348	1A7	100
8	1	8	0.21372	1A8	50
9	1	9	0.63119	1A9	300
10	1	10	0.29521	1A10	50
11	1	11	0.39421	1A11	200
12	1	12	0.66472	1A12	300
13	2	1	0.98853	1B1	300-HD
14	2	2	0.82654	1B2	300
15	2	З	0.13197	1B3	50
16	2	4	0.91426	1B4	300-HD
17	2	5	0.29006	1B5	100
18	2	6	0.35263	1B6	20 0
19	2	7	0.33244	1B7	100
20	2	8	0.13562	1B8	50
21	2	9	0.07339	1B9	control
22	2	10	0.13079	1 B10	control
23	2	11	0.84900	1B11	30 0
24	2	12	0.70439	1B12	200

5/2/12 J#-

2/45 Log Book/Pages ______ File Folder ______ Initials ______ Date Frovig

PROOFED BY Initials: Date :-REVIEWED BY Dateⁱ Initialay not needed INN FRONTY

AEH-11-PSEUDO-02

item Number:

Page _____ of ____

nalysis performed by j. Luoma SAS version 9.2 14:35 02MAY12

AEH-11-PSEUDO-02

Log Book/Pages File Folder	2/45	
Initials VW	Daie	7 novig

ς'.

PROOFED BY Initials: _____ Date :_____ Reviewed By Initials _____ Date: Act Number Ww Frout

admoldPage _2 of _7___

* Verified by: _____ (Date: 37 page ____ of ___ 38 Random allocation of treatment to tank.sas 39 '0 DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT; '1 '2 FOOTNOTE1 'Analysis performed by j. Lucma SAS version ' &SYSVER &SYSTIME &SYSDATE; (ARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text. '3 '4 options ls=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2: '5 Log Book / Pages '6 /*Random assignment of treatment to experimental tanks*/ 126 '7 File Folder. Date Frovi /*Mussel speces: Plain pocketbook*/ Initials _ LAN '8 data BSS; '9 do block = 1 to 2 by 1; PROOFED ST 10 do tank = 1 to 12 by 1; Initials: Date : x = ranuni(-1);H REVIEWED 8 12 output; Initialar Date! without FW Though 13 end: 14 end; 15 run; AEH-11-PSEUDO-02 IOTE: The data set WORK.BSS has 24 observations and 3 variables. IOTE: DATA statement used (Total process time): real time 0.00 seconds cpu time 0.01 seconds 36 data BSS2; set BSS; ;7 if block = 1 and tank = 1 then tankn = ' 1A1'; :8 if block = 1 and tank = 2 then tankn = ' 1A2': :9 if block = 1 and tank = 3 then tankn = ' 1A3'; if block = 1 and tank = 4 then tankn = ' 1A4'; ю 11 if block = 1 and tank = 5 then tankn = ' 1A5'; 2 if block = 1 and tank = 6 then tankn = ' 1A6'; 13 if block = 1 and tank = 7 then tankn = ' 1A7'; ı٨ if block = 1 and tank = 8 then tankn = ' 1A8'; 15 if block = 1 and tank = 9 then tankn = ' 1A9'; ıß if block = 1 and tank = 10 then tankn = '1A10'; 7 if block = 1 and tank = 11 then tankn = '1A11'; 8 if block = 1 and tank = 12 then tankn = '1A12'; if block = 2 and tank = 1 then tankn = $^{\circ}$ 1B1'; 9 Page <u>3</u> of <u>7</u> if block = 2 and tank = 2 then tankn = ' 1B2'; 00 01 if block = 2 and tank = 3 then tankn = ' 1B3'; 02 if block = 2 and tank = 4 then tankn = ' 1B4'; 03 if block = 2 and tank = 5 then tankn = ' 1B5'; 04 if block = 2 and tank = 6 then tankn = ' 1B6': 05 if block = 2 and tank = 7 then tankn = ' 1B7'; 06 if block = 2 and tank = 8 then tankn = ' 1BB'; 07 if block = 2 and tank = 9 then tankn = ' 1B9'; 08 if block = 2 and tank = 10 then tankn = '1B10'; 09 if block = 2 and tank = 11 then tankn = '1B11'; 10 if block = 2 and tank = 12 then tankn = '1B12'; 11 run;

OTE: There were 24 observations read from the data set WORK.BSS.

OTE: The data set WORK.BSS2 has 24 observations and 4 variables. OTE: DATA statement used (Total process time): 0.02 seconds real time 2/45 0.03 seconds cpu time Log Book / Pages nc File Folder Date nuvid Im laitials . 12 proc sort data=BSS2; PROOPED BY 13 by block x; 🔔 Date : Initials: ___ 14 run; REVIEWED BY initiaisí . Date! OTE: There were 24 observations read from the data set WORK.BSS2. Net OTE: The data set WORK.BSS2 has 24 observations and 4 variables. OTE: PROCEDURE SORT used (Total process time): 0.01 seconds real time 0.01 seconds cpu time 15 AEH-11-PSEUDO-02 data assign_trt_BSS; set BSS2; 16 if n = 1 then trt = 'control'; 17 if _n_ = 2 then trt = 'control'; 18 if _n_ = 3 then trt = '50'; 19 if _n_ = 4 then trt = '50'; 20 if _n_ = 5 then trt =. '100'; 21 if _n_ = 6 then trt = '100'; 22 if _n_ = 7 then trt = '200'; 23 if _n_ = 8 then trt = '200'; 24 25 if _n_ = 9 then trt = '300'; if _n_ = 10 then trt = '300'; 26 if _n_ = 11 then trt = '300-HD'; 27 if _n_ = 12 then trt = '300-HD'; 28 if _n_ = 13 then trt = 'control'; 29 if _n_ = 14 then trt = 'control'; 30 if _n_ = 15 then trt = '50'; 31 if _n_ = 16 then trt = '50'; 32 if _n_ = 17 then trt = '100'; 33 if _n_ = 18 then trt = '100'; 34 if _n_ = 19 then trt = '200'; 35 if _n_ = 20 then trt = '200'; Page 4 of 7 36 if _n_ = 21 then trt = '300'; 37 if _n_ = 22 then trt = '300'; 38 if _n_ = 23 then trt = '300-HD'; 39 if n = 24 then trt = 300-HD'; run; 40 OTE: There were 24 observations read from the data set WORK.BSS2. OTE: The data set WORK.ASSIGN_TRT_BSS has 24 observations and 5 variables. OTE: DATA statement used (Total process time): 0.02 seconds real time 0.03 seconds cpu time 41 proc sort data= assign_trt_BSS; 42 by block tank; run; OTE: There were 24 observations read from the data set WORK.ASSIGN TRT BSS. OTE: The data set WORK.ASSIGN_TRT_BSS has 24 observations and 5 variables.

	real time	0.00 seconds		2/45	
	cpu time	0.01 seconds	5/2/12	Log Book/Pages <u>2/45</u> File Folder <u>12C</u> Initials <u>Free</u> Date 7110019	
43					
44	proc print	data= assign_trt_BSS;			
45	title1 h=1	'Effects of Pseudomonas	fluorescens (Pf-CL145/	A) to newly metamorphosed';	
46	title2 h=1	'juvenile mussels from s	even different unionio		
47	title3 h=1	'AEH-11-PSUEDO-02';		PROOFED BY	
48	title4 h=1	'Random assignment of tr	eatment to experimenta	al tanks'; Initials: Date :	
49	title5 h=1	'Mussel speces: Plain Po	cketbook';	REVIEWED By	
5 0	run;			ASSIGN_TRT_BSS. M. 7 Mol M	
OTE:	: There were	e 24 observations read fr	om the data set WORK.A	ASSIGN_TRT_BSS. MM 7 Mar 9	
OTE	PROCEDURE	PRINT used (Total proces	s time):		
	real time	0.01 seconds			
	cpu time	0.01 seconds		AEH-11-PSEUDO-02	

Page <u>5</u> of <u>7</u>

,

```
Study Number : AEH-11-PSUED0-02
  Study Director: Jim Luoma
  date created : 02 MAY 2012 - JAL ゴル
  Verified by: _____ (Date:_____
                                   ___)
                                                        page ____ of __
  Random allocation of treatment to tank.sas
M 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
OOTNOTE1 'Analysis performed by j. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE:
ptions ls=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2;
*Random assignment of treatment to experimental tanks*/
                                                                            2/45
                                                            Log Book / Pages
*Mussel speces: Plain pocketbook*/
                                                            File Folder ....
ata BSS;
                                                                                 Tiwely
                                                            Initials Inv
                                                                            Date _
do block = 1 to 2 by 1;
 do tank = 1 to 12 by 1;
                                                                 PROOFED
 x = ranuni(-1);
                                                                    Dave :
                                                           Initials: ____
 output;
                                                                REVIEWED BI
 end;
                                                           Initialer ....... Date'
end;
                                                                   not needed
un;
                                                                    VW Trevi
ata BSS2; set BSS;
if block = 1 and tank = 1 then tankn = ' 1A1';
 if block = 1 and tank = 2 then tankn = ' 1A2';
 if block = 1 and tank = 3 then tankn = ' 1A3';
                                                                  AEH-11-PSEUDO-02
   if block = 1 and tank = 4 then tankn = ' 1A4';
    if block = 1 and tank = 5 then tankn = ' 1A5';
     if block = 1 and tank = 6 then tankn = ' 1A6';
f block = 1 and tank = 7 then tankn = ' 1A7';
 if block = 1 and tank = 8 then tankn = ' 1A8';
  if block = 1 and tank = 9 then tankn = ' 1A9';
   if block = 1 and tank = 10 then tankn = '1A10';
    if block = 1 and tank = 11 then tankn = '1A11';
     if block = 1 and tank = 12 then tankn = '1A12';
if block = 2 and tank = 1 then tankn = ' 1B1';
 if block = 2 and tank = 2 then tankn = ' 1B2';
 if block = 2 and tank = 3 then tankn = ' 1B3';
   if block = 2 and tank = 4 then tankn = '1B4';
    if block = 2 and tank = 5 then tankn = ' 1B5';
     if block = 2 and tankur 6 then tankn = ' 1B6';
if block = 2 and tank = 7 then tankn = ' 1B7';
if block = 2 and tank = 8 then tankn = ' 1B8';
 if block = 2 and tank = 9 then tankn = ' 1B9';
   if block = 2 and tank = 10 then tankn = '1B10';
                                                                  Page <u>6</u> of <u>7</u>
    if block = 2 and tank = 11 then tankn = '1B11';
     if block = 2 and tank = 12 then tankn = '1B12';
  run:
roc sort data=BSS2;
by block x;
un;
ata assign trt BSS; set BSS2;
if _n_ = 1 then trt = 'control';
if _n_ = 2 then trt = 'control';
```

```
if _n_ = 3 then trt = '50';
   if _n_ = 4 then trt = '50';
if _n_ = 5 then trt = '100';
                                                            Log Book / Pages
 if _n_ = 6 then trt = '100';
                                                            File Folder
                                                                             Date Thorn
  if _n_ = 7 then trt = '200';
                                                            Initials two
   if _n = 8 then trt = '200';
                                                                  PROOFED BY
if _n_ = 9 then trt = '300';
 if _n_ = 10 then trt = '300';
                                                                        Date :.
                                                                 BEVEWED BY
                                                            Initials: -
  if _n_ = 11 then trt = '300-HD';
                                     AEH-11-PSEUDO-02
                                                                not needed
                                                                          Date' .
   if _n_ = 12 then trt = '300-HD';
                                                             Initials:
 if _n_ = 13 then trt = 'control';
 if _n_ = 14 then trt = 'control';
  if n = 15 then trt = '50';
  if _n_ = 16 then trt = '50';
if _n_ = 17 then trt = '100';
 if _n_ = 18 then trt = '100';
  if _n_ = 19 then trt = '200';
   if _n_ = 20 then trt = '200';
if n = 21 then trt = '300';
 if n = 22 then trt = '300';
  if _n_ = 23 then trt = '300-HD';
   if _n_ = 24 then trt = '300-HD';
                                       run;
roc sort data= assign_trt_BSS;
y block tank; run;
                                                                                ٠.
roc print data= assign_trt_BSS;
itle1 h=1 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed';
itle2 h=1 'juvenile mussels from seven different unionid species';
itle3 h=1 'AEH-11-PSUEDO-02';
itle4 h=1 'Random assignment of treatment to experimental tanks';
itle5 h=1 'Mussel speces: Plain Pocketbook';
ün;
```

Item Number: 6

Page 7____ of 7___

and the second second

ffects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed uvenile mussels from seven different unionid species .EH-11-PSUEDO-02 .andom assignment of treatment to experimental tanks

ussel speces: Higgins eye

bs	block	tank	х	tankn	trt
1	1	1	0.00835	1A1	control
	-				
2	1	2	0.60605	1A2	300
3	1	3	0.24472	1A3	100
4	1	4	0.59595	1A4	200
5	1	5	0.75791	1A5	300-HD
6	1	6	0.06266	1A6	50
7	1	7	0.93239	1A7	300-HD
8	1	8	0.04116	1A8	control
9	1	9	0.32822	1A9	100
10	1	10	0.13429	1A10	50
11	1	11	0.33214	1A11	200
12	1	12	0.65314	1A12	300
13	2	1	0.32119	1B1	control
14	2	2	0.57707	1B2	200
15	2	3	0.49158	1B3	100
16	2	4	0.32466	1B4	50
17	2	5	0.62230	1B5	200
18	2	6	0.63153	1B6	300
19	ຸ 2	7	0.93692	1B7	300-HD
20	2	8	0.21906	1B 8	control
21	2	9	0.47496	1B9	100
22	2	10	0.39196	1B10	50
23	2	11	0.91912	1811	300-HD
24	2	12	0.89877	1812	300 ·

to cost

5/23/12 Ja-

Log Book / Pages ______ File Folder ______ Initials LU_____ Date _____

1

PROOFED BY Initials: Date : REVIEWED BY fnitiala: , Date , not needed

AEH-11-PSEUDO-02

~

ļ 2

Item Number:

Page _ _ of _ 8

nalysis performed by j. Luoma SAS version 9.2 07:27 23MAY12

/49 2 Log Book/Pages File Folder _____ Date truevel Provil Initials IAM' TNOVE PROOFED BY BI Date: REVIEWED BY Date: Mot Neule Mot Noule Mot Noule Bare :-Initiais: Initiala

ţ

AEH-11-PSEUDO-02

÷.,

Page <u>}</u> of <u></u>

1.19

~~ _____ (Date: 81 * Verified by: page ____ of * Random allocation of treatment to tank.sas 82 83 *********** 84 DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT; 85 FOOTNOTE1 'Analysis performed by j. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE; 86 ARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text. 87 options ls=97 ps=58 formdlim='-' pageno = 1 nocenter nodate nosource2; 88 AEH-11-PSEUDO-02 89 90 /*Random assignment of treatment to experimental tanks*/ 2/19 91 /*Mussel speces: Higgins Eye*/ Log Book / Pages .. 92 data BSS; File Folder_ port do block = 1 to 2 by 1; 93 Vin Date . Initials _ do tank = 1 to 12 by 1; PROOFED 94 x = ranuni(-1);95 96 output; 97 end; not needed form from 98 end; 99 run; OTE: The data set WORK.BSS has 24 observations and 3 variables. OTE: DATA statement used (Total process time): Γ., real time 0.01 seconds cpu time 0.00 seconds 00 data BSS2; set BSS; if block = 1 and tank = 1 then tankn = ' 1A1'; 01 02 if block = 1 and tank = 2 then tankn = ' 1A2'; 03 if block = 1 and tank = 3 then tankn = ' 1A3'; 04 if block = 1 and tank = 4 then tankn = ' 1A4'; 05 if block = 1 and tank = 5 then tankn = ' 1A5': 06 if block = 1 and tank = 6 then tankn = ' 1A6': 07 if block = 1 and tank = 7 then tankn = ' 1A7'; 08 if block = 1 and tank = 8 then tankn = ' 1A8'; 09 if block = 1 and tank = 9 then tankn = ' 1A9'; 10 if block = 1 and tank = 10 then tankn = '1A10'; if block = 1 and tank = 11 then tankn = '1A11'; 11 12 if block = 1 and tank = 12 then tankn = '1A12'; Page <u>3</u> of <u>8</u> 13 if block = 2 and tank = 1 then tankn = ' 1B1'; 14 if block = 2 and tank = 2 then tankn = ' 1B2'; 15 if block = 2 and tank = 3 then tankn = ' 1B3'; 16 if block = 2 and tank = 4 then tankn = ' 1B4'; 17 if block = 2 and tank = 5 then tankn = ' 1B5'; 18 if block = 2 and tank = 6 then tankn = ' 1B6'; if block = 2 and tank = 7 then tankn = ' 1B7'; 19 if block = 2 and tank = 8 then tankn = ' 1B8'; 20 21 if block = 2 and tank = 9 then tankn = ' 1B9'; 22 if block = 2 and tank = 10 then tankn = '1B10': 23 if block = 2 and tank = 11 then tankn = '1B11'; 24 if block = 2 and tank = 12 then tankn = '1B12'; 25 run;

OTE: There were 24 observations read from the data set WORK.BSS.

OTE; The data set WORK.BSS2 has 24 observations and 4 variables. OTE: DATA statement used (Total process time): 0.02 seconds real time 2/40 Log Book / Page cpu time 0.03 seconds File Folder, Date _ + ruviligitials PROOFED BY 26 proc sort data=BSS2; AEH-11-PSEUDO-02 Initials: . /Date : 27 by block x; REVIEWED BY 28 run; Initiala: Date' not needed Www Frievit OTE: There were 24 observations read from the data set WORK.BSS2. OTE: The data set WORK.BSS2 has 24 observations and 4 variables. OTE: PROCEDURE SORT used (Total process time): 0.00 seconds real time 0.01 seconds cpu time 29 data assign_trt_BSS; set BSS2; 30 if _n_ = 1 then trt = 'control'; 31 if _n_ = 2 then trt = 'control'; 32 if n = 3 then trt = '50'; 33 if _n_ = 4 then trt = '50'; 34 if $n_ = 5$ then trt = '100'; 35 if _n_ = 6 then trt = '100'; 36 if _n_ = 7 then trt = '200'; 37 if _n_ = 8 then trt = '200'; 38 if _n_ = 9 then trt = '300'; 39 if _n_ = 10 then trt = '300'; 40 if _n_ = 11 then trt = '300-HD'; 41 if _n_ = 12 then trt = '300-HD'; 42 if _n_ = 13 then trt = 'control'; 43 if _n_ = 14 then trt = 'control'; 210 44 45 if _n_ = 15 then trt = '50'; 46 if _n_ = 16 then trt = '50'; if _n_ = 17 then trt = '100'; 47 if _n = 18 then trt = '100'; 48 49 if _n_ = 19 then trt = '200'; if _n_ = 20 then trt = '200'; 50 Page if n = 21 then trt = '300'; 51 if n = 22 then trt = '300'; 52 if _n_ = 23 then trt = '300-HD'; 53 if _n_ = 24 then trt = '300-HD'; 54 run: OTE: There were 24 observations read from the data set WORK.BSS2. OTE: The data set WORK.ASSIGN_TRT_BSS has 24 observations and 5 variables. OTE: DATA statement used (Total process time): 0.02 seconds real time 0.01 seconds cpu time :55 proc sort data= assign_trt_BSS; :56 by block tank; run; IOTE: There were 24 observations read from the data set WORK.ASSIGN_TRT BSS. NOTE: The data set WORK.ASSIGN_TRT_BSS has 24 observations and 5 variables.

	· · · · · · · · · · · · · · · · · · ·	oom adoa (torar biogood	· camer ·		-
	, real time	0.00 seconds	Thehr		a ha
	cpu time	0.00 seconds	5/23/12	Log Book / Par File Folder	
:57			AEH-11-PSEUDO-02		10
:58	proc print	data= assign_trt_BSS;			
59	title1 h=1	'Effects of Pseudomonas	fluorescens (Pf-CL145A)	to newly ma	atamorphosed':
60	title2 h=1	'juvenile mussels from s	even different unionid	species';	1
61		'AEH-11-PSUEDO-02';			PROOFED BY
62	title4 h=1	'Random assignment of tr	eatment to experimental	tanks';	Initials: Date :
6 3	title5 h=1	'Mussel speces: Higgins	eye';		REVIEWED BY
64	run;				DIRIGINS
	PROCEDURE	e 24 observations read fr PRINT used (Total proces		SIGN_TRT_BSS	s. perteg two those
	real time	0.00 seconds			
	cpu time	0.00 seconds			

Page <u>5</u> of <u>8</u>

- ·

.

* Verified by: _____ (Date:_ _____5/23/12_____ 00 81 page of * Random allocation of treatment to tank.sas 82 83 ********************** DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT; 84 AEH-11-PSEUDO-02 85 FOOTNOTE1 'Analysis performed by j. Luoma SAS version ' &SYSVER &SYSTIME &SYSDATE; 86 'ARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text. 87 88 options ls=97 ps=58 formdlim= -' pageno = 1 nocenter nodate nosource2; 89 90 /*Random assignment of treatment to experimental tanks*/ Log Book / Pages 91 /*Mussel speces: Higgins Eye*/ File Folder, data BSS; 92 Dale that initials _ IW do block = 1 to 2 by 1; 93 94 do tank = 1 to 12 by 1; PROOFED 95 x = ranuni(-1);Initials: Date : 96 output; REVIEWED BY 97 end: Initiols Date: Not needed 98 end; 99 run; OTE: The data set WORK.BSS has 24 observations and 3 variables. OTE: DATA statement used (Total process time): 0.01 seconds real time cpu time 0.00 seconds 00 data BSS2; set BSS; 01 if block = 1 and tank = 1 then tankn = ' 1A1'; 02 if block = 1 and tank = 2 then tankn = ' 1A2': 03 if block = 1 and tank = 3 then tankn = ' 1A3': if block = 1 and tank = 4 then tankn = ' 1A4'; 04 05 if block = 1 and tank = 5 then tankn = ' 1A5'; 28 06 if block = 1 and tank = 6 then tankn = ' 1A6'; 07 if block = 1 and tank = 7 then tankn = ' 1A7'; 08 if block = 1 and tank = 8 then tankn = ' 1A8'; 09 if block = 1 and tank = 9 then tankn = ' 1A9': if block = 1 and tank = 10 then tankn = '1A10'; 10 11 if block = 1 and tank = 11 then tankn = '1A11'; if block = 1 and tank = 12 then tankn = '1A12'; 12 13 if block = 2 and tank = 1 then tankn = ' 1B1'; if block = 2 and tank = 2 then tankn = 1 1B2'; 14 15 if block = 2 and tank = 3 then tankn = ' 1B3'; 16 if block = 2 and tank = 4 then tankn = ' 1B4'; 17 if block = 2 and tank = 5 then tankn = ' 1B5'; 18 if block = 2 and tank = 6 then tankn = ' 1B6'; Page 6_of 8____ 19 if block = 2 and tank = 7 then tankn = ' 1B7'; if block = 2 and tank = 8 then tankn = (188); 20 21 if block = 2 and tank = 9 then tankn = ' 1B9'; 22 if block = 2 and tank = 10 then tankn = '1B10'; if block = 2 and tank = 11 then tankn = '1B11'; 23 24 if block = 2 and tank = 12 then tankn = '1B12'; 25 run;

OTE: There were 24 observations read from the data set WORK.BSS.

OTE: The data set WORK.BSS2 has 24 observations and 4 variables. OTE: DATA statement used (Total process time): 3/23/12 0.02 seconds real time cpu time 0.03 seconds Log Book / Pages proc sort data=BSS2; 26 File Folder AEH-11-PSEUDO-02 TNWIT Date " 27 by block x; Initials _ 28 run; PROOFED BY 🖉 Date : 🖕 Initials: " OTE: There were 24 observations read from the data set WORK.BSS2. REVIEWED BY OTE: The data set WORK.BSS2 has 24 observations and 4 variables. Date! initials: OTE: PROCEDURE SORT used (Total process time): not needed 0.00 seconds real time Inv Thoury cpu time 0.01 seconds 29 data assign_trt_BSS; set BSS2; 30 if _n_ = 1 then trt = 'control'; 31 if _n_ = 2 then trt = 'control'; 32 if _n_ = 3 then trt = '50'; 33 if _n_ = 4 then trt = '50'; 34 if _n_ = 5 then trt = '100'; 35 if _n_ = 6 then trt = '100'; 36 if _n_ = 7 then trt = '200'; 37 if _n_ = 8 then trt = '200'; 38 if _n_ = 9 then trt = '300'; 39 if _n_ = 10 then trt = '300'; 40 if _n_ = 11 then trt = '300-HD'; 41 if _n_ = 12 then trt = '300-HD'; 42 if _n_ = 13 then trt = 'control'; 43 if _n_ = 14 then trt = 'control'; 44 45 if _n_ = 15 then trt = '50'; 46 if _n = 16 then trt = '50'; if _n_ = 17 then trt = '100'; 47 if _n_ = 18 then trt = '100'; 48 49 if _n_ = 19 then trt = '200'; if _n_ = 20 then trt = '200'; 50 if _n_ = 21 then trt = '300'; 51 if n = 22 then trt = '300'; 52 if _n_ = 23 then trt = '300-HD'; 53 if $n_{1} = 24$ then trt = '300-HD'; run; 54 OTE: There were 24 observations read from the data set WORK.BSS2. OTE: The data set WORK.ASSIGN_TRT_BSS has 24 observations and 5 variables. OTE: DATA statement used (Total process time): 0.02 seconds real time 0.01 seconds cpu time 55 proc sort data= assign_trt_BSS; 56 by block tank; run; OTE: There were 24 observations read from the data set WORK.ASSIGN_TRT_BSS. OTE: The data set WORK.ASSIGN_TRT_BSS has 24 observations and 5 variables.

real time cpu time	0.00 seconds 0.00 seconds	5/2.3/12 Log Book/ Jn- File Folder	Pages 2/49 12 W Date 9101
:57		АЕН	-11-PSEUDO-02
:58 proc print	data= assign_trt_BSS;		
:59 title1 h=1	'Effects of Pseudomonas fluoresco	ens (Pf-CL145A) to newly (metamorphosed':
	'juvenile mussels from seven dif		
:61 title3 h=1	'AEH-11-PSUEDO-02';		PROOFED BY
:62 title4 h=1	'Random assignment of treatment '	to experimental tanks';	Initials: Date 1
:63 title5 h=1	'Mussel speces: Higgins eye';		REVIEWED BY
:64 run;			Initials: Date'
	e 24 observations read from the da PRINT used (Total process time):	ata set WORK.ASSIGN_TRT_B	ss. necked provid

273

Item Number: <u>8</u>____

Page S of S

.

real time 0.00 seconds cpu time 0.00 seconds

Appendix 4. Test Article Information

ltem number	Item description	Number of pages	Report page number
1	Material Safety Data Sheet: MBI-401 FDP	2	276
2	Material Safety Data Sheet: MBI-401 SDP	2	278
3	Test Chemical Stock Preparation Data Form – Stock preparation date July 12, 2011	1	280
4	Test Chemical Stock Preparation Data Form – Stock preparation date July 14, 2011	1	281
5	Test Chemical Stock Preparation Data Form – Stock preparation date December 13, 2011	1	282
6	Test Chemical Stock Preparation Data Form – Stock preparation date January 27, 2012	1	283
7	Test Chemical Stock Preparation Data Form – Stock preparation date April 17, 2012	1	284
8	Test Chemical Stock Preparation Data Form – Stock preparation date May 16, 2011	1	285
9	Test Chemical Stock Preparation Data Form – Stock preparation date May 26, 2011	1	286
10	Newly Metamorphosed Mussel Exposure Dosing Form – dated July 12, 2011	1	287
11	Newly Metamorphosed Mussel Exposure Dosing Form – dated July 14, 2011	1	288
12	Newly Metamorphosed Mussel Exposure Dosing Form - dated December 13, 2011	1	289
13	Newly Metamorphosed Mussel Exposure Dosing Form – dated January 27, 2012	1	290
14	Newly Metamorphosed Mussel Exposure Dosing Form - dated April 17, 2012	1	291
15	Newly Metamorphosed Mussel Exposure Dosing Form - dated May 16, 2012	1	292
16	Newly Metamorphosed Mussel Exposure Dosing Form - dated May 26, 2012	1	293
17	Chemical Stock Solution Determination – Exposure termination date July 13, 2011	1	294
18	Chemical Stock Solution Determination – Exposure termination date July 15, 2011	1	295
19	Chemical Stock Solution Determination – Exposure termination date December 14, 2011	1	296
20	Chemical Stock Solution Determination – Exposure termination date January 28, 2012	1	297
21	Chemical Stock Solution Determination – Exposure termination date April 18, 2012	1	298
22	Chemical Stock Solution Determination – Exposure termination date May 17, 2012	1	299
23	Chemical Stock Solution Determination – Exposure termination date May 27, 2012	1	300
24	Copy of test article information from test article logbook for MBI–401 FDP; lot number 110510FD – used for HIC and MUC exposures	6	301
25	Copy of test article information from test article logbook for MBI–401 FDP; lot number 110928FD – used for WAS exposure	5	307
26	Copy of test article information from test article logbook for MBI–401 SDP; lot number MBI–401 SDP 4655–12–Mix – used for FAM exposure	5	312
27	Copy of test article information from test article logbook for MBI–401 SDP; lot number TR4669–4–(7–8) 2 nd shipment – used for BLS exposure	5	317
28	Copy of test article information from test article logbook for MBI–401 SDP; lot number TR 4669–4–(5) – used for PPB and HGE exposures	7	322
29	Post-treatment activity retention report from NYSM for lot MBI-401 FDP 110510FD - Start date of July 20, 2011	2	329

Post-treatment activity retention report from NYSM for lot MBI-401 FDP 110928FD – Start date of December 29, 2011	2	331
Post-treatment activity retention report from NYSM for lot MBI-401 SDP 4655-12- Mix – Start date of February 9, 2012	2	333
Post-treatment activity retention report from NYSM for lot MBI-401 SDP TR-4669- $4-(7-8) 2^{nd}$ shipment – Start date of May 1, 2012	2	335
Post-treatment activity retention report from NYSM for lot MBI-401 SDP TR-4669-	2	337
Post-treatment activity retention report from NYSM for lot MBI-401 SDP TR-4669- 4-(5) - Start date of June 6, 2012	2	339
	 Start date of December 29, 2011 Post-treatment activity retention report from NYSM for lot MBI-401 SDP 4655-12- Mix – Start date of February 9, 2012 Post-treatment activity retention report from NYSM for lot MBI-401 SDP TR-4669- 4-(7-8) 2nd shipment – Start date of May 1, 2012 Post-treatment activity retention report from NYSM for lot MBI-401 SDP TR-4669- 4-(5) – Start date of May 29, 2012 Post-treatment activity retention report from NYSM for lot MBI-401 SDP TR-4669- 4-(5) – Start date of May 29, 2012 Post-treatment activity retention report from NYSM for lot MBI-401 SDP TR-4669- 	 Start date of December 29, 2011 Post-treatment activity retention report from NYSM for lot MBI-401 SDP 4655-12- Mix – Start date of February 9, 2012 Post-treatment activity retention report from NYSM for lot MBI-401 SDP TR-4669- 4-(7-8) 2nd shipment – Start date of May 1, 2012 Post-treatment activity retention report from NYSM for lot MBI-401 SDP TR-4669- 4-(5) – Start date of May 29, 2012 Post-treatment activity retention report from NYSM for lot MBI-401 SDP TR-4669- 2

MATERIAL SAFETY DATA SHEET

.,

.

Date Prepared: April 27, 2011	MBL-401 FDP Page 1 of 2
Prodxct Name: MBI-401 FDP	Marrone Bio Innovations, 2121 Second Street,
Trade names/ Synonyms: MBL401 FDP EPA Registration Number: None Primary Hazards: Inhalation	Suite B-107, Davis, CA 95618 AEH-11-PSEUDO-02 Phone (Business hours): 530-750-2800 www.marronebio.com For emergencies such as leaks or spills call CHEMTREC 24-hour toll-free hotline at 1.800.424.9300
SECTION 1: MATERIAL IDENTIFICATION INGREDIENT 1 CUL145A strain of <i>Pseudomonas fluorescens</i> Common Name: Not applicable Common Name: Not applicable Molecular Formula: Not applicable Percent: 100% OTHER INGREDIENTS: Noue 100% Desiting Point: Not applicable Melting Point: Not applicable Method: 0.161 g/mL PL: 6.7 Solubility in Water: Dispersible in water Appearance: Powder Color: Musty PC- Odor: Method: Not applicable Metho	as fuorescens SECTION 5: HEALTH HAZARDS Printary Route of Earty: Oral, Eye, Inhalation Exposure Limit: Not established Corrosive: Not established Skir/ Eye Irritation: May be irritating to skin and eyes for some individuals. Effects of Overexposure: Inhalation: May be irritating to skin and eyes for some individuals. Effects of Overexposure: Inforder components of this product care listed as carcinogenic by NITP, IARC, or OSHA Corrosity: None of the components of this product are listed as carcinogenic by NITP, IARC, or OSHA Acute Dermal LD ₃₆ : >5,050 mg/kg Acute Dermal LD ₃₆ : >2.25 mg/L
us zation: ibility: us Decomposition us to avoid:	or doctor for further treatment advice. If swallowed: Call a poison control center or doctor immediately for treatment advice. Have person sip a glass of water if able to swallow. Do not induce vomiting unless told to by a poison control center or doctor. Do not give anything by mouth to an unconscious person.

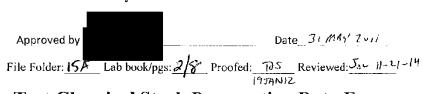
. •

•

276

...

MATERIAL SAFETY DATA SHEET


Page 2 of 2 Insecticides, Fungicides N.O.I., Other Than This document set forth is based on information that Marrone Bio Innovations, AEH-11-PSEUDO-02 Aarrone **Bio Innovations** Inc. (MBI) believes to be accurate. No warranty, expressed or implied, is consideration and MBI assumes no legal responsibility for use or reliance intended. The information is provided solely for your information and Poisons. NMFC 102120 Class 60 SHIPPING REGULATIONS Vational Fire Protection Association Rating: None None 2222å SARA Title III Hazard Classification: Immediate (acute) Health: No 00 FF # <u>- א</u> Item No. רי <u>א</u> Sudden Release of Pressure: Delayed (chronic) Health: DOT Label (s) Required: Proper shipping name: Freight Classification: of SECTION 10: Flammability: Reactivity: Reactivity: MBI-401 FDP Health: thereon. Tre: Use a NIOSH approved respirator with any N-95, R-95, P-95 or HE filter for biological products when Wear suitable protective clothing such as long-sleeved shirt, pants, waterproof gloves and shoes with socks. Carefully mop or sweep up spill and place in a Use a NIOSH approved respirator with any N-95, R-95, P-95 or HE filter for Waste disposal method: Dispose of in accordance with all applicable federal, Clothing to prevent prolonged skin contact as needed such as long-sleeved shirt, long pants and Store in a dry area inaccessible to children. Store in original containers only. Empty container completely and dispose of in accordance with all applicable Safety goggles or safety glasses with side shields exposed skin before eating, drinking, smoking after work or using the toilet, Wear gloves made of Latex or other impervious, For emergencies such as leaks or spills, call CHEMTREC 24-hour toll-free Wash any contamination from skin or eyes immediately. Wash hands and SPILL, LEAK AND DISPOSAL PROCEDURES AEH-11-PSEUDO-02 SECTION 7: SPILL, LFAK AND DISPOSAL PRO Steps to be taken in case material is released or spilled: mixing/loading the product. biological products when mixing/loading the product. federal, state, and local environmental regulations. SECTION 9: SPECIAL PRECAUTIONS Precautions to be taken in handling and storing: waterproof material shoes with socks. state, and local environmental regulations. SPECIAL HANDLING recommended. Keep container closed when not in use. Date Prepared: April 27, 2011 closed container for disposal. hotline at 1.800.424.9300. Other protective clothes: Protective gloves: Eye protection: **SECTION 8:** Respiratory:

Page 1 of 2	Marrone Bio Innovations, 2121 Second Street, Suite B-107, Davis, CA 95618	Phone (Business hours): 530-750-2800	www.marronebtoumovations.com For emericancies such as leaks or snills call CHEMTREC 24-hour	toll-free hotline at 1.800.424.9300	HEALTH HAZARDS	Skin contact, Eye, Inhalation	Not correstve	May be irritating to respiratory tract for some	Individuals. Avoid of earling dust. May be irritating to skin and eyes for some	individuals. If modulot comes in contact with eves or skin	irritation may occur.	None of the components of this product are listed	as carcinogenic by in if, itany, objita	Acute Oral LD ₃₀ (Rat): >5,000 mg/kg (very low toxicity)	nu) Z2,000 mg/kg (non-urnaung, muu or sugur irritation)		Minimal Irritation, Class 4		AIL	Hold eye open and rinse slowly and gently with water for 15-20	minutes. Remove contact lenses, it present, arter the first 5 minutes, then continue rinsing eye. Call a poison control center	of doctor for treatment advice.	Move person to fresh air. If person is not breathing, call 911 or an ambulance then give artificial restriction preferebly month.	possible.	Take off contaminated clothing. Rinse skin immediately with	plenty of water for 15-20 minutes. Call a poison control center or doctor for further treatment advice.	If swallowed: Call a poison control center or doctor immediately for treatment	advice. Have person sip a glass of water if able to swallow. Do
MATERIAL SAFETY DATA SHEET	Contact: Marrone Bio Ir Suite B-107. D	Phone (Busine	www.marrone For emergencia	toll-free hotlin	SECTION 5: HEALTH	Primary Route of Entry:	Exposure Lunu: Cornsive:	Inhalation:	Skin/ Eye Irritation:	Effects of Overexnosure:		Toxicity:	Acute studies:	Acute Oral LD ₅₀ (Rat):	Acute Definal LD50 (Ka00)	Primary Dermal Irritation	Eye Irritation		Emergency First Aid Procedures:	If in eyes: Hold eye op	minutes. Ke	of doctor for	If inhaled: Move perso	to-mouth if possible.	If on skin: Take off con	plenty of we or doctor for	If swallowed: Call a poiso	advice. Hav
. MATERIAL			tal				r seudomonas fiuorescens		FF Iter Pg	mĒ	9 No.	of	2	-					• •	appropriate for the								
MBI-401 Spray Dried Powder, August 2010	BI-401 SDP		-	nzanon #: 0050-KF-10 Inhalation	MATERIAL IDENTIFICATION		UL 145A Strain of <i>Pseudo</i> ? Not annlicable	Not applicable	Not applicable 50%	S' inert non-reactive		PHYSICAL DATA Not amilicable	Not applicable	0.78 g/ml Dispersible in water	Powder	Tan Sweet mustv	from tootto	AND EXPLOSION DATA Not flammable	Not applicable	Use extinguishing media appropriate for the surrounding fire	,	None	None	<u>REACTIVITY</u>	Material is non-reactive	Does not occur	None known ion	None known
-401 Spray Dried Pc	Product Name: MBI-401 SDP	Trade names/ Synonyms:	EPA Registration Number:	Phimary Hazards:	SECTION 1: MATE	NGREDIENT 1	Common Name: Chemical Name:	Molecular Formula:	CAS Number: Percent:	OTHER INCREDIENTS: inert non-reactive		SECTION 2: PHYS	Melting Point:	Bulk Density: Solubility in Water:	Appearance:	Color: Odor:		SECTION 3: FIRE Flash Point:	Method:	Extinguishing Media:	Special Fire Fighting	Procedures: Unusual Fire and	Explosion Hazards:	SECTION 4: REAC	Stability: Hezerdone	Polymerization:	Incompatibility: Hazardous Decomnosition	Products:

Page 2 of 2 SECTION 10: SHIPPING REGULATIONS	Proper shipping name: None		SARA Title III Hazard Classification: Immediate (acute) Health: None Delayed (chronic) Health: None	rue. Sudden Release of Pressure: None Reactivity: None	al Fire Protection Associatio	Health: Flammability: None Reactivity: None	This document set forth is based on information that Marrone Bio Innovations,	Inc. (MBI) believes to be accurate. No warranty, expressed or implied, is intended. The information is provided solely for your information and consideration and MBI assumes no legal responsibility for use or reliance	.u.	Marcho		DIO INNOVALIONS	FF # _ Item N 290	S lo.
MBI-401 Spray Dried Powder, August 2010 SECTION 7: SPILL, LEAK AND DISPOSAL PROCEDURES SECTION 10: SHI		Wear suitable protective clothing such as long-sleeved shirt, pants, waterproof Freig gloves and shoes with socks. Carefully mop or sweep up spill and place in a closed container for disposal.	Waste disposal method: Dispose of in accordance with all applicable federal, Imm state, and local environmental regulations.	For emergencies such as leaks or spills, call CHEMTREC 24-hour toll-free Suds holline at 1.800.424.9300.	SECTION 8: SPECIAL HANDLING	Respiratory: Use a NIOSH approved respirator with any N-95, P- 95, R-95 or HE filter for biological products when Reactiv mixing/loading the product.	Protective gloves: Wear gloves made of Latex or other impervious material.	Eye protection: Safety goggles or safety glasses with side shields inter recommended.	Other protective clothes: Clothing to prevent prolonged skin contact as needed such as long-sleeved shirt, long pants and shoes with socks.	SECTION 9: SPECIAL PRECAUTIONS Precautions to be taken in handling and storing:	Use a NIOSH approved respirator with any N-95, P-95, R-95 or HE filter for biological products when mixing/loading the product.	Store in a dry area inaccessible to children. Store in original containers only. Keep container closed when not in use.	Empty container completely and dispose of in accordance with all applicable federal, state, and local environmental regulations.	Wash any contamination from skin or eyes immediately. Wash hands and

AEH-11-PSEUDO-02

Study Title: "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Study number: AEH-11-PSEUDO-02

Test Chemical Stock Preparation Data Form

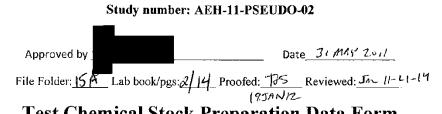
Test Chemical: Pseudomonas fluorescens strain 145A

Test Chemical Lot #1/05/0FD Date Rec'd 28 DVN 2011 Exp. Date 14 AUG 2011

Chemical Weighing:

Sample I.D.	Sample wt. (g)	Date/Time	Initials
Deachive	5.0082	120212011/0817	KLW
Active	5.0076	12 522 2011/0825	KIW
		Yew Onl	one species_
		27 MUII	

*Chemical samples to be stored refrigerated until used for stock preparation.


Stock Preparation:

	Dilution Vol.	Dilution	Use (ie: Active stock for	Date/	
Sample I.D.	(ml)	time	HGE)	Time	Initials
Deartive	500mL	Prepared COD	Deactive stock for HK	DJUL 2011	KLW
Active	SUOML	1062	Active shock for HIC	12JUL2011	KW
			1/10, Only	one spec	ies
			LUW J	dosed	
			d7 mill		

*Stocks to be prepared immediately before use, except for heat deactivated stock which will be prepared at least 1 hr prior to use to allow for deactivation and cooling. O wrong thre. Short prepared at 0835 Kew 125 / 2011

FF # 50-Item No. 4 Pg ____ of __

Study Title: "Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Test Chemical Stock Preparation Data Form

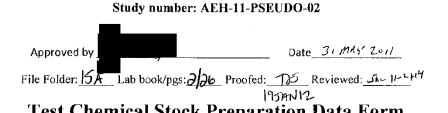
Test Chemical: Pseudomonas fluorescens strain 145A

Test Chemical Lot # 110570FD Date Rec'd 28 MN 2011 Exp. Date 14 Aug 2011

Chemical Weighing: BAL | M BL3 WTS1 ad WTS2

	013 (200)	<u>×</u>	
Sample I.D.	Sample wt. (g)	Date/Time	Initials
Deactive	5.0010	14711/0850	KLW
Active	5.0012	147ULII 0855	KLW
	The set was a set of the set of t	Ku only	one species
		27 MUI	C. CONTRACTION CONTRACTOR OF CONTRACTOR

*Chemical samples to be stored refrigerated until used for stock preparation.


Stock Preparation:

	Dilution Vol.	Dilution	Use (ie: Active stock for	Date/	
Sample I.D.	(ml)	time	HGE)	Time	In itia ls
Deartive	500	Heated@08041-084 Brought to volume 085	Deachive stock for MUL	14 JUL 11 0905	Kuu
Active	500	0905	Adue Stock for Muc	LAND WENTER AN	KW
			1 main		¥-6
			FUN Drig	ane spec	
			X7JULI -		

*Stocks to be prepared immediately before use, except for heat deactivated stock which Wrong pime. Correct time was 0755. KLW 14 JUL 2011. (2) Wrong pime. Correct time was 0755. KLW 14 JUL 2011 (2) Wrong pime. Correct time was 0755. KLW 14 JUL 2011. (FF

FF # <u>15</u> Item No.

Study Title: "Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Test Chemical Stock Preparation Data Form

Test Chemical: Pseudomonas fluorescens strain 145A

Test Chemical Lot # 10928 FD Date Rec'd 6 DEC 11 Exp. Date 18 MAR 12 . .

Chemical Weighing:	BALL on a WTS 2			
Sample I.D.	Sample wt. (g)	Date/	Time	Initials
Deartive Stock	5.0055	13 DEC 11		jeuw
Active Stock	5.0078	13 DECH	10750	KIW
	//		only	ore Species
	L.	W 13DEC		desed.

*Chemical samples to be stored refrigerated until used for stock preparation.

Stock Preparation:

	Dilution Vol.	• Dilution	Use (ie: Active stock for	Date/	
Sample I.D.	(ml)	time	HGE)	Time	Initials
Deactive sold	500	0900	Into white both at 0840 WIS aut of H20 both at 0845	120861	Kiw
Active Stock		Started at 0840 Final volume at 0700	WAS	13 PEC 11	KIW
		Kon		mariles	
	<u></u>	proc	13 DECH only one s	sperie	

*Stocks to be prepared immediately before use, except for heat deactivated stock which will be prepared at least 1 hr prior to use to allow for deactivation and cooling.

FF # <u>15</u> Item No. <u>6</u> Pg <u>6</u>

ć

Study Title: "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Study number: AEH-11-PSEUDO-02

File Folder: 15A Lab book/pgs: 2/33434 Reviewed: 25 3134N/2 Verified: 5n- 11-21-14

Test Chemical Stock Preparation Data Form

Test Chemical: Pseudomonas fluorescens strain 145A					
MB1-401 SDP Test Chemical Lot # <u>4655-12-Mix</u> Date	Rec'd lo TAN 12	Exp. Date 10 JUN 12			
Mussel Species FAM	System <u>(1)</u> 2 <u>3</u>				
Instruments BALI and BALG	w/wrs 2				

Chemical Weighing:

Sample I.D.	Sample wt. (g)	Date/Time	Initials
Deactive Stock	10.0553	27 JAN 12/0820	Klw
Active stock for PAI		27 JAW12/0830	Kuw
	~ 1	one spectes bei	na dosed.
			Kew 27 JANIA

*Chemical samples to be stored refrigerated until used for stock preparation.

Stock Preparation:

	Dilution Vol.	Dilution	Use (ie: Active stock for	Date/	
Sample I.D.	(ml)	time	HGE)	Time	Initials
Deache	67 500	into heat at 0840 out at valent chas	Deachive for PAM	27-JAN 12 0950	KUW
Active	-500	Started at 0930	Active for FAM	27 JAN 12 0950	KIW
		Only on		ed therefo	re only
			I deactive and White	stock need	ed Ktho
<u>.</u>	<u> </u>				27 JANAS

*Stocks to be prepared immediately before use, except for heat deactivated stock which will be prepared prior to use to allow for deactivation and cooling.

Ostarted to write incorrect Votom		FF # 15a
This datasheet was approved by	on 18 JANZUIL.	Item No. <u>7</u>
11JAN2012/version1.1		Pg of

Study Title: "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Study number: AEH-11-PSEUDO-02

175 File Folder: 1574 Lab book/pgs:2140-41 Reviewed: 2341412 Verified: 5- 11-21-14

Test Chemical Stock Preparation Data Form

Test Chemical: Pseudomonas fluorescens strain 145A

Test Chemical Lot #TR469-4-178 Date Rec'd 13 Mar. 12	Exp. Date 26 JANI3
Mussel Species BLS Shipment System 1 (2)	2
Mussel Species <u>1</u> 2	
Instruments BAL 4, BAL 7	

Chemical Weighing:

Sample I.D.	Sample wt. (g)	Date/Time	Initials
Deachive Stock	10,00034	16APE12 1430	Ku
Aothe Stuck	10.00418	16 APP W 1430	KIW

*Chemical samples to be stored refrigerated until used for stock preparation.

Stock Preparation:

	Dilution Vol.	Dilution	Use (ie: Active stock for	Date/	
Sample I.D.	(ml)	time	HGE)	Time	Initials
Deadre Stat	500	into water both at 0730 and at 0815	Deather Stock for BLS	17-APP12 0815	KIW
Ache Stock	* 5700	0815	Adwestock for BLS	A MARCH OFIS	¥w
1					

*Stocks to be prepared immediately before use, except for heat deactivated stock which will be prepared prior to use to allow for deactivation and cooling.

This datasheet was approved by 11JAN2012/version1.1	o	n_ <u>/8JA~200</u> 2.	FF # <u>15a</u> Item No. <u>8</u> Pg of
---	---	-----------------------	---

Study Title: "Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Study number: AEII-11-PSEUDO-02

2/44,45,46, ihm File Folder: 15A Lab book/pgs: 47 Reviewed: 2100/14 Verified 51-11-21-14

Test Chemical Stock Preparation Data Form

Test Chemical: Pseudomonas fluorescens strain 145A

Test Chemical Lot #TR469445) Date Rec'd 24APF12 Exp. Date 2 JAW13

Mussel Species <u>PPB</u> System <u>1 2 3</u>

Instruments BAL 7, BA LS

Chemical Weighing:

Sample I.D.	Sample wt. (g)	Date/Time	Initials
Active Stock	05,0009	15MAY12/1450	<i>t m</i>
Deachive Stock	0 5.00091	15MAY12/1450	fin
Deactive Stock 2	10,00038	15MAY 12/1530	¥w .
() Active Stock 2	10,00092	1574114 1/530	<i>pu</i>
Stock #5	10.00044	16MATI) 0820	Kuw

*Chemical samples to be stored refrigerated until used for stock preparation.

Oweighed wrong amount of test chemical. These al quots will not be used. Kus 15MAYIA

Stock Prepara	tion:			Item No Pg of	
	Dilution Vol.	Dilution	Use (ie: Active stock for	Date/	
Sample I.D.	(ml)	time	HGE)	Time	Initials
Peache Stock 2	500	Into water built @ 0730	Deactive Stock for PPB	16 Miny 12 0730	Kun
Active Stock 2	* 1500	0800	Dealthe Stock for PPB	16 M WY 12 0900	Kin
9to14#5	500	0910	Netter Stock for PPB	164444 12. 0910	Ku
,					
3					

FF# 152

*Stocks to be prepared immediately before use, except for heat deactivated stock which will be prepared prior to use to allow for deactivation and cooling.

11JAN2012/version1.1

Study Title: "Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Study number: AEH-11-PSEUDO-02

File Folder: 15 a Lab book/pgs: 3/+3 Reviewed: 310-11 Verified: Jac 11-21-14

Test Chemical Stock Preparation Data Form

Test Chemical: Pseudomonas fluorescens strain 145A

Test Chemical Lot # $7R 4669.4^{5}$ Date Rec'd 24 APR 12 Exp. Date 12 San 13 Mussel Species <u> $H \mathscr{E} E$ </u> System (1) 2 3 Instruments BAL 7, BAL 3

Chemical Weighing:

Sample I.D.	Sample wt. (g)	Date/Time	Initials
HD Stock	10.00374	5/25/12 1:25pm	
Active Stock	10.00345	5/25/12 1:30pm	ms
			,

*Chemical samples to be stored refrigerated until used for stock preparation.

Stock Preparation:

	Dilution Vol.	Dilution	Use (ie: Active stock for	Date/	
Sample I.D.	(ml)	time	HGE)	Time	Initials
AD storle.	500n1	0755	Hend develove shake for HGE	5/26/n 0800	50-
Actin Stuck	500ml	0845	nulne spick for HGE	Shelp OGIM	Jī_

*Stocks to be prepared immediately before use, except for heat deactivated stock which will be prepared prior to use to allow for deactivation and cooling.

This datasheet was approved by 11JAN2012/version1.1

on<u>regan 174</u>. FF # <u>15a</u> Item No. <u>10</u> Pg <u>1</u> of _

***** .

metamorphosed juvenile m	ussels from seven diff	ferent unionid species'	,
Study nu	mber: AEH-11-PSEUDC)-02	
Approved by File Folder: <u>15B</u> Cab book	рдз: <u>2/8</u> Proofed: <u>75</u> Зілын	ate_ <u>5/7,/11</u> Rovicwod: <u>آمر 11-</u> 4-14	f
Newly Metamorphose			
species: HIC (D. olivar	(ia) UMESC I	ot number: <u>1/2800</u>	
Test System Assignment (circle one):	<u>_1_2_3_</u>		
Number mussel/Chamber_40_ Nu	umber of replicate Cham	bers/Concentration4	
Number of Concentrations (includin	g control)6		
Date/time (military) of dosing initiati	ion: 100 12 ML1		
Date/time (military) of dosing compl	·		
Chemical Lot : 10510 FDSto			K
Test Solution Preparation Time: <u>100</u>	2 final volume for be	th Active ad Deactive s	stocks
Test Solution preparation description Deactive Stock - 5,0082 g/ Active Stock - 5,0096 g/Su			
Active stock - 5,0016, 180	mh well water at	20%	<u></u>
Additional information:			
			0
Witness and form recorded by:			
Kom 1. weber		UMESC	12 TUL 2011
OPrinted Name	Signature	Affiliation	Date
		FF # <u>15b</u> Item No. <u>4</u> Pg <u>1</u> of <u>1</u>	

Study Title: "Effects of Pseudomonas fluorescens (Pf-CL145A) to newly

· ._ ·

metamorphosed juvenile mussels from seven different unionid species"
Study number: AEH-11-PSEUDO-02
Approved by Date $5/7./11$ File Folder: 1512 Lab book/pgs: $2/14$ Proofed: 755 Reviewed: $56.11-21-14$ 315AN12- Nowly Motor probagoed Muggeel Exposure Desing Form
File Folder: <u>151</u> Lab book/pgs: $\frac{\partial 14}{24}$ Proofed: <u>155</u> Reviewed: <u>Jac 11-21-14</u>
Newly Metamorphosed Mussel Exposure Dosing Form
Species: Actinonaices ligamentine UMESC lot number: 112900
Test System Assignment (circle one): 1 2 3
Number mussel/Chamber40 Number of replicate Chambers/Concentration4
Number of Concentrations (including control)6
Date/time (military) of dosing initiation: 6912 [4700]
Date/time (military) of dosing completion: 09.35 HTML
Chemical Lot: 110510 FDStock Chemical Sample I.D. Deactive Active
Test Solution Preparation Time: Each brought to final volumes at 0905
Test Solution preparation description (include dilution volume):
Deactive: 5.0010g/500mL well water, Heated at 70°C from 0504 to 0848
Active: 5.0012g / SUD ML Vell Water at 20%
Additional information:
Witness and form recorded by:
Kerry L. weberUMESC1454LJoh() Printed NameSignatureAffiliationDate
() Printed Name Signature Affiliation Date
FF # <u>155</u> Item No. <u>5</u> Pg <u>1</u> of <u>1</u>

Study Title: "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

metamorphosed juvenile mussels from seven different unionid species"	
Study number: AEH-11-PSEUDO-02	
	4
Approved by Date $5/7/4$	
Approved by Date $5/7$, /4 File Folder: 1577 Lab book/pgs: $2/37$ Proofed: 155 Reviewed: $54 - 11 - 14$ 3176 Niz	
Newly Metamorphosed Mussel Exposure Dosing Form	
Species: WAS (M.Nervosa) UMESC lot number: 116100	
Test System Assignment (circle one): 1_2_3	
Number mussel/Chamber_40 Number of replicate Chambers/Concentration4	
Number of Concentrations (including control)6	
Date/time (military) of dosing initiation: 0900 13 DEU	
Date/time (military) of dosing completion: 0940 13 DEL1	
Chemical Lot: 10925 FD Stock Chemical Sample I.D. Active Stock	
Test Solution Preparation Time: Kolume at 0900	
Test Solution preparation description (include dilution volume):	
Deactive: 5.0055g/500 mL well water, Heated at 70°C from 0800 to 0845	
Active: 5.0078 g/SoomL well water at 20%.	
Additional information:	
Witness and form recorded by:	
4 LIMESC	Date
FF # <u>15</u> 5 Item No. <u>b</u> Pg <u>of 1</u>	

Study Title: "Effects of *Pseudomonas fluorescens (Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Study Title: "Effects of *Pseudomonas fluorescens (Pf-*CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Study number: AEH-11-PSEUDO-02

File Folder: <u>1.5B</u> Lab book/pgs: $\frac{2}{34}$ Reviewed: <u>78</u> Verified: <u>Jac 11-21-14</u> <u>315AN 12</u>
Newly Metamorphosed Mussel Exposure Dosing Form
Species: FAM (L. siliquoidea) UMESC lot number: 121000
Test System Assignment (circle one): <u>1</u> <u>2</u> <u>3</u>
Number mussel/Chamber <u>40</u> Number of replicate Chambers/Concentration <u>4</u>
Number of Concentrations (including control) 6
Date/time (military) of dosing initiation: 1009 27 DAN 12
Date/time (military) of dosing completion: 1035 27JAND MB1-401 SDP Deactive Stock
Chemical Lot: 4655-12-Mix Stock Chemical Sample I.D. Active Stock
Test Solution Preparation Time: <u>Each lower at ~0950</u>
Test Solution preparation description (include dilution volume):
Deactive: 10.0553g/500mL well water. Heated at 70° from 0840-to 0925. Active: 10.0406g/520mL well water at 20%.
Active: 10.0406g/520ml well water at 20%. touch stock was spin on a stir plate. The active stock was in a bucket of ice.
Additional information:
Witness and form-recorded by:
Kerry L. Weber UMESC 27JMWW
Printed Name Signature Affiliation Date
FF # <u>15b</u> Item No. 7
This datasheet was approved by on// on//

Study Title: "Effects of Pseudomonas fluorescens (Pf-CL145A) to newly
metamorphosed juvenile mussels from seven different unionid species?

Study number: AEH-11-PSEUDO-02

File Folder: 15b Lab book/pgs: $\frac{2}{44}$ Reviewed: $\frac{334}{234}$ Verified: $\frac{5}{5}$ Verified: $\frac{5}{5}$

Newly Metamorphosed Mussel Exposure Dosing Form

Species: BLS	UMESC lot number: 121400
Test System Assignment (circle one): 1 2	3
Number mussel/Chamber <u>40</u> Number of rep	licate Chambers/Concentration4
Number of Concentrations (including control)(5
Date/time (military) of dosing initiation: $09/0$	HAPR12
Date/time (military) of dosing completion: <u>094</u> 2	5 17APP-12
Chemical Lot: <u>TP-4669-4-(7-8)</u> Stock Chemical 2 ¹²⁴ Shipment	Deastive state for BLS I Sample I.D. Acture Stat for BLS
Test Solution Preparation Time: 09/0 4. 093	
Test Solution preparation description (include di	
Deather Stock 10,00034g/500mL UM	55 well water bated at 70° for 45min 103
Deache Stock 10,00034g/500mL UMA Actu Stock 10,00418g/500mL UMES	(well water (20°c)
Additional information:	

Additional information:

Witness and form-recorded by:

Kerry L. weber		UMESC	17 APRIL
Brinted Name	Signature	Affiliation	Date
:		FF # <u>15</u> 5 Item No. <u>_8</u> PgL_ of	
This datasheet was approved by 11JAN2012/version1.1	on <u>/</u>	ITAN ZOIL.	

Study Title: "Effects of *Pseudomonas fluorescens* (*Pf*-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Study number: AEH-11-PSEUDO-02

File Folder: 15B Lab book/pgs: 2/45-47 Reviewed: 400-11 Verified: 51-11-14
Newly Metamorphosed Mussel Exposure Dosing Form
Species: Plain Pockethook UMESC lot number: 121700
Test System Assignment (circle one): (1) 2 3
Number mussel/Chamber <u>40</u> Number of replicate Chambers/Concentration <u>4</u>
Number of Concentrations (including control) 6
Date/time (military) of dosing initiation: 0945 16 MAY 17
Date/time (military) of dosing completion: 1016 [6MA(12
Chemical Lot: <u>MB1-401 SDP</u> Stock Chemical Sample I.D. <u>Deactive stock</u> for PPB TR4469-45 0945-1009 Stock 1 5 (Active Stock) for PPB Test Solution Preparation Time: <u>0910-0933</u> wrong times. KW 1614 Mile
Test Solution preparation description (include dilution volume):
Deactive Stock 10,00092 g/500ml UMESC well water heated at 70% for 45 minutes Active Stock 10,00044g/500ml UMESC well water (20°C)

Additional information:

 Witness and form recorded by:

 Kerny L weber
 UMESC

 J Printed Name
 / Signature

 Affiliation
 Date

 FF #
 15b

 Item No.
 9

 Pg
 of

 11JAN2012/version1.1
 on

Study Title: "Effects of *Pseudomonas fluorescens (Pf-*CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"

Study number: AEH-11-PSEUDO-02

File Folder: <u>15.6</u> Lab book/pgs: <u>3/1-3</u> Reviewed: <u>MPNoith</u> Verified: <u>Jo- 11-21-14</u>
Newly Metamorphosed Mussel Exposure Dosing Form
Species: H6-E UMESC lot number: 121900
Test System Assignment (circle one): <u>1</u> 2 3
Number mussel/Chamber <u>40</u> Number of replicate Chambers/Concentration <u>4</u>
Number of Concentrations (including control)_6
Date/time (military) of dosing initiation: $5/27/12/0923$
Date/time (military) of dosing completion: $5/26/12/09/9$
Date/time (military) of dosing completion: $5/26/12/0949$ Chemical Lot: TR 4669-4-(5) Stock Chemical Sample I.D. Deachive (HD Stock) Active Stock
Test Solution Preparation Time: 0923 - 0945
Test Solution preparation description (include dilution volume): <u>HD stock 10.003749</u> 500 ml UMESC well water hocked at 20°C per 45 min <u>Active Stock 10.00365a</u> 500 ml UMESC well water (20°C)
Additional information:
Witness and form recorded by:
ThereseSchreiberUMESC5/26/12Printed NameSignatureAffiliationDate
Printed Name Signature Affiliation Date
This datasheet was approved by on on on Pg of

Study Number AEH-11-PSEUDO-02

Approved by: File Folder: 5

Date 6/24/1)

Proofed: 735 195ANIZ Reviewed: In 11-21-14 File Folder 15

Dau

R

Chemical Stock Solution Determination

Stock A = Control (20 °C well water -controls will be treated in the same manner but will use a stock solution of plain well water) Stock B = 10,000 mg/u; 100% active ingredient[10mg/mL]) *** Make 5g/500 mL well water per each test system Stock C = 10,000 mg/L detoxified active material [10mg/m1]***Make 5g/500 mL well for use in all 3 systems - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use

	1. ²⁰ 1	tere estaden		:	:	-		(
		i est solution	mg of test	Deactivated	Active	Aliguot	Aliquot	Aliquot	Color
Dosage Leve		Stock volume	material	шg	gm	Stock A	Stock B	Stock C	Code
(mg/r)	Dose concentration	(mL)	required	required	required	(mL)	(ալ)	/(mL)/	Assignment
0	control (well water blank)	5,000	0	0	0	0.0	0.0	0.0	White
300	mg/L (Deactivated)	5,000	1,500	1500	0	0.0	0.0	150.0	White/black stripes
50	mg/t	5,000	250	0	250	0.0	25.0	0.0	Yellow
C01	mg/L	5,000	500	0	500	0.0	50.0	0.0	Yellow/black stripes
COZ	mg/L	5,000	1,000	o	1000	0.0	100.0	0.0	Blue
COE	mg/L	5,000	1,500	o	1500	0.0	150.0	0.0	Blue/black stripes
Total Dogin	Doily of O. of warda	on 12 Jul 2011.	Warta on 12 Jul 2011. (Alded by KLW 27 THUI)	(Imm te		0.0	325.0	150.0	
Concentration	Concentration Time Test Solution Prepared	Time Dosing Started	Time Dosing Completed	Initials	Time of Ex	Time of Exposure Termination	nination	Intiails	Date
	7001	1001	1120	0, 20	41.1	11		V12.1	

r							
Concentration	Concentration Time Test Solution Prepared	<u>Time Dosing Started</u>	Time Dosing Completed	<u>Initials</u>	Time of Exposure Termination	<u>Intiails</u>	Date
1/gm (1004	1004	1008	PLM	1046	Ken	11000 EI /2.
300 mg/L Deactive	1006	1008	1013	prm	020120	1 47	Ja- 7/13/11
50 mg/L	1010	1013	1017	brm	HS OI	1	713hi
00 mg/L	1014	1018	1032	PLM	lest	tun	
200 mg/L	1019	1032	1027	PLM	1029	1473	11/21/4
300 mg/L Active	1025	1028	1032	mrd	Foil	لللنكإ	
							-

D which way fre 7-13-11 50 v

ь^д шөл ЕЕ #

ło

<u>.on</u> SI h

Study Number AEH-11-PSEUDO-02

Approved by: File Folder: 7 Version: 1.1/24JUNE2011

6/24/1) Date

Chemical Stock Solution Determination

Stock A = Control (20 °C well water -controls will be treated in the same manner but will use a stock solution of plain well water) Stock B = 10,000 mg/t; 100% active ingredient[10mg/mL]) *** Make 5g/500 mL well water per each test system Stock C = 10,000 me/L Alexander action - control of a stock solution of plain well water)

		10mg/mL]***Make 5g/500 r	: material [10mg/mL]***Make 5g/500 mL well for use in all 3 systems - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use	: - Heat deactivate	d for 45 minute	es at 70°C/co	oleď to 20	°C prior to) use
Dosage Level (mg/L)	Dose concentration	Test solution Stock volume (mL)	mg of test material required	Deactivated mg reonired	Active mg	4 4	۲ ۵	Aliquot Stock C	Color Code
00 300	control (well water blank) mg/L (Deactivated)	5,000	D	0	o	0.0			Assignment White
50 100	тв/1 жа/1	5,000	1,5UU 250	1500 D	a 250	0.0	0.0 25.0	150.0 0.0	White/black stripes
200 300	רן אנגע שנגע שנגע	5,000	500 1,000	ġр	500 1000	0.0 0.0	50.0 100.0	0.0	Yellow/black stripes Rine
Total		nnnic	1,500	0	1500	0.0	150.0	0.0	Blue/black stripes
Lesin	being of A. Igamentin on HTUL 2011. (Added by kin 37 Jul 1).	the on 14 The	ron. (Anded by Ku	W 37 Ju	Ś	0.0	325.0	150.0	
<u>Concentration</u>	Time Test Solution Prepared	<u> Time Dosing Started</u>	Time Dosing Completed	Initiale	The set				
0 mg/L	0110	-	00 16			11111E OT EXPOSURE TERMINATION	-+-	Intialls	Date
300	0915	2017			0930 -	0430 - 0950		کار	7-15-11
DOW INST LEAGUNG	4.0	Utile	0114	570	2220	0975 -0950		ź	7-15-11
50 mg/L	8160	06 20	0924	310	2974 994	202			1
100 mg/l	6921	424	6750	JTV		2000	<u>-</u>	-13-	1. 61-1
200 mg/L	0425	0928	Ng 31	NHE	0455 -0700	0000	<u>5</u>	いら	1-12-11
300 me/l Active	09.29	1631	7935		073) - 0770	0770	5	-65	7-15-11
			67.5	210	0535-0950	0950	3	15	7-15-1

Proofed: 25 193ANIZ Reviewed . Jac 11-21-14

Date 37 mer

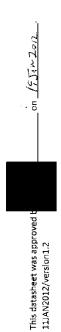
3

Log Book / Para File Folder 15 Minis 2440

<u>of.</u> Ed To of tem No.

Pg6		stack stack in the
ا	color code white white/black stripes vellow black stripes Blue/black stripes Blue/black stripes	offy make by assng lass dilution when the the i file 300 H.D. when the our rulized after the Soarghe was if 9,975me, when the wes rulized after the Soarghe was a concility, the Chinetor wen Phashed with the concil 5th it does was in the 300 H.D. Chanker her 20 minutes out in the deviation will be dailed to document this ever. 12-13-11 San the deviation will be dailed to document this ever. 12-13-11 San
S Jan	Aliquot stock C (mL) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	the state
fed : I	Aliquot Stock B (mi1) 0.0 25,0 25,0 25,0 150,0 100,0 10,0 100,000,0	met and
P. 6.0 es at 70°C/	Active Aliquot Aliquot <t< td=""><td>inter inter</td></t<>	inter inter
l Ior 45 minut	Active Alice Mice Alice Mice Alice Store Alice Store S	Less dr Lot 9, His un Lat un Latta
of plain well water) item - Hcat deactivated	Deactivated mg required 1500 1500 0 1500 0 0 0 0 0 0 0 0 0 0 0	H.D. when
ビンチャットリー トレート・シュート	mg of test material required 1,500 2550 590 1,000 1,000 1,000 1,000 1,500 1,000 1,000 1,000 1,000 1,000 1,500 0,00 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,500 590 590 590 590 590 500 500 500 500	when were incorrectly made by assay lass dilution when then and were such for the 300 4.00 whend of 9,850 and and 9,750 and was 50 mg/L instead of 9,975 mL. When this was realized after the Song/L was shork were remark consulty, the Church were Phashed with the consult stack at The incorrect dose was in the 300 H.M. Charles let I consults out in the fact I 1 minutes. It devides will be dated to document this even 12-13-11 300
D0-02 Cab not the start : Date (ッ/ ナッ / /) Cab not the start : D Prefet : D on Determination water -controls will be treated in the same manner but will use a water -controls will be treated in the same manner but will use a field active ingredient [10mg/mL], *** Make 5g/500 mL well water p field active material [10mg/mL], *** Make 5g/500 mL well for use i	Test solution stock volume (mL) Test solution (mL) (mL) (mL) 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 0,01 2,07 0,02 2,07 0,03 2,07 0,03 2,07 0,03 2,07 0,03 2,07 0,03 2,07 0,03 2,07	These encontrins were incorrely make by asing lass dilutes when then reassery 3,500 and were incorrely make by asing lass dilutes when the and 9,750 me was used for the 50 mg/L instead of 9,975 mL. When this was rulled after the 50 mg/L dosed, the shirts ware remark consulty, the church ware Phished with the conver- and a dose. The incorrect dose was in the 300 H.M. churches for 2 20 muchs on 50 mg/L for 1 17 minutes. It devides will be dafted to the ever 12-13-11
Si de la la la la la la la la la la la la la	Dose concentration control (well water blank) mg/L (peactivated) mg/L mg/L mg/L mg/L mg/L mg/L 0910 0 0915 0915 0915 0934	O These encontroli recessory 3,500 and used for the 5 dosed, the short end in Josed. 50 mg/r for
Study Number AFH-11-PSEUDO-02 Approved by: File Folder: <u>15</u> Version: 1.1/24JUU NE2 011 Version: 1.1/24JUU NE2 011 Chemical Stock Solution De Stock A = Control (20 °C well water Stock C = 10,000 mg/l, 100% activus Stock C = 10,000 mg/l detoxified a	Dosage Level (mg/L) 0 300 50 100 0 0 0 200 100 200 0 200 0 200 0 200 0 200 0 200 100 mg/L 100 mg/L 200 mg/L	

Study Number AEH-11-PSEUB0-02 Reviewed: 13-5 315AN12 Verified: 5-1, 11/14


Date of Dosing: <u>37 JWN 13</u> Formulation and lot #: <u>M&1-401 SDP</u> 4405-13-My 33-34 File Folder: 15 Lab book/pgs: 31 5 Species: 5414 System: ____

Chemical Stock Solution Determination and Preparation

Dose Level	Final Solution	mo né tact matavial	Doortination wa	Artico me	Dilution water to	Well Water	Active Stock	Deactive Stock	
(mg/L)	Volume (mL)	required		required	and to container (mL)	Aliquet Stock A [mL]	Aliquot stock b [ml]	Aliquot Stock L (mL)	Color Code Assignment
0	5,000	0	D	0	0	5000.0	0.0	0.0	White
300 H D	5,000	1,500	1500	o	4,850	0.0	0.0	150.0	White/black stripes
50	5,000	250	0	250	4,975	0.0	25.0	0.0	Yellow
100 100	5,000	500	0	500	4,950	0.0	50.0	0.0	Yellow/black stripes
200	5,000	1,000	٥	1000	4,900	0.0	100.0	0.0	Blue
300 Active	5,000	1,500	0	1500	4,850	0.0	150.0	0.0	Blue/black stripes

After a series of the series o	* Interview of the state	otota there as a first	ABC, and we were strong	•					
J			Date	21JAN 13*	\checkmark		-	\downarrow	21VAU2
(ب		~	Initials/Ok	KU 28,044 27 JAN 13*				. ♦	Kim/2879mb
Ĺ			<u>Time of Exposure Termination</u>	1020 to 1030	1020 to 1030	1030 40 1030	1020 to 1030	1020101050	1020 70 1030 KW 2839MW 27JAVIZ
Ą			Initials	SStaf	SStaf	sstat	02 U 55 25	030 Sstaf	5staf
J		Time Dosing	Completed	1013	101	1201	020i	1030	1035 155taf
മ			Time Dosing Started	1009	1013	1013	1022	1026	103[
A	Time Test	Solution	<u>Prepared</u>	1003	1010	1015	1019	1023	1028
		Concentration	(mg/t)	0	300 H D	50	100	200	300 Active

~

-

.*

Study Number AEH-11-PSEUDO-02 Reviewed: 77-5 234.9212 2-- 11/2-1/14 Verified: ____

T is the id File Folder: 15 Lab book/pgs: 213 Species: 8 5 System: 2

(Juny hant)

Chemical Stock Solution Determination and Preparation

Stock A = Control (20.°C well water -controls will be treated in the same manner but will use a stock solution of plain well water) Stock B = 10,000 mg/L; 50% active ingredient[20mg/mL]) *** Make 10g/500 mL well water per each test system Stock C = 10,000 mg/L detoxified active material [70mg/mL]***Make 10g/500 mL well for use in all 3 systems - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use Dilution water = 20°C UMESC Well Water

_____<u>10</u>

	mg of test material	Deactivated mg	Active mg	Dilution water to add to container	Well Water Aliquot Stock A	Active Stock Aliquot Stock B	Deactive Stack Aliquot Stack C	Color Code
Volume (mL)	required	required	required	(mL)	(mL)	(mL)	(mL)	Assignment
	0	0	0	0	5000.0	0.0	0.0	White
	1,500	1500	0	4,850	0.0	0.0	150.0	White/black stripes
	250	0	250	4,975	0.0	25.0	0.0	Yellow
	500	D	500	4,950	0.0	50.0	0.0	Yellow/black stripes
	1,000	0	1000	4,900	0.0	100.0	0.0	Blue
	1,500	0	1500	4,850	0.0	150.0	0.0	Blue/black stripes
					5000.0	5000.0	325.0	150.0

-

.

	Time Test						
<u>Concentration</u> (mg/L)	- <u>Solution</u> Prepared	Time Dosing Started	Time Dosing Completed	initials	Time of Exposure Termination	Initials	Date
0	0/60	0/60	0913	Suit eileilt		<i>よ</i> し	2/1/1/2
300 HD	0913	4190		4/17/12 mrs C	our of 250	<u>لي</u> ر	4/18/12
50	9/60	09.20	0923	Jul elluth	20 00 2 50 0 32	<i>ک</i> هر	21/8/12
100	0932	0925	0929	Such eileilin	0933	EE	4 (8) D
200	1020	0931	0935	Jul Ellerit	0938	law	4/18/12
300 Active	0933	0936	0440	Such eifeilte	0943	rin	11/18/12

Burner Mires hur 184020

on 1551 w 2012 .

This datasheet was approved b 11JAN2012/version1.2

;

.

Study Number AEH-11-PSEUDO-02 Reviewed: <u>LLw 17 MAY1</u> Verified: <u>7.5. v1-v1/4</u>

Sock File Folder: 15 Lab book/<u>pgs: 귀/너구</u> Species: <u>Vain Pocket 6</u> 5

Chemical Stock Solution Determination and Preparation

...

Stock A = Control (20 °C well water -controls will be treated in the same manner but will use a stock solution of plain well water) Stock B = 10,000 mg/L 50% active ingredient[20mg/mL]) *** Make 10g/500 mL well water per each test system Stock C = 10,000 mg/L detoxfted active material [20mg/mL]***Make 10g/500 mL well for use in all 3 systems - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use Dilution water = 20°C UMESC Well Water

60 100 Hew <u>No.</u> FF # 15

jo 6

mg of test material Deactivated mg required required	Deactivated mg required	Active mg required	Dilution water to add to container (mL)	Well Water , Aliquot Stock A A (mL)	Active Stock Aliquot Stock B (mL)	Deactive Stock Aliquot Stock C fml)	Color Code Assignment
0		0	0	5000.0		00	White
1500	00	0	4,850	0.0	0.0	150.0	White/black strines
		250	4,975	0.0	25.0	0.0	Yellow
		500	4,950	0.0	50.0	0.0	Yellow/black stripes
		1000	4,900	0.0	100.0	D.0	Blue
		1500	4,850	0.0	150.0	0.0	Blue/black stripes
				5000.0	5000.0	325.0	150.0

ien tru
at ofgs.tw
shopped t
Worker

	Time Test						
<u>Concentration</u>	Solution		Time Dosing				
(mg/l)	Prepared	Time Dosing Started	Completed	Initials	<u>Time of Exposure Termination</u>	Initials	Date
0	0945	0945	0320	Sull	0952	CITAME	N.
300 HD	0950	0951	2560	Sart	69.55	Ę	\$
50	0952	9560	0958	Such	0958		
100	0957	0001	1004	Suls	[00]		
200	1003	9001	0/0/	Sur	lood	1	>
300 Active	6001	E10/	1016	SUL	1007	114 1411	V.W.

This datasheet was approved t 11JAN2012/version1.2

2

on 1954 2012

٤.

:

ļ

Study Number AEH-11-PSEUDO-02 Reviewed: <u>Luv 7.0.014.</u> Verified: <u>5n u/2-1/14</u>

Chemical Stock Solution Determination and Preparatir r

Stock A = Control (20 °C well water -controls will be treated in the same namer but will use a stock solution of plain well water) Stock B = 10,000 mg/t, 50% active ingredient[20mg/mL] *** Make 10, 500 mL well water per each test system Stock C = 10,000 mg/L detoxified active material [20mg/mL] ***Make 1 //500 mL well for use in all 3 systems - Heat deactivated for 45 minutes at 70°C/cooled to 20 °C prior to use Dilution water = 20°C UMESC Well Water

6d |fem No._ |S

्। वा

Dose Level	Final Dose Level Solution	mg of test material	Deactivated p	Active mø	Dilution water to add to container	Well Water Alinuat Stack A	Active Stock		Calar Cada
(mg/L)	Volume (mL)	required		required	(mL)	(TIII)	(ml)	(ml)	Assignment
0	5,000	0	0	0	0	5000.0	0.0		White
300 HD	5,000	1,500	1500	0	4,850	0.0	0.0		White/black stripes
50	5,000	250	0	250	4,975	0.0	25.0		Yellow
100	5,000	500	0	500	4,950	0.0	50.0	0.0	Yellow/hlack strines
200	5,000	1,000	0	1000	4,900	0.0	100.0	00	Blue
300 Active	5,000	1,500	0	1500	4,850	0.0	150.0	0.0	Blue/black stripes
6						5000.0	5000.0	325.0	150.0

	Time Dation				
Time Dosing Started	Completed	Initials	Time of Exposure Termination	Initials	Date
0923	9690	SWE	0935		5/27/13
0925 0926	0330	Sun	0938	Saci-	51-2-12
0931	0935	Sul	0942	Sult-	21/2/2
0935	0939	SUR	0945	Sull	5/27/12
016a	0944	Suct	6953	2 111	5/11/2
0942 0945	6790	Sull	1560	Sunt	5/27/12
			Time Dosing Started Time Dosing Started D9216 09216 0936 0 D935 0937 0935 0 0 D935 0935 0937 0 0 0 D935 0935 0937 0	Time Dosing started Time Dosing started Time Dosing started Interest Interest	Time Dosing Started Time Dosing Started Time Dosing Started Time of Excount Termination 0923 0924 7m5 0935 7m5 0935 - 0935 0935 7m5 0938 0942 - - - 0935 0935 7m5 0942 -<

Such EILARIS

This datasheet was approved b 111AN2012/version1.2

CHEMICAL LOG BOOK

MBI-401 FDP

FF # <u>8</u> Item No. <u>4</u> Pg _____ of <u>6</u>____

e de el composition de la comp

Manufacturer:

Marrone Bio Innovations (MBI) Davis, California

> Lot Number 110510FD

7

SIGNATURE PAGE

All personnel making an entry in this log must fill out the form below in accordance with SOP GEN 009.

	SIGNATURE	INITIALS	DATE
Perry L. Weber		KLW	6/28/11
TAMESA. 1 wm- Therese Schreier		JAL	7/5/11
Therese > Chreier		ms	7/9/12
			··
		······	
		· · · · · · · · · · · · · · · · · · ·	
			<u> </u>
			ļ
			ļ
	····		
			[
			<u> </u>
			<u> </u>
	· · · ·		<u>├──</u> —
			
	·····		
			<u> </u>
	· · · · · · · · · · · · · · · · · · ·		
Use and Maintenance Log Book has bee	an ineparted and found to be in compli-		.000
		ance with SOF GEN	.008
ected and sealed on <u>Tail 5</u> Jon Date	<u>//bý</u>		
Date	Quality Assurance	e Unit	ب بين والسالات
			·

Shipped 06/13/2011 _ Received 06/14/2011

.

Marrone Bio Innovations

4

•

CERTIFICATE OF ANALYSIS

راجا المحتمية فالمحا

AEH-11-PSEUDO-02

Test Material:	MBI-401 FDP
Lot Number:	110510FD
Concentration:	100 % Pseudomonas fluorescens strain CL145A
Pf CL145A CFUs/g:	0
Mussel Bioassay:	PASS
Appearance:	Tan powder
Storage Conditions:	4C
Date of Manufacture:	5/14/11
Expiration Date:	3 months from date of manufacture

Analyst:

Date: 6/14/11

Page _ 3_ of _6

2121 Second Street, Suite B-107 •

Davis, CA 95618

٠

Phone: 530-750-2800

Zequanox Freeze Dried Powder - Material Specification Sheet

مراد مربوب والمعترات مالوات

and a second second

Prepared By: Denise Mayer New York State Museum Field Research Laboratory 51 Fish Hatchery Road Cambridge, NY 12816 (518) 677-8245

AEH-11-PSEUDO-02

.

Shipped to: Attn: Jim Luoma Upper Midwest Environmental Sciences Center 2630 Fanta Reed Rd. LaCrosse, WI 54603 (608)783-6451

Shipment Date: 6/27/11

Storage Information: Store below 4C at all times.

Material Specs: Material Lot#: **110510FD** Formulation: FDP Dry Cell Weight: 100% (by weight of powder) Volume per Aliquot: 75g (= 75 g active ingredient) Number of Aliquots: 1

Page 4 of 6

AEH-11-PSEUDO-02
TEST CHEMICAL DATA FORM
Test Material (Chemical Name) CL145A Strain of Pseudomonas fluorescens
Inade Name of Chemical (Synonyms) MBI-401 FDP
Source of Chemical (Manufacturer) Manore Bio Innovations (MBD)
Storage Location Room 122 Hotpoint Refrigerator in lock bix
Date Received & The 2011 Date Opened 28 The 2011 Expiration Date 14 AVG 2011 (5 years unless otherwise stated)
Test Chemical Lot Number 105/0FD Purity of Chemical 100%
Amount of Test Chemical Available or Received (if known) $\frac{759}{75.529}$
Initial Weight (with cover on) of Test Chemical and Container 136.779
Characterization of Test Chemical: Color <u>An</u> Physical State: liquid <u>solid</u> Solid Form: powder A crystal <u>pellet</u>
Chemical Abstract Service Number <u>N/A</u>
Manufacturer Certificate of Analysis Yes 🗙 No 🗆
Additional Comments About Test Chemical: Temperature in cooler was 14°C upon receipt. Temperature in containor with PF-CL145A was 9°C.
Sample Placed in Archives: Yes ∳ No □ (Entries should also be made on Form GEN 012.2b)
Archive $\#/P/\pi/f=7$ Material Safety Data Sheet Available: Yes X No ()
agnature of person (Study Director or designated representative) initiating est Chemical Use Log and date:
Page <u>5</u> of <u>6</u>
Date 28 JUN 2011

ាណាដាណ

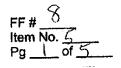
													AEH-11-PS	EUDO-02	
	10+0	بر الم الم الم الم الم الم الم الم الم الم	ELW 22	1102 (MAL 272	Ken Krin	100 JUL 301	Kew Messil	Kew 300	such 16/1		 -)	
	Lot #: 1/057	E Corments	3	Archiving Sample	Devictive Test Chumical (HIC species)	Hebve Test elemical CHICSpecies)	Active Test Chemical (MUS species)	AEH-11-PS-24DU-02 Sumply to New Yorks Wysum Nor	First weight for disposing	45psed mrs 7/4/12			Follow GEN 311.	und ris been very real to be r and its contents (including	
TEST CHEMICAL USE LOG	Manufacturer: MBI	D Study # and Purpose	Anchived AEH-II-PEUD	Sample	AEH-11-PSEUDO-09	AEH-11-PSEUDOroz	REH-11-PSEUDO-03	AEH-11-PSE-WD-07		Chemical			N. C. C. C. Archives N. C.2.2a.	s container shall be measured by weighti t chemical container will be weighed in an from the test chemical container in	
FF # Item No. <u>4</u> Pg of	M. 5. 5. 5. D.C. M.		- '	1.06216 135.68		5.0076 125.66		5.3778 110.36		Clased test	 -		22/10 BILL CHER	The weight of the cremicel and its container shall be measured by Weighing it on a palance 013) The chemical removed from the test chemical container will be weighed into a tared vessel.	
ר ים _עי_טי <u>י</u>	Test Chemical: //		•	136.77	135.68		19:001	115.74	(n n 1	Log book		-	245.00 (2000 000 000 000 000 000 000 000 000	A The varght of the 013) B The chemical rend	

•

AEH-11-PSEUDO-

306

CHEMICAL LOG BOOK


MBI-401 FDP

Marrone Bio Innovations Davis, California

LOT NUMBER: 110928FD

*_____

. -- -

.

SIGNATURE PAGE

All personnel making an entry in this log must fill out the form below in accordance with SOP GEN 009.

PRINTED NAME	SIGNATURE	INITIALS	DATE
		Klu	8Der 11
Kerry L. Weber Therese Schreier	· · · · · · · · · · · · · · · · · · ·	TINS	7/9/12
	·		
			_
			+
	······································		·
	· · · · · · · · · · · · · · · · · · ·		
	······································	····	
			-
······································			
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
"This Use and Maintenance Log Book has be Inspected and sealed on <u>December</u> Date			en 009. "
	i transferit de la transferit de la transferit de la transferit de la transferit de la transferit de la transfe		
	Pag	$ge \underline{\partial} of \underline{5}$	
	1 0	······································	

٧

- --- -

CERTIFICATE OF ANALYSIS

Name of Product: MBI-401 FDP 100% Pseudomonas fluorescens strain CL145A cells and spent Active Ingredient: fermentation media . Cfu/g: 0 cfu/g Pseudomonas fluorescens strain CL145A Lot Number: 110928FD Mussel Bioassay: Pass Appearance: Tan powder Storage Conditions: 4 °C, in the dark Date of Manufacture: 18 OCT 2011 **Expiration Date:** This product is stable for 6 months from date of manufacture provided the sample is stored under the recommended storage conditions.

I hereby certify that the above information is true and correct.

Quality Control:

Tamara Nicholson, Quality Control Supervisor

Date: 28 NOV 2011

Page 3_ of 5

2121 Second Street, Suite B-107

Davis, CA 95618

Phone: 530-750-2800

		· · · · · · · · · · · · · · · · · · ·
		-
AEH-11-PSEUDO-02		SOP NO GEN 012 2 Page 5 of 6
	TEST CHEMICAL DATA FORM	Page L of 1
Test Material (Chemical M	Name) MB1-401 FDP	
Trade Name of Chemical (S	Synonyms) <u>PF-CL14577;Zequ</u>	Labex
Source of Chemical (Manut	facturer) <u>Marrone Bio In</u>	nevations
	erator in Ren 122 in lock	
-	Date Opened <u>S DEC 11</u>	Expiration Date <u>18 Mare</u> Joia years unless otherwise stated)
Test Chemical Lot Number	110928FD Purity	of Chemical _ 100 %
	wailable or Received (if knc	
	r on) of Test Chemical and C	
Characterization of lest	Chemical: Color <u>TAN</u> Physical State:	liquid = solid 🕱 r 🗙 crystal = pellet =
Chemical Abstract Service		, - · · ·
Manufacturer Certificate (of Analysis Yes 🗙 No 🗆	
Additional Comments About		Page 4 of 5
	· · ·	
JEN 012.201 (8.2 14/3)		
Archive # 13+ 11 + 10	Material Safety Data Sheet	-
Signature of person (Study Test Chemical Use Log and	<pre>c Director or designated repr date:</pre>	resentative) initiating
Signature		Data & DEGN

SUP WOLL UEN UTCLE Page 6 Of 6 Form GEV 012.25 Page 1 of 1	azere D	ج م Date/Initials	KUN 8 DECII	13 DEC 11	KLLW RECH	13 DEC 1	7/9/12		4	-			be accurate (SOP GEN	ng the cap or
USE LOG	R.I. Lot #: 118	E	AEH-11-PSZL Do-03	AEH-II-PSEUDO 03 WIS DEATH-E STOCK	AEH-11-PSEWDO-CON WAS ALAVE STOCK	AEH-11-PZENDO-00	Find weight for disposal	EI/6/2 such possible				Follow GEN 011.	its container shall be measured by weighing it on a balance that has been verified to be accurate (SOP GEV	to a tared vessel.
TEST CHEMICAL USE LOG	Marufacturer: ////	⊃ Study # and Purpose	*Archived Sample					chemicel d				07912 In the Chemical Archives. N 012.2a.	hall be measured by weighir	The chemical removed from the test chemical container will be weighed into a tared vessel. After the chemical has been removed from the test chemical container, r migh the containe
FF # <u>8</u> Item No. <u>5</u> Pg _5_ of _5_	- 401 FDP	<pre>8 C Weight of chemical Amount & container (g) removed after removal (g) (with cap/lid on)</pre>	461.091 46441.	5.0055 155.309	5.0078 150.202			test - 200				weight is also entered on Form GEN 012.2a.		d from the test chemical co has been removed from the t
	Test Chemical: MB)	A Initral weight of chemical & Am container (with rem cap/lid on)(g) (H-1 C=72.101				145.20	bax d.l				The figs encryant	A. The weight of the chemical and	010). 8. The chemical removed 6. After the chemical b

AEH-11-PSEUDO-02

CHEMICAL LOG BOOK

MBI-401 SDP

Marrone Bio Innovations Davis, California

LOT NUMBER: MBI-401 SDP 4655-12-Mix

· · · · · · · · · · · · · · · · · · ·	FF #_ <u>8</u> Item No⊑ Pg of <u><</u>
an in the adaptive and analyzable in the transmission and the second second second second second second second	
 والمراجع والمستعرية المشتقية والمتعامية والمتعامين والمتعامية والمتعامية	*

SIGNATURE PAGE

All personnel making an entry in this log must fill out the form below in accordance with SOP GEN 009.

PRINTED NAME	SIGNATURE	INITIALS	DATE
Kerry L. Weber		Kuu	IOTAN
Kerry L. Weber Therese Schreier	#	Tins	7/9/12
THETEST SCHIPHET			1 <i>11.11/2</i>
			··· ·
	-		
· ·			
- ·			
			1
·	···		+
			ļ
			···· ·
· · ·			
		-	1
7			1
			+
		<u> </u>	

Inspected and sealed on 10 Januar)c)i ∽b Quality Assurance Unit Date Page <u>2</u> of <u>5</u> ____.

	ORIGINAL	SOP No. GEN 012.3 Page 5 of 7
		Form GEN 012.3a Page 1 of 1
	TEST CHEMICAL DATA FORM	x 4go 1 01 1
Test Chemical (Chemical Name) <u></u>	131-401 SDP	
Circle one: Test Article	Control Article	
Trade Name of Test Chemical (Syr	nonyms) <u>PF-LL145A; Ze</u>	juanox
Source of Test Chemical (Manufac	turer) Marrone Bib Innova	ations
Storage Location Refrigerat	tor in Run 122 in la	Kbox (0-5°C)
Date Received 10 JAN 2012	Date Opened <u>C TADOLA</u> E (5	Expiration Date <u>10 TAN 2017</u> is years unless otherwise stated) (Nov
	401 SDP Purity of Chemical	50%
4655 Amount of Test Chemical Availabl	le or Received (if known) $100q$	
Initial Mass (with cover on) of Test	t Chemical and Container 162.0	057 g
Characterization of Test Chemical: Chemical Abstract Service Number	Physical State: liquid Solid Form: powder	
Manufacturer Certificate of Analys	is Yes_No <u>X</u>	
Additional Comments about the Te Temperature in coder of	st Chemical: Pon receipt was 3.1°C.	
Sample Placed in Archives: Yes	No (Entries should also be made	on Form GEN 012.b)
Archive Location <u>RFTE-F11</u> M	laterial Safety Data Sheet Available:	YcsXNo_
Signature of Study Director or designation of the state o	gnee initiating Test Chemical Use Lo	og and date:
Signature	Date	10 JAN 2012
		,
· · · · · · · · · · · · · · · · · · ·		Page _3 of _5

].																	ŀ	AEH-	- 11-₽	SEUDO)-02		
	010 0	5.210	р			Xintralicea	σ	Initials		Lin	Vris)			Kuc	Kr	ku	kew	Klw	Kuu	.[nl				
	SOP No. GEN 012 2	Page 6 of 7	Form GEN 012.3b	rage of]	-4N 57P 41		ц	Date		CI NHI OI	13- DAVIA	CI CHALLE	0 14 7	AMULT	A JAW B	EINATPI	CIMILLE	ervur Fe	317Hw (a	21/4/2	013).			
		UNGINA			MRI) Lot or Batch #: MBI -4M STP 41.EE -12		4	Purpose and Other Comments	* Archited Same 1.		Hert deucive that chemical to the source while	rest chemical for 365	Test chemical for muc	Heat duadive test chemical	Test chended for HIC	Hear dearther High sheared f	FAM Test (Low) at for Cash .			+	 The initial mass is also entered on Form GEN 012.a. The mass of the test chemical and its container will be determined using a balance that has been verified to be accurate (SOP GEN 013). B. The test chemical removed from the container will be upcontainer will be ablance that has been verified to be accurate (SOP GEN 013). 	the container, determine the mass of the container and its contents (with cap/lid on).		
				TEST CHEMICAL USE LOG	Manufacturer: Marone Bip	D		Study Number	AFTI-11-6XFLD0-01		AEH-11-75CUDC-CI	AEH-II-PSOUDEROI	4EH-11-PSEUDE-01	ACH-IL-PSENDS-CI			02.00 X X X X X X X X X X X X X X X X X X			= The first entry should be the test chemical sample placed in the Chemical American American American American	Trunco Custing a balance that	determine the mass of the	QRO 77/12	
					*		Mass of test chemical & container after	removal, with cap/lid on (g)		157.404	155.359	153.339	151.300	149.338	11 2812	127.150	676 9101	2 6	5	mical samnle nlaced i	ortainer will be deter ontainer will be deter	C. After the test chemical has been removed from the container, determine the mas	Q.S.C	I
Pa	age	4	_of_	5	P-CUHSA/MBI-401 SDP	а	- <u></u>	Amount removed (g)	* 1 23.7 -	9 <u>0</u>	2.0015	3.0037	2.0020	3.0003	2, 6014	10.0553	lo. OHOLO	5.1433		hould be the test che	 The initial mass is also entered on Form GEN 012.a. The mass of the test chemical and its container will be The test chemical removed from the container will here. 	mical has been remo		
					Test Chemical: 72-CUH5A	¥	Initial mass of test chemical & container with	cap/ lid on (g)		1 60.091	157,413	155,359	153.339	151.375	149.338	N47-387 10.0552	137.150	196.979	02 001	* = The first entry s	 I = The initial mass A. The mass of the i B. The test chemica. 	C. After the test che	C (12.2. / r et Og	
																			Ċ		, had		9	

315

112.3 ic		U	Initials									/
SOP No. GEN 012.3 Page 7 of 7 Form GEN 012.3c Page 1 of <u>1</u>	ACL IONAL	£14	Date		9/12							
BIGINAL	Lot or Batch #: MG1 -401 SDA	ω	Purpose and Other Comments		Argared Darga					/		
C TEST CHEMICAL USE LOG	Manufacturer: M.B.	Ω	Study Number		chmical)				/			
	Manufa	C Mass of test	chemical & container after removal, with cap/lid on	(g)	ed tot	-		/				
No. 6 5 of 5	005 101-18	m	Amount removed	(g)	K Cle							
 ·	Test Chemical: M&I IN	A Initial mass of	test chemical & container with cap/ lid on	(ĝ)	609202	0						 -

Ŷ

CHEMICAL LOG BOOK

.

MBI-401 SDP

Marrone Bio Innovations Davis, California

LOT NUMBER: TR4669-4-(7-8)

Container 1 of 3 (Shipment # 2 KW 13MAR12)

SIGNATURE PAGE

All personnel making an entry in this log must fill out the form below in accordance with SOP GEN 009.

PRINTED NAME	SIGNATURE	INITIALS	DATE
Todd J. Severson		725	13MAR 12
Todd J Severson Kerry L. Weber		KIW	13MMR.12
5			-
			1
			1
			-
			-
			1
	· · · · · · · · · · · · · · · · · · ·		·
· · · · · · · · · · · · · · · · · · ·		·	
	· · · · · · · · · · · · · · · · · · ·		<u>}</u>
			l
····	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
······································			

"This Use and Maintenance Log Book has been inspected and found to be in compliance with SOP GEN 009.

Inspected and sealed on March 38 3013 by Date Quality Assurance Unit Page $\frac{\partial}{\partial f}$ of $\frac{5}{2}$

. _.

CERTIFICATE OF ANALYSIS

Name of Product:	MBI-401 SDP
Active Ingredient:	100% <i>Pseudomonas fluorescens</i> strain CL145A cells and spent fermentation media
Percent Active Ingredient:	50% by weight
Viable Cfu/g:	0 cfu/g Pseudomonas fluorescens strain CL145A
Lot Number:	TR 4669-4-(7-8)
Mussel Bioassay:	Pass
Appearance:	Tan powder
Storage Conditions:	4 °C, protected from light
Date of Manufacture:	26 January 2012
Expiration Date:	1 year from date of manufacture

I hereby certify that the above information is true and correct.

Quality Control:

Tamara Nicholson, Quality Control Supervisor

Date: <u>13 February 2012</u>

Page of 2121 Second Street, Suite B-107 Davis, CA 95618 • . Phone: 530-750-2800

i

ł

ORIGINAL

SOP No. GEN 012.3 Page 5 of 7

> Form GEN 012.3a Page 1 of 1

TEST CHEMICAL DATA FORM
Test Chemical (Chemical Name) MB1-401
Circle one: Test Article Control Article
Trade Name of Test Chemical (Synonyms) <u><i>If -CL 145A</i>; <i>Zequanox</i></u>
Source of Test Chemical (Manufacturer) <u>Marrone</u> Bio Janova tion S
Storage Location Refrigerator in Room 2
Date Received 13MAR 12 Date Opened 13MAR 12 TPS Expiration Date 26 JAN 13 (5 years unless otherwise stated)
Test Chemical Lot Number TR 4669-4-(7-8) Purity of Chemical 50%
Amount of Test Chemical Available or Received (if known) ~ 1.63 kg
Initial Mass (with cover on) of Test Chemical and Container 1714.389
Characterization of Test Chemical: Color <u>Tan</u> Physical State: liquid <u>solid ×</u> Solid Form: powder <u>× crystal</u> pellet
Chemical Abstract Service Number <u>N/A</u>
Manufacturer Certificate of Analysis Ycs X No
Additional Comments about the Test Chemical:
Othis is the second shipment of this lot. Kuns 13MARIO
@ This archive sample is from container 1 of 3 of Shipment received
on GMARIA. Kun Ismaria
Sample Placed in Archives: Yes X No (Entries should also be made on Form GEN 012.b)
Archive Location $4-1-6-6$ Material Safety Data Sheet Available: Yes X No
Signature of Study Director or designee initiating Test Chemical Use Log and date:
SignatureDateDateDate
Page 4 of 5

012.3 3b		ප 	Initials		thu	1 (m)	1 hu	K the	Ku	Ken	f the			
SOP No. GEN 012.3 Page 6 of 7 Form GEN 012.3b. Page 1 of 1	5-t)-h-b90	ш.	Date	SMARIZ -	3492.0	3 APP 13	2MPL13	3 APP.W	6199401	1649813				
RIGINAL	Verthens Lot or Batch #. 4 (669-4-(7-5)	-	Purpose and Other Comments	* Centamer lot 3 of Shipment #1 (m(encla (e MAR 12), KW) 13 MAR12	And which Shork # 14 Bills	Analytical Spot # 2 for Bed	Ship #1 fr 246	Shut # 2 for Blue	Darthe Shot for ZUS	Active Structure 1315	Provinsion with character taken in the mail began night to a the second the second to second the second to second the second to second the second to second the second to second the second to second the second to second the second to second the second to second the second to second the second to	Chinical ad contrainer returned to WYSM	Clashe man through a	* = The first entry should be the test chemical sample placed in the Chemical Archives. Follow GEN 011. 1 = The initial mass is also entered on Form GEN 012.a.
TEST CHEMICAL USE LOG	Manufacturer: May row Bip Innoverhons	Q	Study Number	3 of shipment.	AEH-13-PSQUD0-03	ACH-12-020000 3	ACTI-12-PEDROCE 3	ACH-13-15-600003	AEH-11-PSEUD0-03	AEH-11-95200003	ACH-11-755CUDORD	Chunical and co	hy city	* = The first entry should be the test chemical sample placed in the Chemical Archives. 1 = The initial mass is also entered on Form GEN 012.a.
		C Mass of test chemical &	container after removal, with cap/lid on (g)	* Container lof	1712.32	1710.31	990,23	270.15	260.04	249.99	t.b. hal			mical sample placed orm GEN 012.a.
FF # <u>8</u> Item No. <u>}</u> Pg <u>5</u> of <u>5</u>	MB1-401 SDP	<u>م</u>	Amount removed (g)	ample archived from	2.00073	2.00044	230.00	720,01	10.00034	10.00418	145,50			* = The first entry should be the test chemical sample pla 1 = The initial mass is also entered on Form GEN 012.a.
	nical:	A Initial mass of test chemical &	contanct with cap/ lid on (g)	*Jample ar	1714.35	1712.32	15.0171	990,23	teate	360. CH	250,08			* = The first entry s 1 = The initial mass

,

CHEMICAL LOG BOOK

MBI-401 SDP

Marrone Bio Innovations Davis, California

LOT NUMBER: TR 4669-4-(5)

Container 1

FF # <u>8</u> Item No. Pg ____ of

Page $\underline{2}$ of $\underline{7}$

SIGNATURE PAGE

All personnel making an entry in this log must fill out the form below in accordance with SOP GEN 009.

PRINTED NAME	SIGNATURE	INITIALS	DATE
Kein L. Weber Theresa M. Schreier		Kun	34144812
Theresa M. Schreier		Tins	5/25/12
			1
	·····		
			· · · ·
		· 	
			-
		· · · · · · · · · · · · · · · · · · ·	
	······································		
	· · · · · · · · · · · · · · · · · · ·		
		-	
	······································		
is Use and Maintenance Log Book has beer	n inspected and found to be in complian	ce with SOP GE	N 009.
pected and sealed on <u>)/パップの</u> す	<u>්ථ</u> by		
	Quality Assurance U		

CERTIFICATE OF ANALYSIS

Name of Product:

MBI-401 SDP

TR 4669-4-(5)

Tan powder

12 January 2012

Pass

Active Ingredient:

100% *Pseudomonas fluorescens* strain CL145A cells and spent fermentation media

Percent Active Ingredient: 50% by weight

Viable Cfu/g:

0 cfu/g Pseudomonas fluorescens strain CL145A

Lot Number:

Mussel Bioassay:

Appearance:

Storage Conditions:

Date of Manufacture:

Expiration Date:

1 year from date of manufacture

4 °C, protected from light

I hereby certify that the above information is true and correct.

Quality Control:

Tamara Nicholson, Quality Control Supervisor

Date: 12 March 2012

Page $3_{\text{of}} 7$

2121 Second Street, Suite B-107

Davis, CA 95618

Phone: 530-750-2800

THE STATE EDUCATION DEPARTMENT / OFFICE OF CULTURAL EDUCATION

New York State Museum Field Research Laboratory 51 Fish Hatchery Road Cambridge, NY 12816 Tel. 518-677-8245 Fax 518-677-5236 E-mail: <u>dmayer@mail.nysed.gov</u>

AEH-11-PSEUDO-02

PACKING LIST DATE OF SHIPMENT - 2012/04/23

Ship from: Denise Mayer New York State Museum Field Research Laboratory 51 Fish Hatchery Road Cambridge, NY 12816 Ship To: Jim Luoma USGS UMESC 2630 Fanta Reed Road La Crosse, WI 54603

<u>Shipping Method:</u> UPS Next Day Air Required by: 2012/04/24

Item Description:

MBI-401 SDP Lot # TR-4669-4-(5) in one bag, bag #1 (total weight 5 Kg):

Shipped on ice. Store at 4°C, protected from light.

Page 4 of 7

AEH-11-PSEUD	00-02
C AL	SOP No. GEN 012.2 Page 5 of 6
TEST CHEMICAL DATA FORM	Form GEN 012.2a Page 1 of 1
Test Material (Chemical Name) <u>MGI-401 GDP</u>	· ·
Trade Name of Chemical (Synonyms) <u>Pf-CL145A</u>	
Source of Chemical (Manufacturer) Manore Bio Innovat	
Storage Location Locked refrigerator in Room 2	
Date Received 24 APEIA Date Opened IMATIO Kee Exp	
Test Chemical Lot Number 724069-4-(5) Purity of	Chemical <u>30%</u>
Amount of Test Chemical Available or Received (if known	1) <u>5kg</u>
Initial Weight (with cover on) of Test Chemical and Cor	1
Characterization of Test Chemical: Color $A_{A_{A_{A_{A_{A_{A_{A_{A_{A_{A_{A_{A_{$	
Chemical Abstract Service Number	
Manufacturer Certificate of Analysis Yes) No 🗆	Page <u>5</u> of 7
Additional Comments About Test Chemical:	
Sample Placed in Archives: Yes次 No □ (Entries should GEN 012.2b)	also be made on Form
Archive # <u>LFIE-G</u> T Material Safety Data Sheet A Fiw IMAYID Signature of person (Study Director or designated repre Test Chemical Use Log and date:	
Signature	Date 24APRIZ

 $\log g_{\rm ext} g_{\rm ext}$

anti-contraction of the

326

)				FORM GEN UIZ 20 Dago 1 of 1
	_ of <u>`</u> 7		TEST CHEMICAL USE LOG		-
rical: M	ן Chemical: אוֹהו-אוֹםו	SDP ME	Manufacturer: Marrore B	Bip Innevations Lot #: 7R 4 lot	41669-41-(5)
	80	J	Q	У	لد
lritral weight of chemical &	Amount	Weight of chemical & container (g)			
container (with cap/lid on)(g)	removed (g)	after removal (w'th cap/lid cn)	Study # and Purpose	Comments	Date/Init:als
	*	3	*Archived		EIYAM
5035.3	હાંહાક	508.80	Sample	AEH-12-PRILDE-23 ad AEH-11-152220-22	KIW
5018.80	2.0012	5019.20	ACH-13-BELIDEro3	ARH-13 ASAUDO-03 BAT Analytical Stock#1	
5019.20	20005	<u> </u>	Ť	hit-12-pseudo-es Bit Analy Red Shutt 2	
2019.20	720,00			AEH-13-PSCUDDED3 BKT Shit #1	
4-194 8	720.09	35736		AE4-12 956 UD0-23 BKT Shut #2	
2572 L	7,20,00	1		HH-12-1520-03 BLT Shet #3	
2624.4	720.00	2133.6		AEH-10-PSENDO-00 BET Speck #41	
2133.6	PP9.94	14136		MAI-12-824-35 B/T Shot-#5	→
1412 12	720.02	693.1	AFH-12-PAFWDD-03	AEH-10-RELUDENS BYT STORT #6	- trun
tu lange e	hourt of A	duct in container	to small amount removed	50	1) was under to detect attentimed to proceed
3	the weight a	e weight discreancies. The analytic	ital aliquots were weighed o	inverty on an available balance (BHC), more the	
(9) (3) (9) (9)	(50 5, 000	68717	AEH-A-KEWN-CO	AEH-11-BELLOD-03 PPB ACTIVESTOCK	Puro Id

A The weight of the chemical and its container shall be measured by weighing it on a balance that has been verified to be accurate to 0000.
 013).
 3. The chemical removed from the test chemical container will be weighed into a tared vessel.
 3. The chemical has been removed from the test chemical container will be veighed. The container and its contents (including the cap or other pressing the cap of the container and its contents (including the cap of

SOP No. GEN 012.2 Page 6 of 6 Form GEN 012.2b Page 1 of 1	VEH-11-PSEUDO-02 This is the set of the set	while makin. Discreted. Kino leman 13 - make the abache speck while aged to make the outhe speck. the accurate (SOP GGN ed beck to hysta the
FF # 8 Item No. 8 Pg 1 of 1	Test Chemical: M(b)-1-loi SDO Manufacturer: Matworke Bis lynsworthers Lot #: YR Ult Initral weight of chemical & of chemical &	Owened when should be the chemical Mignet will be the weat to due the interval from Short wis short wis short wis short wis short when the humble when the number of the initial weight is also entered on form GEN 012.2a. The initial weight is also entered on form GEN 012.2a. The weight of the chemical and its container shall be measured by weighing it on a balance that has been verified to be accurate (SOD GEN 013). The chemical removed from the test chemical container will be weighed into ved vessel. When we were the other shall be measured by weighing it on a balance that has been verified to be accurate (SOD GEN 013). The chemical removed from the test chemical container will be weighed into ved vessel. Wei further was shared but by the from the test chemical container. The container is container will be weighed into ved vessel. Wei further was shared but by the prior weight by the container will be weighed into ved vessel.

NYSM Post-Treatment Validation Assay MBI-401 FDP 110510FD (USGS Study #AEH-11-PSEUDO-02)

Date product received from USGS: 2011/07/20 Date of start of test: 07/20/2011

BACKGROUND: As standard protocol for the USEPA project, each time a batch of Zequanox product is used in a test a UMESC, a portion of the product is bioassayed by the NYSM to validate toxicity post-treatment.

- MBI-401 FDP 110510FD
 - o USGS Study #AEH-11-PSEUDO-02: Juveniles (HIC, MUC)

PURPOSE: Post-test product validation of MBI-401 FDP 110510FD from USGS-UMESC.

MATERIALS AND METHODS:

Preparation of product for testing:

Product was shipped under cold conditions and held in the laboratory refrigerator at 4°C until use. Within 30 min of treatment application, prepare each at treatment stock of each MBI-401 formulated product:

MBI 401-110510FD (FDP – 100% active ingredient): Weigh out 1.0 g of the powder into a labeled 50 ml centrifuge tube and bring volume up to 20 ml with dilution water. Vortex until evenly dispersed = 50 mg product/ml or 50 mg ai/ml. For 200 ppm ai treatments in testing jars, add 2 ml to each jar (500 ml).

Cambridge CF (Standard for Positive Controls):

As an efficacy standard, use *Pf*-CL145A killed CF that was maintained at -80°C (Cambridge CF). Since its production in 2005, this material has been valuable as a reference standard. The Cambridge CF was produced in 2005 (2005-0027) in 100-L batches 10, 11 and 12 and E-beamed to kill the cells. The solution, at 110 mg/ml dry weight, is stored in 1 cm thick sheets in the Cambridge ultrafreezer at -80°C. A section of the sheet was broken off and weighed to determine volume (ca. 1 g = 1 ml).

For this bioassay, the positive control suspension was produced on 5-2-2011 by weighing out 33.84 g of frozen Batch 10-12 block (killed cell suspension from test 2005-0027) and diluting with ca. 35 ml dilution water. 7 ml of this suspension were dispersed into 50-ml centrifuge tubes and placed in the ultrafreczer (11 tubes). The dry weight of the material was 43.75 mg/ml; therefore 2.3 ml were added to each testing jar to treat at 200 ppm.

Mussel collections:

Mussels were scraped from substrates (concrete patio blocks and rocks) in the field and placed in plastic bins. Bins containing mussels were set in a cooler with towels and frozen ice packs to maintain temperature to be transported back to the laboratory in Cambridge. In the laboratory, mussels were placed in pint-sized canning jars, covered with mesh, and placed in aquaria containing unchlorinated tap water with circulation (1 Whisper filter) and aeration at ambient laboratory temperature (20°C).

10. 000 miles

FF # <u>0</u> A Item No. <u>2</u> Pg <u>1</u> of

AEH-11-PSEUDO-02

MBI-401 FDP 110510FD Post-test - 2 -

ļ.

Mussel collection and handling:

Species	Collection site	Collection	Date in lab	Picked for test
		date	(20°C)	
Zebra mussels	Hedges Lake	07/19/2011	07/19/2011	07/20/2011
	(Washington County)			DM

Experimental design:

For validation of efficacy the following treatments will be set up:

- Zebra mussels (25 mussels/jar):
 - 3 Untreated Control
 - 3 200 ppm (ai) Cambridge CF (A, B, C)
 - 3-200 ppm (ai) MBI 401-110510FD (A, B, C)

Testing jar bioassay protocol:

On the day prior to treatment (07/20/2011) mussels were carefully examined and 25 mussels placed into each testing jar containing ca. 100 ml aerated hard water and allowed to attach overnight. The next morning (07/21/2011), unattached mussels were removed and replaced with attached mussels from an extra glass Petri dish. Water was replaced with 500 ml fresh aerated hard water.

After at least one hour, the treatment was applied. The optical density of each jar was measured in duplicate ($A_{660 \text{ nm}}$ Genesys Spectrophotometer).

After 24 hr of treatment, mussel mortality was checked and mussels were transferred to square plastic dishes with fresh aerated hard water. Mortality was checked and recorded each day with water replacements, for an additional 6 days. On the final day of mortality checks, 20 mussels were measured from the untreated controls using a caliper.

Results:

<u>Mussel length:</u> Zebra mussels 8.78 ± 3.02 mm.

Optical density of treatments:

Treatment	Mean (\pm SD) OD (A _{660 nm})
Untreated Control	-0.008 ± 0.006
Cambridge CF (Positive Control)	0.159 ± 0.007
MBI-401 FDP 110510FD	0.175 ± 0.014

Zebra mussel mortality: Mussels were treated in triplicate testing jars (500 ml) at 20°C for 24 hr and mortality was recorded for a total of 7 days.

Treatment	Mean % mortality (±SD)
Untreated Control	$4.0 \pm 4.0\%$
Cambridge CF (Positive Control)	$100.0 \pm 0.0\%$
MBI-401 FDP 110510FD	98.7 ± 2.3% Pass

Activity of MBI-401 FDP 110510FD was acceptable for this study.

the second

FF # <u>1</u> Item No.

NYSM Post-Treatment Product Validation Assay

MBI-401 FDP 110928FD (USGS Study #AEH-11-PSEUDO-02)

Date product received from USGS: 2011/12/14 Date of start of test: 12/29/2011

BACKGROUND: As standard protocol for the USEPA project, each time a batch of Zequanox product is used in a test a UMESC, a portion of the product is bioassayed by the NYSM to validate toxicity post-treatment.

- MBI-401 FDP 110928FD
 - USGS Study #AEH-11-PSEUDO-02: Juveniles (WAS)

PURPOSE: Post-test product validation of MBI-401 FDP 110928FD from USGS-UMESC.

MATERIALS AND METHODS:

Preparation of product for testing:

Product was shipped under cold conditions and held in the laboratory refrigerator at 4°C until use. Within 30 min of treatment application, prepare each at treatment stock of each MBI-401 formulated product:

MBI-401 FDP 110928FD (FDP – 100% active ingredient): Weigh out 1.0 g of the powder into a labeled 50 ml centrifuge tube and bring volume up to 20 ml with dilution water. Vortex until evenly dispersed = 50 mg product/ml or 50 mg ai/ml. For 200 ppm ai treatments in testing jars, add 2 ml to each jar (500 ml).

Cambridge CF (Standard for Positive Controls);

As an efficacy standard, use *Pf*-CL145A killed CF that was maintained at -80°C (Cambridge CF). Since its production in 2005, this material has been valuable as a reference standard. The Cambridge CF was produced in 2005 (2005-0027) in 100-L batches 10, 11 and 12 and E-beamed to kill the cells. The solution, at 110 mg/ml dry weight, is stored in 1 cm thick sheets in the Cambridge ultrafreezer at -80°C. A section of the sheet was broken off and weighed to determine volume (ca. 1 g = 1 ml).

For this bioassay, the positive control suspension was produced on 11-14-2011. The dry weight of the material is 65.65 mg/ml; therefore 1.5 ml was added to each testing jar to treat at 200 ppm.

Mussel collections:

Mussels were scraped from substrates (rocks) in the field and placed in plastic bins. Bins containing mussels were set in a cooler with towels and frozen ice packs to maintain temperature to be transported back to the laboratory in Cambridge. In the laboratory, mussels were placed in pint-sized canning jars, covered with mesh, and placed in aquaria containing unchlorinated tap water with circulation (1 Whisper filter) and aeration at ambient laboratory temperature (20°C).

Species	Collection site	Collection date	Date in lab (20°C)	Picked for test
Zebra	Hedges Lake	10/18/2011	10/18/2011	12/28/2011
mussels	(Washington County)		Water changes (10/25, 11/4, 11/10,	MG
	्रे स्वर्थ महत्वे		12/1,12/7,12/14, 12/23)	
	FF # $\frac{3}{2}$ Item No. $\frac{3}{2}$ Pg of $\frac{3}{2}$			2

Mussel collection and handling:

Experimental design:

For validation of efficacy the following treatments will be set up:

Zebra mussels (25 mussels/jar):

- 3 Untreated Control
- 3 200 ppm (a.i.) Cambridge CF Positive Control B (A, B, C) (produced on 11-14-2011)
- 3 200 ppm (a.i.) MBI-401 110928FD (A, B, C)

Testing jar bioassay protocol:

On the day prior to treatment (12/28/2011) mussels were carefully examined and 25 mussels placed into each testing jar containing ca. 100 ml aerated hard water and allowed to attach overnight. The next morning (12/29/2011), unattached mussels were removed and replaced with attached mussels from an extra glass Petri dish. Water was replaced with 500 ml fresh aerated hard water.

After at least one hour, the treatment was applied. The optical density of each jar was measured in duplicate ($A_{660 \text{ nm}}$ Genesys Spectrophotometer).

After 24 hr of treatment, mussel mortality was checked and mussels were transferred to square plastic dishes with fresh aerated hard water. Mortality was checked and recorded each day with water replacements, for an additional 22 days. On the final day of mortality checks, 20 mussels were measured from the untreated controls using a caliper.

Results:

<u>Mussel length:</u> Zebra mussels 12.94 ± 2.28 mm.

Optical density of treatments:

Treatment	Mean (\pm SD) OD (A _{660 nm})
Untreated Control	-0.002 ± 0.001
Cambridge CF (Positive Control)	0.187 ± 0.010
MBI-401 FDP 110928FD	0.255 ± 0.001

Zebra mussel mortality: Mussels were treated in triplicate testing jars (500 ml) at 20°C for 24 hr and mortality was recorded for a total of 10 days.

Treatment	Mean % mortality (±SD)
Untreated Control	$0.0 \pm 0.0\%$
Cambridge CF (Positive Control)	70.7 ± 8.3%
MBI-401 FDP 110928FD	96.0 ± 6.9% Pass

Activity of MBI-401 FDP 110928FD was acceptable for this study.

44 # Nore No._____ Py_____o*

NYSM Post-Treatment Product Validation Assay MBI-401 SDP 4655-12-Mix (USGS Study #AEH-11-PSEUDO-01)

Date product received from USGS: 2012/02/01 Date of start of test; 02/09/2012 AEH-11-PSEUDO-02

BACKGROUND: As standard protocol for the USEPA project, each time a batch of Zequanox product is used in a test a UMESC, a portion of the product is bioassayed by the NYSM to validate toxicity post-treatment.

- MBI-401 SDP 4655-12-Mix
 - o USGS Study #AEH-11-PSEUDO-01: Glochidia (BLS, MUC, HIC)
 - o USGS Study #AEH-11-PSEUDO-02: Juvenile (FAM)

PURPOSE: Post-test product validation of MBI-401 SDP 4655-12-Mix from USGS-UMESC.

MATERIALS AND METHODS:

Preparation of product for testing:

Product was shipped under cold conditions and held in the laboratory refrigerator at 4°C until use. Within 30 min of treatment application, prepare each at treatment stock of each MBI-401 formulated product:

MBI-401 SDP 4655-12-Mix (SDP – 50% active ingredient): Weigh out 2 g of the powder and add slowly to a beaker with water stirring for even suspension. Total volume should be 20 ml in dilution water. Transfer to a 50 ml centrifuge and store in refrigerator until ready to use. Mix until evenly dispersed = 100 mg product/ml or 50 mg a.i./ml. For 200 ppm ai treatments in testing jars, add 2 ml to each jar (500 ml).

Cambridge CF (Standard for Positive Controls):

As an efficacy standard, use *Pf*-CL145A killed CF that was maintained at -80°C (Cambridge CF). Since its production in 2005, this material has been valuable as a reference standard. The Cambridge CF was produced in 2005 (2005-0027) in 100-L batches 10, 11 and 12 and E-beamed to kill the cells. The solution, at 110 mg/ml dry weight, is stored in 1 cm thick sheets in the Cambridge ultrafreezer at -80°C. A section of the sheet was broken off and weighed to determine volume (ca, 1 g = 1 ml).

For this bioassay, the positive control suspension was produced on 11-14-2011 and then stored at - 80°C in 50-ml centrifuge tubes. The dry weight of the material is 65.65 mg/ml; therefore 1.5 ml was added to each testing jar to treat at 200 ppm.

Mussel collections:

Mussels were scraped from substrates (rocks) in the field and placed in plastic bins. Bins containing mussels were set in a cooler with towels and frozen ice packs to maintain temperature to be transported back to the laboratory in Cambridge. In the laboratory, mussels were placed in pint-sized canning jars, covered with mesh, and placed in aquaria containing unchlorinated tap water with circulation (1 Whisper filter) and aeration at ambient laboratory temperature (20°C).

MBI-401 SDP 4655-12-Mix Post-test.02 - 2 -

Mussel collection and handling:

Species	Collection site	Collection date	Date in lab (20°C)	Picked for test
Zebra	Hedges Lake	11/30/2011	01/31/2012	02/08/2012
mussels	(Washington County)			

Experimental design:

For validation of efficacy the following treatments will be set up: **AEH-11-PSEUDO-02** Zebra mussels (25 mussels/jar):

3 – Untreated Control

3 – 200 ppm (a.i.) Cambridge CF Positive Control B (A, B, C) (produced on 11-14-2011)

3 – 200 ppm (a.i.) MBI-401 SDP 4655-12-Mix (A, B, C)

Testing jar bioassay protocol:

On the day prior to treatment (02/08/2012) mussels were carefully examined and 25 mussels placed into each testing jar containing ca. 100 ml aerated hard water and allowed to attach overnight. The next morning (02/09/2012), unattached mussels were removed and replaced with attached mussels from an extra glass Petri dish. Water was replaced with 500 ml fresh aerated hard water.

After at least one hour, the treatment was applied. The optical density of each jar was measured in duplicate ($A_{660 \text{ nm}}$ Genesys Spectrophotometer).

After 24 hr of treatment, mussel mortality was checked and mussels were transferred to square plastic dishes with fresh aerated hard water. Mortality was checked and recorded each day with water replacements, for an additional 13 days. On the final day of mortality checks, 20 mussels were measured from the untreated controls using a caliper.

Results:

<u>Mussel length:</u> Zebra mussels 12.28 ± 2.89 mm.

Optical density of treatments:

Treatment	Mean (\pm SD) OD ($\Lambda_{660 \text{ nm}}$)
Cambridge CF (Positive Control)	0.191 ± 0.008
MBI-401 SDP 4655-12-Mix	0.283 ± 0.007

Zebra mussel mortality: Mussels were treated in triplicate testing jars (500 ml) at 20°C for 24 hr and mortality was recorded for a total of 14 days.

Treatment	Mean % mortality (±SD)
Untreated Control	$0.0 \pm 0.0\%$
Cambridge CF (Positive Control)	78.4 ± 6.0%
MBI-401 SDP 4655-12-Mix	85.3 ± 11.5%

MBI-401 SDP 4655-12-Mix PASSED the post-test bioassay validation (85% mortality). Untreated control mortality was 0%.

NYSM Post-Treatment Product Validation Assay MBI-401 SDP MBI-401 SDP TR-4669-4-(7-8) 2nd shipment

(USGS Study #AEH-12-PSEUDO-03 and AEH-11-PSEUDO-02)

AEH-11-PSEUDO-02 Date product received from USGS: 2012/04/20 Date of start of test: 05/01/2012

BACKGROUND: As standard protocol for the USEPA project, each time a batch of Zequanox product is used in a test a UMESC, a portion of the product is bioassayed by the NYSM to validate toxicity posttreatment.

- MBI-401 SDP TR-4669-4-(7-8) 2nd shipment
 - o USGS Study #AEH-12-PSEUDO-03; BLG
 - USGS Study #AEH-11-PSEUDO-02; BLS

PURPOSE: Post-test product validation of MBI-401 SDP TR-4669-4-(7-8) 2nd shipment from USGS-UMESC.

MATERIALS AND METHODS:

Preparation of product for testing:

:

Product was shipped under cold conditions and held in the laboratory refrigerator at 4°C until use. Within 30 min of treatment application, prepare each at treatment stock of each MBI-401 formulated product:

MBI-401 SDP TR-4669-4-(7-8) 2nd shipment (SDP – 50% active ingredient): 3 g of the powder from each sample was added slowly to a beaker with dilution water stirring for even suspension and then the total volume was adjusted to 30 ml with dilution water. The suspension was transferred to a 50 ml centrifuge and stored in refrigerator until ready to use. The suspension, when evenly dispersed was 100 mg product/ml or 50 mg a.i./ml. For 200 ppm a.i. treatments in testing jars, 2 ml were added to each testing jar (500 ml).

Cambridge CF (Standard for Positive Controls):

As an efficacy standard, we used Pf-CL145A killed CF that was maintained at -80°C (Cambridge CF). Since its production in 2005, this material has been valuable as a reference standard. The Cambridge CF was produced in 2005 (2005-0027) in 100-L batches 10, 11 and 12 and E-beamed to kill the cells. The solution, at 110 mg/ml dry weight, is stored in 1 cm thick sheets in the Cambridge ultrafreezer at -80°C. A section of the sheet was broken off and weighed to determine volume (ca. 1 g = 1 ml).

For this bioassay, a positive control suspension was produced on 11-14-2011 from the frozen blocks described above and dispensed into multiple 50-ml centrifuge tubes for single-use treatment of bioassays. The dry weight of the material was 65.65 mg/ml; therefore 1.5 ml was added to each testing jar to treat at 200 ppm.

Mussel collections:

Mussels were scraped from substrates (rocks) in the field and placed in plastic bins. Bins containing mussels were set in a cooler with towels and frozen ice packs to maintain temperature to be transported back to the laboratory in Cambridge. In the laboratory, mussels were placed in pint-sized canning jars, covered with mesh, and placed in aquaria containing unchlorinated tap water with circulation (1 Whisper filter) and aeration at ambient laboratory temperature (ca. 20°C).

Collection date Date in lab (20°C) Picked for test Collection site Species 04/30/2012 04/23/2012 10/18/2011 Hedges Lake Zebra FF # 84 (Washington County) mussels Item No.

Mussel collection and handling:

Experimental design: For validation of efficacy the following treatments were set up:

AEH-11-PSEUDO-02

3 – Untreated Control

Zebra mussels (25 mussels/jar):

3-200 ppm (a.i.) Cambridge CF Positive Control B (A, B, C) (produced on 11-14-2011)

3 – 200 ppm (a.i.) - MBI-401 SDP TR-4669-4-(7-8) 2nd #1

3 – 200 ppm (a.i.) - MBI-401 SDP TR-4669-4-(7-8) 2nd #2

3 – 200 ppm (a.i.) - MBI-401 SDP TR-4669-4-(7-8) 2nd #3

Testing jar bioassay protocol:

On the day prior to treatment (04/30/2012) mussels were carefully examined and 25 mussels placed into each testing jar containing ca. 100 ml aerated hard water and allowed to attach overnight. The next morning (05/01/2012), unattached mussels were removed and replaced with attached mussels from an extra glass Petri dish. Water was replaced with 500 ml fresh aerated hard water.

After at least one hour, the treatment was applied. The optical density of each jar was measured in duplicate ($A_{660 nm}$ Genesys Spectrophotometer).

After 24 hr of treatment, mussel mortality was checked and mussels were transferred to square plastic dishes with fresh aerated hard water. Mortality was checked and recorded each day with water replacements, for an additional 37 days (38 days total). On the final day of mortality checks, 20 mussels were measured from the untreated controls using a caliper.

Results:

Mussel length: Zebra mussels 12.77 ± 3.61 mm.

Optical density of treatments:

Treatment	Mean (\pm SD) OD (A _{660 nm})
Untreated Control	0.002 ± 0.0021
Cambridge CF (Positive Control)	0.177 ± 0.007
MBI-401 SDP TR-4669-4-(7-8) 2 nd #1	0.203 ± 0.008
MBI-401 SDP TR-4669-4-(7-8) 2 nd #2	0.199 ± 0.003
MBI-401 SDP TR-4669-4-(7-8) 2 nd #3	0.195 ± 0.004

Zebra mussel mortality: Mussels were treated in triplicate testing jars (500 ml) at 20°C for 24 hr and mortality was recorded for a total of 38 days (validation tests) and 21 days (KCl tests).

Treatment	Mean % mortality (±SD)	Combined Mean % Mortality (±SD)
Untreated Control	$0.0 \pm 0.0\%$	
Cambridge CF (Positive Control) (38 days)	92.0 = 8.0%	
MBI-401 SDP TR-4669-4-(7-8) 2 nd #1	$72.0 \pm 6.9\%$	
MBI-401 SDP TR-4669-4-(7-8) 2 nd #2	$72.0 \pm 4.0\%$	70.7 ± 2.3%
MBI-401 SDP TR-4669-4-(7-8) 2 nd #3	68.0 ± 10.6%	

MBI-401 SDP TR-4669-4-(7-8) 2nd shipment PASSED the post-test bioassay validation (71% mortality). Untreated control mortality was 0%.

FF # <u>6</u> Item No. ____ Pg ____ of

NYSM Post-Treatment Product Validation Assay MBI-401 SDP MBI-401 SDP TR-4669-4-(5) (USGS Study #AEH-12-PSEUDO-03 and AEH-11-PSEUDO-02)

Date product received from USGS: 2012/05/24 Date of start of test: 05/29/2012

AEH-11-PSEUDO-02

BACKGROUND: As standard protocol for the USEPA project, each time a batch of Zequanox product is used in a test a UMESC, a portion of the product is bioassayed by the NYSM to validate toxicity post-treatment.

- MBI-401 SDP TR-4669-4-(5)
 - USGS Study #AEH-12-PSEUDO-03; BKT
 - USGS Study #AEH-11-PSEUDO-02; PPB

PURPOSE: Post-test product validation of MBI-401 SDP TR-4669-4-(5) from USGS-UMESC.

MATERIALS AND METHODS:

Preparation of product for testing:

Product was shipped under cold conditions and held in the laboratory refrigerator at 4°C until use. Within 30 min of treatment application, prepare each at treatment stock of each MBI-401 formulated product:

MBI-401 SDP TR-4669-4-(5) (SDP – 50% active ingredient): 3 g of the powder from each sample was added slowly to a beaker with dilution water stirring for even suspension and then the total volume was adjusted to 30 ml with dilution water. The suspension was transferred to a 50 ml centrifuge and stored in refrigerator until ready to use. The suspension, when evenly dispersed was 100 mg product/ml or 50 mg a.i./ml. For 200 ppm a.i. treatments in testing jars, 2 ml were added to each testing jar (500 ml).

Cambridge CF (Standard for Positive Controls):

As an efficacy standard, we used *Pf*-CL145A killed CF that was maintained at -80°C (Cambridge CF). Since its production in 2005, this material has been valuable as a reference standard. The Cambridge CF was produced in 2005 (2005-0027) in 100-L batches 10, 11 and 12 and E-beamed to kill the cells. The solution, at 110 mg/ml dry weight, is stored in 1 cm thick sheets in the Cambridge ultrafreezer at -80°C. A section of the sheet was broken off and weighed to determine volume (ca. 1 g = 1 ml).

For this bioassay, a positive control suspension was produced on 11-14-2011 from the frozen blocks described above and dispensed into multiple 50-ml centrifuge tubes for single-use treatment of bioassays. The dry weight of the material was 65.65 mg/ml; therefore 1.5 ml was added to each testing jar to treat at 200 ppm.

Mussel collections:

Mussels were scraped from substrates (rocks) in the field and placed in plastic bins. Bins containing mussels were set in a cooler with towels and frozen ice packs to maintain temperature to be transported back to the laboratory in Cambridge. In the laboratory, mussels were placed in pint-sized canning jars, covered with mesh, and placed in aquaria containing unchlorinated tap water with circulation (1 Whisper filter) and aeration at ambient laboratory temperature (ca. 20°C).

 $FF # \frac{\delta \alpha}{16}$ $Item No. \frac{1}{0}$ $Pg _ 0f _$

AEH-11-PSEUDO-02

Mussel collection and handling:

11100001 0	Onconon and manarang.			
Species	Collection site	Collection date	Date in lab (20°C)	Picked for test
Zebra	Hedges Lake	10/18/2011 and	04/23/2012, 05/17/2012, and	05/28/2012
mussels	(Washington County)	12/28/2011	05/23/2012 (mixed randomly)	

Experimental design: For validation of efficacy the following treatments were set up: Zebra mussels (25 mussels/jar):

3 – Untreated Control

- 3-200 ppm (a.i.) Cambridge CF Positive Control (produced on 11-14-2011)
- 3 200 ppm (a.i.) MBI-401 SDP TR-4669-4-(5)

Testing jar bioassay protocol:

On the day prior to treatment (05/28/2012) mussels were carefully examined and 25 mussels placed into each testing jar containing ca. 100 ml aerated hard water and allowed to attach overnight. The next morning (05/29/2012), unattached mussels were removed and replaced with attached mussels from an extra glass Petri dish. Water was replaced with 500 ml fresh aerated hard water.

After at least one hour, the treatment was applied. The optical density of each jar was measured in duplicate ($A_{660 nm}$ Genesys Spectrophotometer).

After 24 hr of treatment, mussel mortality was checked and mussels were transferred to square plastic dishes with fresh aerated hard water. Mortality was checked and recorded each day with water replacements, for an additional 20 days (21 days total). On the final day of mortality checks, 20 mussels were measured from the untreated controls using a caliper.

Results:

Mussel length: Zebra mussels 13.23 = 3.30 mm.

Optical density of treatments:

Treatment	Mean (±SD) OD (A _{660 nm})
Untreated Control	0.008 ± 0.005
Cambridge CF (Positive Control)	0.203 ± 0.006
MBI-401 SDP TR-4669-4-(5) (Post-test validation)	0.264 ± 0.007

Zebra mussel mortality: Mussels were treated in triplicate testing jars (500 ml) at 20°C for 24 hr and mortality was recorded for a total of 21 days.

Treatment	Mean % mortality (±SD)
Untreated Control	$0.0 \pm 0.0\%$
Cambridge CF (Positive Control)	85.3 ± 12.2%
MBI-401 SDP TR-4669-4-(5) (Post-test validation)	76.0 ± 8.0%

MBI-401 SDP TR-4669-4-(5) shipment PASSED the post-test bioassay validation (76% mortality). Untreated control mortality was 0%.

Item No.

- 2 -

NYSM Post-Treatment Product Validation Assay

MBI-401 SDP MBI-401 SDP TR-4669-4-(5) (USGS Study # AEH-11-PSEUDO-02)

Date product received from USGS: 2012/06/05 Date of start of test: 06/06/2012

AEH-11-PSEUDO-02

BACKGROUND: As standard protocol for the USEPA project, each time a batch of Zequanox product is used in a test a UMESC, a portion of the product is bioassayed by the NYSM to validate toxicity post-treatment.

- MBI-401 SDP TR-4669-4-(5)
 - USGS Study #AEH-11-PSEUDO-02; HGE

PURPOSE: Post-test product validation of MBI-401 SDP TR-4669-4-(5) from USGS-UMESC.

MATERIALS AND METHODS:

Preparation of product for testing:

Product was shipped under cold conditions and held in the laboratory refrigerator at 4°C until use. Within 30 min of treatment application, prepare each at treatment stock of each MBI-401 formulated product:

MBI-401 SDP TR-4669-4-(5) (SDP - 50% active ingredient): 3 g of the powder from each sample was added slowly to a beaker with dilution water stirring for even suspension and then the total volume was adjusted to 30 ml with dilution water. The suspension was transferred to a 50 ml centrifuge and stored in refrigerator until ready to use. The suspension, when evenly dispersed was 100 mg product/ml or 50 mg a.i./ml. For 200 ppm a.i. treatments in testing jars, 2 ml were added to each testing jar (500 ml).

Cambridge CF (Standard for Positive Controls):

As an efficacy standard, we used Pf-CL145A killed CF that was maintained at -80°C (Cambridge CF). Since its production in 2005, this material has been valuable as a reference standard. The Cambridge CF was produced in 2005 (2005-0027) in 100-L batches 10, 11 and 12 and E-beamed to kill the cells. The solution, at 110 mg/ml dry weight, is stored in 1 cm thick sheets in the Cambridge ultrafreezer at -80°C. A section of the sheet was broken off and weighed to determine volume (ca. 1 g = 1 ml).

For this bioassay, a positive control suspension was produced on 11-14-2011 from the frozen blocks described above and dispensed into multiple 50-ml centrifuge tubes for single-use treatment of bioassays. The dry weight of the material was 65.65 mg/ml; therefore 1.5 ml was added to each testing jar to treat at 200 ppm.

Mussel collections:

Mussels were scraped from substrates (rocks) in the field and placed in plastic bins. Bins containing mussels were set in a cooler with towels and frozen ice packs to maintain temperature to be transported back to the laboratory in Cambridge. In the laboratory, mussels were placed in pint-sized canning jars, covered with mesh, and placed in aquaria containing unchlorinated tap water with circulation (1 Whisper filter) and aeration at ambient laboratory temperature (ca. 20°C).

Item No.

- 2 -

Mussel collection and handling:

Species	Collection site	Collection date	Date in lab (20°C)	Picked for test
Zebra	Hedges Lake	10/18/2011	05/31/2012	06/05/2012
mussels	(Washington County)			1

Experimental design: For validation of efficacy the following treatments were set up:

- Zebra mussels (25 mussels/jar):
- 3 Untreated Control
- 3-200 ppm (a.i.) Cambridge CF Positive Control (produced on 11-14-2011)
- 3 200 ppm (a.i.) MBI-401 SDP TR-4669-4-(5)

Testing jar bioassay protocol:

On the day prior to treatment (06/05/2012) mussels were carefully examined and 25 mussels placed into each testing jar containing ca. 100 ml aerated hard water and allowed to attach overnight. The next morning (06/06/2012), unattached mussels were removed and replaced with attached mussels from an extra glass Petri dish. Water was replaced with 500 ml fresh aerated hard water.

After at least one hour, the treatment was applied. The optical density of each jar was measured in duplicate ($\Lambda_{660 \text{ nm}}$ Genesys Spectrophotometer).

After 24 hr of treatment, mussel mortality was checked and mussels were transferred to square plastic dishes with fresh aerated hard water. Mortality was checked and recorded each day with water replacements, for an additional 20 days (21 days total). On the final day of mortality checks, 20 mussels were measured from the untreated controls using a caliper.

Results:

Mussel length: Zebra mussels 13.62 ± 2.77 mm.

Optical density of treatments:

Treatment	Mean (=SD) OD (A _{660 nm})
Untreated Control	0.009 ± 0.001
Cambridge CF (Positive Control)	0.187 ± 0.005
MBI-401 SDP TR-4669-4-(5) Post-test validation	0.262 ± 0.007
MBI-401 SDP TR-4669-3-(6) check for veligers tests	0.256 ± 0.005

Zebra mussel mortality: Mussels were treated in triplicate testing jars (500 ml) at 20°C for 24 hr and mortality was recorded for a total of 21 days.

Treatment	Mcan % mortality (±SD)
Untreated Control	$1.3 \pm 2.3\%$
Cambridge CF (Positive Control)	$84.0 \pm 12.0\%$
MBI-401 SDP TR-4669-4-(5) Post-test validation	$76.0 \pm 6.9\%$

MBI-401 SDP TR-4669-4-(5) shipment PASSED the post-test bioassay validation (76% mortality). Untreated control mortality was 1%.

Appendix 5. Test Animal Information

ltem number	Item description	Number of pages	Report page number
1	Test Organism Species List, Collection, and Inclusion Criteria – dated May 27, 2011	1	342
2	Newly Metamorphosed Juvenile Mussel Test Organism UMESC Lot Number Assignment Form – Obovaria olivaria	1	343
3	Newly Metamorphosed Juvenile Mussel Test Organism UMESC Lot Number Assignment Form – Actinonaias ligamentina	1	344
4	Newly Metamorphosed Juvenile Mussel Test Organism UMESC Lot Number Assignment Form – Megalonaias nervosa	1	345
5	Newly Metamorphosed Juvenile Mussel Test Organism UMESC Lot Number Assignment Form – Lampsilis siliquoidea	1	346
6	Newly Metamorphosed Juvenile Mussel Test Organism UMESC Lot Number Assignment Form – <i>Liguma recta</i>	1	347
7	Newly Metamorphosed Juvenile Mussel Test Organism UMESC Lot Number Assignment Form – Lampsilis cardium	1	348
8	Newly Metamorphosed Juvenile Mussel Test Organism UMESC Lot Number Assignment Form – Lampsilis higginsii	1	349
9	Newly Metamorphosed Juvenile Mussel Distribution Form – dated July 11, 2011	1	350
10	Newly Metamorphosed Juvenile Mussel Distribution Form – dated July 13, 2011	1	351
11	Newly Metamorphosed Juvenile Mussel Distribution Form – dated December 12, 2011	1	352
12	Newly Metamorphosed Juvenile Mussel Distribution Form – dated January 26, 2012	1	353
13	Newly Metamorphosed Juvenile Mussel Distribution Form – dated April 16, 2012	1	354
14	Newly Metamorphosed Juvenile Mussel Distribution Form – dated May 15, 2012	1	355
15	Newly Metamorphosed Juvenile Mussel Distribution Form – dated May 25, 2012	1	356

	Study humber, Alli 11 1 SEA	
Approved by		Date_ <u>27 MK& 2011</u>

Study number: AEH-11-PSEUDO-02

Test Organism Species List, Collection and Inclusion Criteria

Common name	Scientific name
Black sandshell	Ligumia recta
Fatmucket	Lampsilis siliquoidea
Hickorynut	Obovaria olivaria
Higgins eye	Lampsilis higginsii
Mucket	Actinonaias ligamentina
Plain pocketbook	Lampsilis cardium
Washboard	Megalonaias nervosa

Collection and inclusion criteria (see protocol sections 4.1-4.2):

Donor mussel collection, host fish inoculation, and newly metamorphosed mussels harvesting will be performed at the Genoa NFH by USFWS biologists. Gravid donor mussels will be collected from the Upper Iowa, Upper Mississippi or St. Croix Rivers. Mussels will be identified to species as described in Cummings and Mayer (1992) and Watters et al. (2009) by staff at the Genoa NFH. Approximately 1,200 juvenile mussels from each species will be collected from the mussel propagation aquaria by Genoa NFH biologists and transferred to the UMESC at ~20°C. After acclimation to UMESC test water, the mussels will be placed in petri dishes and viewed under a dissecting microscope. Twenty mussels displaying active foot movement will be transferred with a disposable pipet into a 50-mL beaker or petri dish containing 20°C well water. The beaker or petri dish will then be emptied and rinsed into a randomly chosen exposure chamber containing 20°C well water and approximately 4 mm of 75 – 150 μ m silica sand as substrate. The process will then be repeated until all exposure chambers receive a total of two distribution aliquots for a total of 40 juveniles for each exposure chamber. Additionally, two randomly chosen groups of 20 mussels of each species will be preserved to determine the initial mussel valve length.

FF # _____ Item No. _____ Pg ____ of ____

metamorphosed juven	ile mussels from seven diffe	erent unionid species"	
Stu	dy number: AEH-11-PSEUDO	-02	
Approved by	Da	te_31 MAY 2011	
File Folder: <u>7</u> 44 Lat	Da b book/pgsz2/6~7Proofed://Lw	Reviewed: <u>JA - 11/2/14</u>	
Newly Metamorp	hosed Juvenile Muss	el Test Organism	
UMESC I	ot Number Assignm	ent Form	
Species: Obovaria oliv	ania (Hickory not; HI	c) Kuo 25 Jul 11	
Collection Data(c) + H T (I)	lall		
Collection Location: Gener	NFH Container ID: <u>4</u>	Aucket is HICI	there is the line is KLW 2011
Approximate Number of Muss			
Mussel collected and identified	by: Northan Eckert	Genoa NFH	_
Additional information: Started acclimation by at Genua NFH of	Him How II 1/2 AMESC actimentou 1100.	b well water at 200	<u>. </u>
1200 - 50 % water chan UMESC MUSSEL LOT NUMP	ge with UMESC 20% 1	rell water at UMESC	0 - 3
UMESC MUSSEL LOT NUMP	BER DESIGNATION: ++22	100-Should be 10800 KW	
Witness and form recorded by:		10000 Dun 25JULI	
Kerry L. Weber		UMESC	11 JUL 11
(/Printed Name	Sighature	Affiliation	Date
		FF# Ja_	
		Item No4 Pg of _1	

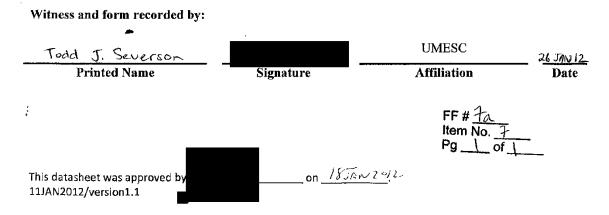
Study Title:	"Effects of Pseudomonas fluorescens (Pf-CL145A) to r	ewly
metamorph	osed juvenile mussels from seven different unionid spe	cies'

Study Title: "Effects of <i>Pseudomonas fluorescens</i> (<i>Pf-</i> CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"
Study number: AEH-11-PSEUDO-02
Approved by Date <u>31 MAY 26 II</u>
Approved by Date <u>31 MAY 2011</u> File Folder: <u>7</u> # Lab book/pgs: <u>2/12</u> Proofed: <u>KLW</u> Reviewed: <u>$5n 11/11/14$</u> 25 JAU
Newly Metamorphosed Juvenile Mussel Test Organism
UMESC Lot Number Assignment Form
Species: Mullet Actinonaias ligamentine (MMC) KLW25 JULII
Collection Date(s) : 7/13/4
Collection Location: Gena NFH Container ID: MUCI
Approximate Number of Mussels: 2,000
Mussel collected and identified by: <u>Jorze Buenny</u> Genoa NFH
Additional information:
1/2 1/20 exchange at Genoa NFA ~ 0900 h
1/2 1/20 exchange at UMESC ~ 1000h
umesc mussel lot number designation: // 2900
Witness and form recorded by:
James A. LuomA UMESC 7/3/1
Printed Name Signature Affiliation Date

FF # <u>7A</u> Item No. <u>5</u> Pg <u>1</u> of <u>1</u>

Study Title: "Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species"	
Study number: AEH-11-PSEUDO-02	
	4
Approved by Date 31 MAY 26 II File Folder: $\frac{7}{14}$ Lab book/pgs: $\frac{2}{36}$ Proofed: $\frac{7}{123ANIZ}$ Reviewed: $\frac{3}{36} \frac{n/n!}{9}$	
Newly Metamorphosed Juvenile Mussel Test Organism	
UMESC Lot Number Assignment Form	•
species: Washboard (M. nervosa) Megalonaias nervosa (WAS) 155mmia	_
Collection Date(s): 12 DEL 2011	_
Collection Location: <u>Genoa</u> NFH Container ID: <u>Container</u> 1	-
Approximate Number of Mussels: 2,000	
Mussel collected and identified by: Nation Ectert Genoa NFH	
Additional information:	
<u>248 havold animals</u>	_
1/2 HzO exchange at Genan NFH~ 1030h	
246 haurold animals 1/2 HzO exchange at Gena NFH~1030h 1/2 HzO exchange at UMESC~1145h	
UMESC MUSSEL LOT NUMBER DESIGNATION: 116100	
Witness and form recorded by:	
Kerry Lueber UMESC	12 DFZ 2011
<u>Kervy L. Weber</u> <u>Printed Name</u> <u>Signature</u> <u>Affiliation</u>	Date
$FF # \frac{A}{A}$	
Item No Pg of	

345


Study number: AEH-11-PSEUDO-02

File Folder: 7A Lab book/pgs: 2/33 Reviewed: 23APR12 Verified: 5-1-1/7TV5

Newly Metamorphosed Juvenile Mussel Test Organism UMESC Lot Number Assignment Form

species: Fatmucket (Lampsilis siliquoidea)				
Collection Date(s) : 26 JAN 2012.				
Collection Location: <u>benca</u> NFH Container ID: <u>Bucket</u> 71				
Approximate Number of Mussels: 3100 (USENS)				
Approximate Number of Mussels: 3700 (USFWS) Mussel collected and identified by: Nathan Eckert Affiliation Genda NFH				
Dosing Date: <u>27JAN 2012</u> Formulation and lot # SBP 4655-12-mix				
Additional information:				
0940: 50% 20°C UMESC Well Water exchange at Genoa NFH.				
1035: 50% 20°C UMESC Well water exchange at UMESC.				

UMESC MUSSEL LOT NUMBER DESIGNATION: 12.10.00

Study number: AEH-11-PSEUDO-02

File Folder: <u>Jac</u> Lab book/pgs: <u>J40</u> Reviewed: <u>Barger</u> Verified: <u>Barger</u> Verified: <u>Barger</u> Mewly Metamorphosed Juvenile Mussel Test Organism UMESC Lot Number Assignment Form

Species: <u>BLS</u>
Collection Date(s): 4/6/12 Collection Location: Gense NFH Container ID: Budlet # 1
Collection Location: Gense NFH Container ID: Budlet H 1
Approximate Number of Mussels: <u>2500</u>
Mussel collected and identified by: Nathan Eckent Affiliation USFWS
Dosing Date: <u>4/17/12</u> Formulation and lot # <u>TR 4669-4-(7-8) 2^{1/2} - S</u> OP
Additional information:
UMESC MUSSEL LOT NUMBER DESIGNATION: 12/400
Witness and form recorded by:
* · · · · · · · · · · · · · · · · · · ·
THESE WILLIAM UMESC 4/1

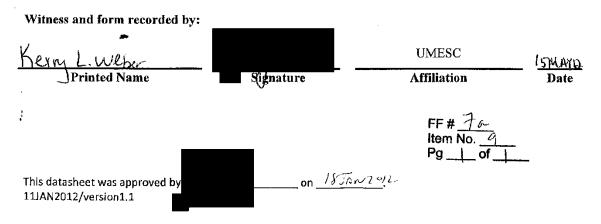
 Johns p. Luand
 Implementation

 Printed Name
 Signature
 Affiliation

 Implementation
 Date

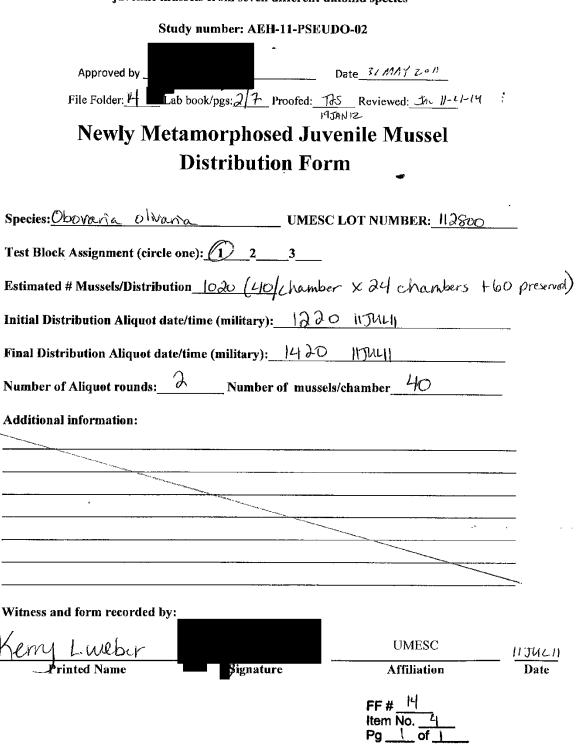
 Implementation
 FF # 1 a

 Item No. 3
 Pg 1 of 1


Study number: AEH-11-PSEUDO-02

File Folder: 7 A Lab book/pgs: 2/45/6 Reviewed: 4 Now Hill Verified: 5- 11-21-14

Newly Metamorphosed Juvenile Mussel Test Organism UMESC Lot Number Assignment Form


Species: Plain Pocketbook
Collection Date(s): 15 MAY 12
Collection Location: Genoa NFH Container ID: Container
Approximate Number of Mussels: 2,000 (45 Elus)
(USFWS) Mussel collected and identified by: Nathan Eckert Affiliation (Jenoa NFH
Dosing Date: 16 MAY 12 Formulation and lot # MB1-401 50 P TR-4669-4-65)
Additional information:
1100: 50% 20°C UMES well water exchange at Genon NFH
1100: 50% 20°C UMES well water exchange at Genon WFH 1215: 50% 20°C UMESC well water exchange at UMESC
0

UMESC MUSSEL LOT NUMBER DESIGNATION: 121700

Study number:	AEH-11	-PSEUDO-02
---------------	--------	------------

File Folder: 7A Lab book/pgs: 3/1 Reviewed: 4 WW 3th Verified: 5- 1-21-14 Newly Metamorphosed Juvenile Mussel Test Organism **UMESC** Lot Number Assignment Form Species: HGE (Higging Eye) Collection Date(s) : 5/25/12 Collection Location: GeNa NFH Container ID: 1 Approximate Number of Mussels: 3,000 Mussel collected and identified by: Nuthin Eckert Affiliation Genou NFH Dosing Date: 5/26/12 Formulation and lot # SOP TR-4669-4-65Additional information: 1/2 Hro exchange C Gewon NATAT ~ 1230 1/2 1/20 exchange Q UMESC at ~ 1330 UMESC MUSSEL LOT NUMBER DESIGNATION: $\frac{12}{900}$ Witness and form recorded by: UMESC James A. LLomm Printed Name Signature Affiliation FF # <u>10</u> Item No. <u>10</u> Pg ____ of ____ _____on_<u>18556079</u>2 This datasheet was approved by 11JAN2012/version1.1

juvenile mussels from seven different unionid species"	
Study number: AEH-11-PSEUDO-02	
Approved by Date 37 MINY 2 ° 11	
Approved by Date 31 MAY $2 \circ n$ File Folder: <u>H</u> Lab book/pgs: $2/13$ Proofed: <u>TrS</u> Reviewed: <u>$Ja = 11 - 21 - 14$</u> [9]JAN12	
Newly Metamorphosed Juvenile Mussel	
Distribution Form	-
Species: Acknonaias ligamentinaUMESCLOT NUMBER: 112900	
Test Block Assignment (circle one): 1 2 3	
Estimated # Mussels/Distribution 1020 (40/ Chamber X24 Chambers + 60 pre	served)
Initial Distribution Aliquot date/time (military): 1215 13 JUL	-
Final Distribution Aliquot date/time (military): 1429 3JULI	
Number of Aliquot rounds: 2 Number of mussels/chamber 470	
Additional information:	
	_
	_
	_
Witness and form recorded by:	
UMESC UMESC	13-12-2011
D Printed Name Signature Affiliation	Date
Osignative not printed name. Kew 7/13/2011 FF# 14 Item No. 3 Pg_1 of 1	-

Study Title:	"Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed			
juvenile mussels from seven different unionid species"				

Study nur	mber: AEH-11-PSEUD	O-02	
Approved by File Folder: <u>}4</u> Lab book/	pgs: 2/26 Proofed: 19 JAN	Date_ <u>31 MAY z.011</u> VQ Reviewed: <u>Jac_11-21-14</u>	4
Newly Metamo			
Dist	tribution Form	n	
Species: Washboard (M. nervos. Test Block Assignment (circle one):		LOT NUMBER: <u> (6) 00</u>	<u>></u>
Estimated # Mussels/Distribution 2	\bigcirc		
Initial Distribution Aliquot date/time	(military): 1250	12 DECII M	_
Final Distribution Aliquot date/time (ŕ	-	
Number of Aliquot rounds:			
Additional information:			
	· · · · · · · · · · · · · · · · · · ·		
Witness and form recorded by:			
JAMES A. L'human.		UMESC	12/12/11
Printed Name	Signature	Affiliation	Date
		FF # <u> 4</u> Item No. <u>_6</u> Pg <u>_1_</u> of <u>_</u> _	-

-

Study number: AEH-11-PSEUDO-02

File Folder:	ab book/pgs: <u>2/32-3</u> 3Review	wed: 23APR12 Verified: 514 11-21-64	1
		ہم Juvenile Mussel	
e e	Distribution		
Species: Fatmucket	UI	MESC LOT NUMBER: [2] O	00
Test Block Assignment (circle	_		
Estimated # Mussels/Distribut	tion		
Initial Distribution Aliquot da	te/time (military):	52 / 26 JAN12	
		9/26JAW12	
		nussels/chamber40	
Additional information:			
	· · · · · · · · · · · · · · · · · · ·		
		1 - 1999 - 1994 - 19	
<u> </u>			<u></u>

		· · · · · · · · · · · · · · · · · · ·	
Witness and form recorded by	/:		
Kerny Lweber		UMESC	JUSTINIA
grinted Name	Signature	Affiliation	Date
		FF # <u>)</u> Item No	
		Pg	of
This datasheet was approved by 11JAN2012/version1.1		on 11 JAN ZOIL.	

Study number: AEH-11-PSEUDO-02

File Folder: 14 Lab book/pgs: 2/40 Reviewed: 234812 Verified: Snc 11-21-14

Newly Metamorphosed Juvenile Mussel Distribution Form

Species: Black Sack shell	UMESC LO	OT NUMBER: <u>/2/400</u>	- <u></u> -
Test Block Assignment (circle one): 1 2	3		
Estimated # Mussels/Distribution 480			
Initial Distribution Aliquot date/time (military):	1320	lu APRID WW	
Final Distribution Aliquot date/time (military);_	1409	16 APRID MU	
Number of Aliquot rounds: 2 Number	of mussels/ch	amber <u>40</u>	
Additional information:			
	· · · · · · · · · · · · · · · · · · ·		
Witness and form recorded by:			
JAMES N. LUGAN		UMESC	4/16/12
Printed Name Signatu	.e	Affiliation	Date
:		FF # <u> </u> Item No. <u>8</u> Pg <u></u> of	<u> </u>
This datasheet was approved by	on1/ 5n	NZajz	

Study number: AEH-11-PSEUDO-02

File Folder: 14 Lab book/pgs: 2/45.46 Reviewed: 31100/14 Verified: Jac 11-2/-14

Newly Metamorphosed Juvenile Mussel Distribution Form

.

.

Species: Plain Pocketbook	UMESC LOT NUMBER: 1217a
Test Block Assignment (circle one): <u>(1)</u> 2	3
Estimated # Mussels/Distribution_ <u>20/chamber/ji</u>	Distribution lourd (24 chambers; 2 rounds)
Initial Distribution Aliquot date/time (military):	1230 15 MAY 12
Final Distribution Aliquot date/time (military):_	415 ISMAYU
Number of Aliquot rounds: <u></u> Number	of mussels/chamberO
Additional information:	
,, _,, _	
Witness and form recorded by:	
Kerry L. weber	UMESC ISMAY202
Printed Name Signatur	
	FF # <u> Y</u> Item No. <u>9</u> Pg <u>)</u> of <u>1</u>
This datasheet was approved by 11JAN2012/version1.1	on_115122012

Study number: AEH-11-PSEUDO-02

Newly Metamorphosed Juvenile Mussel Distribution Form

Species:	UMESC LOT NUMBER: 12/900
Test Plack According to a formele one): 1 2	3
Estimated # Mussels/Distribution_20_d.str.b.k.	er to each chumber per round ^D
Initial Distribution Aliquot date/time (military):_	
Final Distribution Aliquot date/time (military):	5/25/12 1630
Number of Aliquot rounds: Number of	of mussels/chamber
Additional information: D Two distribution rounds of 20 24 chembers 5-25-12 5m	mussels to each of
· · · · · · · · · · · · · · · · · · ·	
Witness and form recorded by: JAMES A. Linona	UMESC 5/25/12
Printed Name Signature	e Affiliation Date
This datasheet was approved by 11JAN2012/version1.1	FF # <u>14</u> Item No. <u>10</u> Pg <u>1</u> of <u>1</u> on <u>1/ Jaw Zuju</u>

-

Appendix 6. Water Quality and System Conditions

ltem number	Item description	Number of pages	Report page number	
1	Exposure Period Water Chemistry Data Summary for SAS	9	358	
2	SAS output for Statistical analysis of exposure period water chemistry	19	367	
3	SAS program for Statistical analysis of exposure period water chemistry	2	386	
4	SAS log for Statistical analysis of exposure period water chemistry	4	388	
5	Total Ammonia Nitrogen Data Summary for SAS	13	392	
6	SAS output for Statistical analysis of ammonia levels (TAN and un-ionized)	31	405	
7	SAS program for Statistical analysis of ammonia levels (TAN and un-ionized)	2	436	
8	SAS log for Statistical analysis of ammonia levels (TAN and un-ionized)	3	438	
9	Holding Period Water Chemistry Data Summary for SAS	4	441	
10	SAS output for Statistical analysis of holding period water chemistry	12	445	
11	SAS program for Statistical analysis of holding period water chemistry	2	457	
12	SAS log for Statistical analysis of holding period water chemistry	3	459	
13	System Conditions – Flow Rates Data Summary for SAS – Certified November 21, 2014	20	462	
14	SAS output for Statistical Analysis of Holding Chamber Flow Rates – Dated May 7, 2014	32	482	
15	SAS program for Statistical Analysis of Holding Chamber Flow Rates – Dated May 7, 2014	2	514	
16	SAS log for Statistical Analysis of Holding Chamber Flow Rates - Dated May 7, 2014	3	516	
17	System Conditions – Light Intensity Data Summary for SAS – Certified November 21, 2014	3	519	
18	SAS output for Statistical Analysis of Light Intensity – Dated May 7, 2014	3	522	
19	SAS program for Statistical Analysis of Light Intensity – Dated May 7, 2014	1	525	
20	SAS log for Statistical Analysis of Light Intensity - Dated May 7, 2014	2	526	
21	Report of Analysis – Ammonia Report from Water Quality Laboratory at UMESC – Report date August 23, 2011	5	528	
22	Report of Analysis – Ammonia Report from Water Quality Laboratory at UMESC – Report date January 9, 2012	1	533	
23	Report of Analysis – Ammonia Report from Water Quality Laboratory at UMESC – Report date February 21, 2012	1	534	
24	Report of Analysis – Ammonia Report from Water Quality Laboratory at UMESC – Report date April 24, 2012	1	535	
25	Report of Analysis – Ammonia Report from Water Quality Laboratory at UMESC – Report date May 8, 2012	1	536	
26	Report of Analysis – Ammonia Report from Water Quality Laboratory at UMESC – Report date May 24, 2012	1	537	
27	Report of Analysis – Ammonia Report from Water Quality Laboratory at UMESC – Report date June 15, 2012	1	538	

Study Number: AEH-11-PSEUDO-02 Data Source: File Folders: 10a-10c, 10e Water Quality Forms: 1, 1a, 1b, 2, 3, 3b

Action	Date	initials,
Created	1-May-14	KLW VW
Revised	19-Nov-14	KLW W
Reviewed	1910014	in
Certified	11/21/14	50-

Flle Name: I:\AEH-11-PSEUDO-02\Data\[PSEUDO-02 Water Chem for SAS.xisx]Exposure Water Chem

Exposure Period Water Chemistry

Scientific Name	Common Name	Abbreviation	Formulation Type	Test Article Lot Number	Exposure Date	Assessment Date	
Obovaria olivaria	Hickorynut	HIC	FDP	110510FD	12-Jul-11	20-Jul-11	
Actinonalas ligamentina	Mucket	MUC	FDP	110510FD	14-Jul-11	22-Jul-11	
Megalonaias nervosa	Washboard	WAS	FDP	110928FD	13-Dec-11	21-Jec-11	
Lampsilis siliquoidea	Fatmucket	FAM	SDP	MBI-401 SDP 4655-12-Mix	27-Jan-12	4-Feb-12	
Ligumla recta	Black sandshell	BLS	SDP	TR4669-4-(7-8) 2nd shipment	17-Apr-12	25-Apr-12	
Lampsilis cardium	Plain pocketbook	PPB	SDP	TR4669-4-(5)	16-May-12	24-May-12	
Lampsilis higginsli	Higgins eye	HGE	SDP	TR4669-4-(5)	26-May-12	3-Jun-12	

Data codes used within SAS

sps = Juvenile mussel species (see 3 etter abbreviation codes above)

time = Sample time

0 = Pre-exposure

1 = First sampling time during exposure

2 = Second sampling time during exposure

3 = Exposure termination

form = Product formulation

FDP = Freeze dried powder

SDP = Spray dried powder

conc = Concentration (mg/L)

0 = Control (no product added)

50 = 50 mg/L active ingredient

100 = 100 mg/L active ingredient

200 = 200 mg/L active ingredient

- 300 = 300 mg/L active ingredient
- 400 = 300 mg/L deactive ingredient

id = Exposure chamber ID

i.e., 1A2 = Test system (1, 2, or 3), Block ID (A or B), and Position in Block (1-12) do = Dissolved oxygen (in mg/L)

temp = Temperature (in ° C)

pH = pH

hard = Water hardness (in mg/L of $CaCO_3$)

alk = Alkalinity (in mg/L of CaCO3) cond = Conductivity (in μ S/cm temperature compensated to 25°C)

Data Explanation

Water chemistry data analyses were limited to simple descriptive statistics (Proc Means) using SAS Version 9.4.

Data Anomalies and Deviations NONE

File Folder____ Item Numper____ Page

AEH-11-PSEUDO-02

sps HIC	time 0	form FDP	conc	id	do	temp	ph D 21	hard	alk	cond
MUC	0		•		8.33	21.0	8.21	172	118	374
WAS	0	FDP FDP	,	•	8.77	20.6	8.24	179	130	371
FAM	0	SDP	,		8.70	20.1	8.20	178	125	387
BLS	0	SDP	•	,	8.50	20.8	7.68	180	126	396
PPB	0	SDP	,	٠	8.77	19.9	8,32	180	125	376
			,		8.33	20.7	8.10	172	128	372
HGE	0	SDP			8.79	20.5	8.22	174	128	370
HIC	-	FDP	0	1A2	8.50	20.1	8.23		•	•
HIC	1	FDP	0	1A5	8,54	20.1	8.24	•	•	
HIC	1	FDP	0	182	8.53	20.0	8.22	•	•	•
HIC	1	FDP	0	1B12	8,47	20.2	8.20	,	•	,
HIC	1	FDP	400	1A8	8.49	20.1	8.05	•	•	
HIC	1	FDP	400	1A10	8.48	20.2	8.06	•	•	•
HIC	1	FDP	400	1B6	8.46	20,1	8.01	•	•	•
HIC	1	FDP	400	187	8.46	20.1	7.99	•	•	•
HIC	1	FDP	50	1A4	8.45	19,9	8.20	,	•	
HIC	1	FDP	50	1A7	8.43	20,1	8.19		•	•
HIC	1	FDP	50	189	8.49	20.1	8.19	,	•	٠
HIC	1	FDP	50	1 B11	8.55	20.1	8.21	,	•	•
HIC	1	FDP	100	1A6	8,54	20.0	8.20	•	•	•
HIC	1	FDP	100	1A9	8.46	20.2	8.17	•	•	•
HIC	1	FDP	100	183	8.48	19,9	8.15	,	•	•
HIC	1	FDP	100	1810	8.46	20.1	8,17	•	•	٠
HIC	1	FDP	200	1A1	8.55	19.9	8.20	•	•	
HIC	1	FDP	200	1A11	8.52	20.1	8.17	•	•	•
HIC	1	FDP	200	1B5	8.45	20.0	8.14	•		•
HIC	1	FDP	200	1 B8	8.42	20.1	8.09	•	•	•
HIC	1	FDP	300	1A3	8.50	19.8	8.11	•	•	•
HIC	1	FDP	300	1A12	8.36	20.1	8.06	•	•	
HIC	1	FDP	300	1B1	8.56	19.8	8.10	•	•	•
HIC	1	FDP	300	1B4	8.54	19.9	8.09	•	•	•
HIC	2	FDP	0	1A2	8.75	18.3	8.30	,	· .	•
HIC	2	FDP	0	1\/5	8.98	18.2	8.33	•	•	•
HIC	2	FDP	400	1A8	6.21	18.6	8.00	•	•	•
HIC	2	FDP	400	1A10	6.03	18.5	8.00	•	•	•
HIC	2	FDP	50	1A4	8.24	18.2	8.26		•	•
HIC	2	FDP	50	1A7	8.09	18.5	8.22	•		
HIC	2	FDP	100	1A6	8.35	18.3	8.17	•	•	•
HIC	2	FDP	100	1A9	7.76	18.5	8.17	•	,	•
HIC	2	FDP	200	1A1	8.20	18.3	8.21	•	•	•
HIC	2	FDP	200	1A11	8.09	18.5	8.17	•		
HIC	2	FDP	300	1A12	6.28	18.7	8.03		· •	•
HIC	2	FDP	300	1A3	6.42	18.2	8.04	•	•	
HIC	2	FDP	0	182	8.39	18.2	8.35	•		
HIC	2	FDP	0	1B12	8.64	18.7	8.33			
HIC	2	FDP	400	1B6	7.83	18.3	8.02	•		•
HIC	2	FDP	4 0 0	187	7.65	18.3	7.97			•
HIC	2	FDP	50	1B9	7.69	18.5	8.24	٠	,	
HIC	2	FDP	50	1B11	8.08	18.6	8.27			
HIC	2	FDP	100	1B3	6.41	18,3	8.06			
HIC	2	FDP	100	1B10	6.45	18.5	8.16			

AEH-11-PSEUDO-02

HIC	2	FDP	200	1B5	6.39	18.3	8.08			
HIC	2	FDP	200	188	7.32	18,4	8.14			
HIC	2	FDP	300	1B1	6.46	18.2	7.99			
HIC	2	FDP	300	1B4	5.86	18.3	7.95		,	
MUC	1	FDP	0	2A4	8.31	20.1	8.15			
MUC	1	FDP	0	2A11	8.42	19.7	8.14	,		
MUC	1	FDP	0	2B7	8.41	19.8	8.18			
MUC	1	FDP	0	2 B 10	8.45	19,7	8.18			
MUC	1	FDP	400	2A8	8.35	19.7	7.96			
MUC	1	FDP	400	2A12	8.46	19.4	7.96			
MUC	1	FDP	400	2B1	8.41	19.6	7.93			,
MUC	1	FDP	400	2B6	8.42	19.8	7.95			
MUC	1	FDP	50	2A3	8.38	20.1	8.15			
MUC	1	FDP	50	2B5	8.37	19.8	8.14			
MUC	1	FDP	50	2B9	8.41	19.6	8.14			
MUC	1	FDP	50	2A10	8.37	19.7	8.14			
MUC	1	FDP	100	2B8	8.34	19.7	8.14			
MUC	1	FDP	100	2B3	8.46	19.8	8.15			
MUC	1	FDP	100	2A6	8.33	19.8	8.09			
MUC	1	FDP	100	2A7	8,44	19.7	8.15			
MUC	1	FDP	200	2A1	8.42	19.7	8.07			
MUC	1	FDP	200	2A5	8.44	19.7	8.13			
MUC	1	FDP	200	2811	8.46	19.6	8.09			
MUC	1	FDP	200	2812	8.42	19,6	8.04			
MUC	1	FDP	300	2B2	8.43	19.7	8.04			
MUC	1	FDP	300	2B4	8.40	19.7	8.02			
MUC	1	FDP	300	2A2	8.40	19.8	8.08	ż		•
MUC	1	FDP	300	2A9	8.42	19,6	8.04			•
MUC	2	FDP	200	2A1	8.49	18.9	8.23			
MUC	2	FDP	300	2A2	8.12	18.8	8,12			
MUC	2	FDP	50	2A3	8.65	18.8	8.26			
MUC	2	FDP	0	2A4	8.78	18.8	8.12			
MUC	2	FDP	200	2A5	8.27	18.7	8.13			•
MUC	2	FDP	100	2A6	8.57	18.7	8.21			
MUC	2	FDP	100	2A7	8.73	18.6	8.26			•
MUC	2	FDP	400	2A8	7.67	18.4	8.00			
MUC	2	FDP	300	2A9	8.02	18.5	8,07	·		•
MUC	2	FDP	50	2A10	8.55	18.3	8.18			•
MUC	2	FDP	0	2A11	8.92	18.3	8.30			•
MUC	2	FDP	400	2A12	7.45	18.3	7.96	,		•
MUC	2	FDP	400	2B1	7,64	18.5	7.98			
MUC	2	FDP	300	282	8.18	18.4	8.10	•	•	•
MUC	2	FDP	100	2B3	8.79	18.4	8.30			•
MUC	2	FDP	300	2B4	7.29	18.5	7.98	•	•	•
MUC	- 2	FDP	50	2B5	8.59	18.5	8.22	•	•	•
MUC	2	FDP	400	2B6	7.74	18.3	8.01	•	,	•
MUC	2	FDP	0	287	8.97	18.3	8.32	•	•	•
MUC	2	FDP	100	2B8	8.71	18.3	8.27	+	•	•
MUC	2	FDP	50	2B9	8,76	18.2	8.25		•	•
MUC	2	FDP	0	2B10	8.97	18.2	8.35		•	•
MUC	2	FDP	200	2B10 2B11	8.31	18.4	8.13		•	•
MUC	2	FDP	200	2B12	8.23	18.6	8.13	•	,	•
									•	•
									•	

WAS	1	FDP	0	2A9	8.10	19.7	8.14	1		
WAS	1	FDP	0	2A11	8.12	19.8	8.05			
WAS	1	FDP	0	2B1	8,47	19.8	8.05			
WAS	1	FDP	0	2B7	8.65	19.6	8.07			
WAS	1	FDP	400	2A5	8.44	19.8	7.89			
WAS	1	FDP	400	2A7	8,52	19.8	7.82		,	
WAS	1	FDP	400	285	8.55	19.7	7.96			
WAS	1	FDP	400	288	8,53	19,5	7.89			
WAS	1	FDP	50	2A1	8.24	19.6	7.98			
WAS	1	FDP	50	2A12	8.30	19.6	7.96			
WAS	1	FDP	50	2B2	8.52	19.6	8.05			
WAS	1	FDP	50	2B11	8,62	19.4	8.11			
WAS	1	FDP	100	2A2	8.32	20.0	8.04			
WAS	1	FDP	100	2A3	8.10	20.0	7.99	•	•	•
WAS	1	FDP	100	2B9	8.43	19,7	8.02		•	•
WAS	1	FDP	100	2812	8.54	19.9	8.11	•	••	•
WAS	1	FDP	200	2A6	8.37	19,9	7.99	•	•	•
WAS	1	FDP	200	2A10	8.11	19.8	7.97		•	,
WAS	1	FDP	200	2B3	8.45	19.8	8.01	•	•	•
WAS	1	FDP	200	2B10	8.55	19.6	8.01	•	•	,
WAS	1	FDP	300	2A4	8.39	19.0	7.95	•	•	•
WAS	1	FDP	300	2A8	8.38	19.7	7.97	•	•	•
WAS	1	FDP	300	284	8.50	19.6	7.99	•	•	•
WAS	1	FDP	300	2B6	8.35	19.6	7.97	•	•	•
WAS	2	FDP	0	280 2A9	8.69	19.8	8.27	•	•	•
WAS	2	FDF	0	2A9 2A11	8.63	19.2 19.2	8.27	•	•	•
WAS	2	FDP	0	2B1	8. 5 9	19.2	8.24	•		,
WAS	2	FDP	0	2B1 2B7	8,61	19.9	8.26	,		•
WAS	2	FDP	400	2B7	8.04	19.7	8.01	•	1	٠
WAS	2	FDP	400	2B5	8.12	19.7	7.97	•		•
WAS	2	FDP	400	2A7	6.77	19.2	7.82	•	•	•
WAS	2	FDP	400	2A5	8.03	19.4	7.91	•		•
WAS	2	FDP	50	2A1	7.84	19.8	8.03	•	•	•
WAS	2	FDP	50	2A12	8.09	19,3	8.03		•	•
WAS	2	FDP	50	2B2	8,52	19.6	8.18	•		•
WAS	2	FDP	50	2B11	8.66	19.6	8.23	•		•
WAS	2	FDP	100	2B11 2B12	8,50	19.0	8.20	•	,	
WAS	2	FDP	100	289	8.17	19.7	8.20 8.06	•	•	•
WAS	2	FDP	100	263 2A3	8.17	19.0	8.00	•	,	•
WAS	2	FDP	100	2A3 2A2	8.13 7.96	19.4 19.6	8.00	•	1	•
WAS	2	FDP	200	2A2 2A6	7.50	19.0	8.02 7.93	•	•	•
WAS	2	FDP	200	2A0 2A10	7.50	19.4 19.2	7.93	•		•
WAS	2	FDP	200	2B3	7.89			•	•	
WAS	2	FDP	200 200	2B3 2B10	8.22	19.7 19.4	7.98	•	,	
WAS	2	FDP	300	2B10 2B6			8.08	•		
WAS	2	FDP	300	288 284	7.17	19.8	7.86	•	,	•
					7.38	19.7	7.91	•	•	•
WAS	2	FDP	300	2A8	7.55	19.0	7.91	•	•	•
WAS	2 1	FDP	300	2A4	7.08	1.9.4	7.85	•	•	•
FAM ,		SDP	0	1.B5	8,57 9,65	19.2	7.98	•	•	•
FAM FAM	1	SDP SDP	0	1A1	8.65 8.51	19.1 10.1	8.16	•	•	•
FAM	1. 1	SDP	0	1B10 1A7	8.51 8.66	19.1	7.98	•	•	•
FAIM	T	308	0	141	0,00	19.1	8.13	•	•	•

Page _____ of ____

FAM	1	SDP	400	182	8.38	19.1	7.83	,		
FAM	1	SDP	400	1A6	8.51	18.9	8.04			
FAM	1	SDP	400	168	8.48	19.0	7.80	,		
FAM	1	SDP	400	1A8	8.65	19.0	7.97			
FAM	1	SDP	50	1B1	8.41	19.2	7.99			
FAM	1	SDP	50	1B6	8.57	19.1	8.04			
FAM	1	SDP	50	1A3	8.58	19.0	8.09			
FAM	1	SDP	50	1A9	8.63	19.0	8,15		,	
FAM	1	SDP	100	1B3	8.65	19.1	8.00			
FAM	1	SDP	100	1A2	8,53	19.0	8.05			
FAM	1	SDP	100	1B11	8,52	19.1	7.98		• •	
FAM	1	SDP	100	1A11	8.56	19.1	8.07			
FAM	1	SDP	200	1A5	8.58	18.9	7.95			
FAM	1	SDP	200	1B7	8.64	19.0	7.99			
FAM	1	SDP	200	1A12	8.58	19.1	8.00			
FAM	1	SDP	200	1B9	8.52	19.1	7.92		,	
FAM	1	SDP	300	1A4	8.63	18,7	7.95			
FAM	1	SDP	300	1B4	8.62	18.8	7.91			
FAM	1	SDP	300	1A10	8,61	18.8	7.94			
FAM	1	SDP	300	1812	8.64	18.9	7.93		•	
FAM	2	SDP	0	1A1	8.83	19.1	8.27			
FAM	2	SDP	0	1A7	8.91	18.7	8.31			
FΛM	2	SDP	0	1B5	8.72	19.2	8.35		1	
FAM	2	SDP	0	1B10	8.61	19.3	8.33			
FAM	2	SDP	400	1A6	8,12	18.5	8.12			
FAM	2	SDP	400	1A8	6.31	19.0	7.81			
FAM	2	SDP	400	1B2	7.71	19.2	8.08			
FAM	2	SDP	400	1B8	6.02	19.1	7.83			
FAM	2	SDP	50	1A3	8.52	19,0	8.18		,	
FAM	2	SDP	50	1A9	8.76	19,0	8,28			
FAM	2	SDP	50	1B1	8.24	. 19.4	8.15			
FAM	2	SDP	50	1B6	8.61	19.2	8.25			
FAM	2	SDP	100	1A2	8.30	19.0	8.14			
FAM	2	SDP	1.00	1A11	8.39	19.2	8.19			
FAM	2	SDP	100	1B3	8.25	19.2	8.14			
FAM	2	SDP	100	1B11	8.50	19,2	8.23	,	,	
FAM	2	SDP	200	1A5	8.49	18.5	8.17			
FAM	2	SDP ·	200	1A12	8.06	19.3	8.13	,	,	
FAM	2	SDP	200	1B7	7.81	19.0	7.99			
FAM	2	SDP	200	1B9	6.94	19.3	7.95			
FAM	2	SDP	300	1A4	6.52	18.7	7.81			
FAM	2	SDP	300	1A10	6.58	19.2	7.82	•		
FAM	2	SDP	300	1B4	6.96	19.2	7.92			
FAM	2	SDP	300	1812	7.45	19,4	8.03			
BLS	1	SDP	0	2A6	8,79	19.4	8.02			
BLS	1	SDP	0	2A8	8.81	19.2	8.04			
BLS	1	SDP	0	289	8.79	19.4	8.05	•		
BLS	1	SDP	0	2B11	8.76	19.5	8.06			
BLS	1	SDP	50	2A9	8,82	19,3	8,04		,	,
BLS	1	SDP	50	2A12	8.79	19.4	8.07			
BLS	1	SDP	50	2B5	8.75	19.6	8.04			
BLS	1	SDP	50	2B8	8.76	19.6	8.06			
										,

Page <u>5</u> of 9

								· • • • • • • • • • • • • • •		JZ.
BLS	1	SDP	100	2A3	8.79	19,3	7.99			
BLS	1	SDP	100	2A5	8.88	19.3	8.05			
BLS	1	SDP	100	2B2	8.78	19.4	8.02			
BLS	1	SDP	100	2B7	8.79	19.5	8.03	· .		
BLS	1	SDP	200	2A1	8.77	19,6	7.95			
BLS	1	SDP	20 0	2A4	8.81	19.3	7.95			
BLS	1	SDP	200	2 B6	8,78	19.4	7.96			
BLS	1	SDP	200	2B12	8.79	19.4	7.98			
BLS	1	SDP	300	2A10	8.87	19.2	7.91			
BLS	1	SDP	300	2A11	8.84	19.2	7.91			
BLS	1	SDP	300	2B1	8.78	19.5	7.91			
BLS	1	SDP	300	2B4	8.77	19.5	7.92			
BLS	1	SDP	400	2A2	8.74	19.6	7.90			
BLS	1	SDP	400	2A7	8.79	19.3	7.85			
BLS	1	SDP	400	2B3	8.76	19.5	7.94		•	
BLS	1	SDP	400	2B10	8.78	19.4	7.87			
BLS	2	SDP	0	2A6	8.34	19.8	8.39			
BLS	2	SDP	0	2A8	8.69	19.5	8,43		•	
BLS	2	SDP	0	2B9	8.79	19.4	8.38			
BLS	2	SDP	0	2B11	8.91	19.8	8.40	•	•	
BLS	2	SDP	50	2A9	8.75	19.4	8.33			
BLS	2	SDP	50	2A12	8.64	19.6	8.32		•	
BLS	2	SDP	50	2B5	8.62	19.9	8.25	,		•
BLS	2	SDP	50	2B8	8.87	19,7	8.24		,	
BLS	2	SDP	100	2A3	7.95	19.9	8.07		,	•
BLS	2	SDP	100	2A5	8 .78	19.8	8.32	•		
BLS	2	SDP	100	2B2	8.21	19.8	8.20			
BLS	2	SDP	100	2B7	7.97	19.9	8.16			
BLS	2	SDP	200	2A1	7.39	20.1	8.04	•		
BLS	2	SDP	200	2A4	7.22	19.9	7.98		5 A.	•
BLS	2	SDP	200	2B6	7.63	19.9	8.07	•		•
BLS	2	SDP	200	2B12	7.60	19.9	8.05	•		
BLS	2	SDP	300	2A10	6,78	19.6	7.97	•	,	•
BLS	2	SDP	300	2A11	7.31	19.5	8.05	•		
BLS	2	SDP	300	2B1	5.85	19.9	7.84	•		
BLS	2	SDP	300	2B4	6.90	19.8	7.97		•	
BLS	2	SDP	400	2A2	7.72	1 9.9	8.13	•	,	•
BLS	2	SDP	400	2A7	6.06	19.7	7.88	•	. •	•
BLS	2	SDP	400	2B3	7.83	19.7	8.15	•	,	•
BLS	2	SDP	400	2B10	7.09	19.4	8.00	•	•	•
РРВ	1	SDP	0	1A1	8.54	20.1	8.31			•
PPB	1	SDP	0	1A3	8.74	19.8	8.38	•	•	•
PPB	1	SDP	0	1B9	8.80	19.6	8.36	•	•	•
PPB	1	SDP	0	1B10	8.76	19.8	8.37	· •	•	•
PPB	1	SDP	400	1A2	8.79	19.6	8.37	•	•	•
PPB	1	SDP	400	1A4	8.72	19.7	8.28	•	,	•
РРВ	1	SDP	40 0	1B1	8.63	19.6	8.26	•	•	•
PPB	1	SDP	400	1B4	8,78	19.6	8,31	•		•
РРВ РРВ	1	SDP	50 50	1A8	8.74	19.7	8.34			
	1	SDP	50 50	1A10	8.75	19.7	8.36			•
РРВ РРВ	1 1	SDP SDP	50 50	1B3	8.73	19.6 10.6	8.36		•	•
FFD	Т	51,78	50	188	8.79	19.6	8.36	•		•

Page 6 of 9

PPB	1	SDP	100	1A6	8.78	19.5	8.33			
PPB	1	SDP	100	1 A7	8.71	19.7	8.31			
PPB	1	SDP	100	185	8.74	19.7	8.32			
PPB	1	SDP	100	1 B7	8,80	19.5	8,34		,	
PPB	1	SDP	200	1A5	8.79	19.6	8.29			
ррв	1	SDP	200	1A11	8.75	19.8	8.30			
PPB	1	SDP	200	1B6	8.80	19.6	8.31			
PPB	1	SDP	200	1B12	8.65	19.8	8.29		•	
РРВ	1	SDP	300	1A9	8.79	19.5	8.34			
PPB	1	SDP	300	1A12	8.51	19.8	8.25		•	
PPB	1	SDP	300	1B2	8.77	19.6	8.29			
РРВ	1	SDP	300	1B1 1	8.76	19.7	8.30			
PPB	2	SDP	0	1A1	8.59	20.0	8.28		,	
PPB	2	SDP	0	1A3	8,83	19.9	8.35			
PPB	2	SDP	0	1B9	8.68	19.8	8.34			
PPB	2	SDP	0	1B10	8.67	19.9	8.32			
PPB	2	SDP	400	1A2	8.28	19.9	8.19			
PPB	2	SDP	400	1A4	6.70	19.8	7.88	,		
PPB	2	\$DP	400	1B1	7.29	19.7	8.00			
PPB	2	SDP	400	184	7.37	19.7	7.99			
PPB	2	SDP	50	1A8	8.55	19.8	8.31			
PPB	2	SDP	50	1A10	8.20	19.9	8.21			
PPB	2	SDP	50	1B3	8.46	19.7	8.29			
PPB	2	SDP	50	1B8	8.41	19.8	8.29		,	
PPB	2	SDP	100	1A6	7.45	19,6	8.00			
PPB	2	SDP	100	1A7	8.41	19.6	8.25		,	
PPB	2	SDP	100	1 B 5	8.21	19.7	8.20			
PPB	2	SDP	100	1 B 7	8.32	19.7	8.22		,	
РРВ	2	SDP	200	1A5	7.36	19.7	7.96			
PPB	2	SDP	200	1A11	7.49	19.9	8.01			
PPB	2	SDP	200	1B6	7.47	19.7	8.03			
ррв	2	SDP	200	1B12	6.99	20.2	7.96			
PPB	2	SDP	300	1A9	7.41	19.8	7.98			
PPB	2	SDP	300	1A12	7.91	20.0	8.13			
PPB	2	SDP	300	1B2	6.85	19.7	7.97			
PPB	2	SDP	300	1B 11	7.33	19.9	8.02			
HGE	1	SDP	0	1A1	8.36	19.6	8.13			
HGE	1	SDP	0	1A8	8.59	19.5	8.23			
HGE	1	SDP	0	1B1	8.55	19.5	8.19			
HGE	1	SDP	0	1B8	8.55	19.5	8.21			
HGE	1	SDP	400	1 \ 5	8.57	19.9	8.08		,	
HGE	1	SDP	400	1A7	8.48	20.1	8.06			
HGE	1	SDP	400	1B7	8,53	19.9	8.03			
HGE	1	SDP	400	1 B11	8.52	20.0	8.05			
HGE	1	SDP	50	1A6	8.56	19.8	8.18			
HGE	1	SDP	50	1A10	8.53	19.9	8.14			
HGE	1	SDP	50	1B4	8.39	19.6	8.14	•		
HGE	1	SDP	50	1B10	8,45	19.7	8.16		,	
HGE	1	SDP	10 0	1A3	8.51	19.8	8,21		,	
HGE	1	SDP	100	1A9	8.50	19.7	8.15			
HGE	1	SDP	100	1B3	8.59	19.7	8.16			
HGE	1	SDP	100	1B9	8.58	19.7	8.20		,	

Page 7_of 9___

HGE	1	SDP	200	1A4	8.48	19.9	8.09			
HGE	1	SDP	200	1A11	8.44	19.9	8.10	,		
HGE	1	SDP	200	182	8.51	19.8	8.07			
HGE	1	SDP	200	1B5	8.50	19.7	8.11			
HGE	1	SDP	300	1 A2	8,51	19.7	8.13			-
HGE	1	SDP	300	1 A12	8.45	19.8	8,11		,	
HGE	1	SDP	300	1B6	8.58	19.7	8.07			, ,
HGE	1	SDP	300	1B12	8,54	19.8	8.04			
HGE	2 .	SDP	0	1A1	8.40	20.1	8.36			,
HGE	2	SDP	0	1A8	8.42	20.1	8.39			
HGE	2	SDP	0	1B1	8.44	20.1	8.38			
HGE	2	SDP	0	1B8	8.49	20.0	8.40	,		
HGE	2	SDP	400	1 A 5	7.69	20.0	8.06			
HGE	2	SDP	400	1A7	7.8 8	20.0	8.14			
HGE	2	SDP	400	1B7	7.24	20.0	7.97	,		
HGE	2	SDP	400	1B11	7.08	20.2	7.98			
HGE	2	SDP	50	1A6	8.11	20.0	8.28		,	
HGE	2	SDP	50	1A10	8.17	20.1	8.25		,	
HGE	2	SDP	50	1B4	7.90	20.0	8.10			
HGE	2	SDP	50	1B10	8.02	20.1	8.19			
HGE	2	SDP	100	1A3	8.20	20.0	8.26			
HGE	2	SDP	100	1A9	7.96	20.1	8.21			
HGE	2	SDP	100	1B3	7.90	20.0	8.22			
HGE	2	SDP	100	1B9	8.10	20.0	8.30			
HGE	2	SDP	200	1A4	7.59	20.0	8.06			
HGE	2	SDP	200	1A11	6.94	20.2	7.91		,	
HGE	2	SDP	200	1B2	6.84	20.0	7.93			
HGE	2	SDP	200	1B5	7.51	20.0	8.04			
HGE	2	SDP	300	1A2	6.89	20.0	7.83			
HGE	2	SDP	300	1A12	7.52	20,2	8.05	,		
HGE	2	SDP	300	1B 6	7.11	20.0	7.89			
HGE	2	SDP	300	1B 1 2	6.13	20.4	7.81			
HIC	3	FDP	0					184	128	389
HIC	3	FDP	50					178	135	394
HIC	3	FDP	1.00					184	140	409
HIC	3	FDP	200	,				182	153	438
HIC	3	FDP	300					176	163	464
HIC	3	FDP	400		,			177	163	470
MUC	3	FDP	0					176	129	397
MUC	3	FDP	50	,			,	184	138	4 14
MUC	3	FDP	100	,			•	178	154	430
MUC	3	FDP	200					178	14 4	455
MUC	3	FDP	300	•		,		179	166	484
MUC	3	FDP	4 0 0				•	178	163	486
WAS	3	FDP	0					188	133	396
WAS	3	FDP	50					190	138	405
WAS	3	FDP	100		,			188	143	416
WAS	3	FDP	200					192	154	435
WAS	3	FDP	300	•			,	188	159	451
WAS	3	FDP	400					188	162	471
FAM	3	SDP	0	•				190	131	395
FAM	3	SDP	50					192	140	415
							•			

Page 8_ of 9____

FAN	Л 3	SDP	100					196	143	417
FAN	И 3	SDP	200					198	156	439
FAN	А З	SDP	300					196	160	455
FAN	А 3	SDP	400					180	160	456
BLS	5 3	SDP	0	•				184	129	386
BLS	5 3	SDP	50					184	136	398
BLS	53	SDP	100					184	140	4 0 5
BLS	5 3	SDP	200					182	151	407
8L5	5 3	SDP	300	,		•		184	161	430
BLS	5 3	SDP	400	,				182	161	430
PPE	3 3	SDP	0					178	131	376
PPE	3 3	SDP	50					178	133	381
PPE	3 3	SDP	10 0					184	139	378
PPE	3 3	SDP	200		,			181	146	382
PPE	3 3	SDP	300					182	152	385
PPE	3 3	SDP	400		,			180	157	389
HGI	E 3	SDP	0	•			,	176	130	365
HGI	E 3	SDP	50		,			178	1.33	375
HGI	E 3	SDP	100					180	140	382
HGI	E 3	SDP	200					180	145	398
HGI	E 3	SDP	300					178	148	410
HGI	E 3	SDP	400	,			,	178	149	408

FF # <u>10</u> Item No. <u>1</u> Pg <u>9</u> of <u>9</u>

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

Statistical analysis of exposure period water chemistry

SAS v. 9.4 Analysis Completion Date: 07MAY2014 Analysis prepared by: KLW

Obs	sps	time	form	conc	id	do	temp	ph	hard	alk	cond
1	ніс	0	FDP	1 1 1	1	8.330	21.0	8.21	172	118	374
2	ніс	1	FDP	0	1A2	8.500	20.1	8.23			
3	HIC	1	FDP	0	1A5	8.540	20.1	8.24			•
4	ніс	1	FDP	0	1B12	8.470	20.2	8.20	•	•	
5	HIC	1	FDP	0	1B2	8.530	20.0	8.22			,
6	HIC	1	FDP	100	1 <u>A</u> 6	8.540	20.0	8.20			•
7	HIC	1	FDP	100	1A9	8.460	20.2	8.17		•	
8	HIC	1	FDP	100	1B10	8.460	20.1	8.17	•		C 7 973 - 1 974 - 1 974 - 1 974 - 1 974 - 1 974 - 1 974 - 1 974 - 1 974 - 1 974 - 1 974 - 1 974 - 1 974 - 1 974
9	HIC	1	FDP	100	1B3	8.480	19.9	8.15			•
10	HIC	1	FDP	200	1A1	8.550	19.9	8.20			-
11	HIC	1	FDP	200	1A11	8.520	20.1	8.17			-
12	HIC	1	FDP	200	1B5	8.450	20.0	8.14	•		
13	ніс	1	FDP	200	1B8	8.420	20.1	8.09		-	•
14	ніс	1	FDP	300	1A12	8.360	20.1	8.06	•	-	
15	HIC	1	FDP	300	1A3	8.500	19.8	8.11	•		•
16	HIC	1	FDP	300	1B1	8.560	19.8	8.10			•
17	ніс	1	FDP	300	1B4	8.540	19.9	8.09			
18	HIC	1	FDP	400	1A10	8.480	20.2	8.06			
19	HIC	1	FDP	400	1A8	8.490	20.1	8.05		•	
20	ніс	1	FDP	400	1B6	8,460	20.1	8.01			a The first for the standard state
21	ніс	1	FDP	40 0	1B7	8.460	20.1	7.99			
22	ніс	1	FDP	50	1A4	8.450	19.9	8.20			
23	HIC	1	FDP	50	1A7	8.430	20.1	8.19		-	
24	HIC	1	FDP	50	1B1 1	8.550	20.1	8.21		, [
25	HIC	1	FDP	50	1B9	8.490	20.1	8.19		•	
26	HIC	2	FDP	0	1A2	8.750	18.3	8.30			•
27	HIC	2	FDP	0	1A5	8.980	18.2	8.33			
28	HIC	2	FDP	0	1B12	8.640	18.7	8.33		•	
29	HIC	2	FDP	0	1B2	8.390	18.2	8.35		•	
30	HIC	2	FDP	100	1A6	8.350	18.3	8.17		•	,

AEH-11-PSEUDO-02

FF# Item No. Pg

 $file:///C:/Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD3896_I... 5/7/2014$

1	1	1	1	i.	Į.	1	1	1	ł	5	;
31	HIC	2	FDP	100	1A9	7.760	18.5	8.17	•		·
32	HIC	2	FDP	100	1B10	6.450	18.5	8.16		ļ.,	
33	HIC	2	FDP	100	1B3	6.410	18.3	8.06	· · · · · · · · · · · · · · · · · · ·		
34	HIC	2	FDP	200	1A1	8.200	18.3	8.21	; }		•
35	HIC	2	FDP	200	1A11	8.090	18.5	8.17			
36	HIC	2	FDP	200	1B5	6.390	18.3	8.08			•
37	HIC	2	FDP	200	1B8	7.320	18.4	8.14		• •	• .
38	HIC	2	FDP	300	1A12	6.280	18.7	8.03	•	•	
39	ніс	2	FDP	300	1A3	6.420	18.2	8.04			,
40	HIC	2	FDP	300	1B 1	6.460	18.2	7.99			
41	HIC	2	FDP	300	1B4	5.860	18.3	7.95			
42	HIC	2	FDP	400	1A10	6.030	18.5	8.00		•	•
43	HIC	2	FDP	400	1A8	6.210	18.6	8.00			
44	HIC	2	FDP	400	1B6	7.830	18.3	8.02		(1997) 1997 (1997) 	•
45	HIC	2	FDP	40 0	1B7	7.650	18.3	7.97		•	•
46	HIC	2	FDP	50	1A4	8.240	18.2	8.26			
47	HIC	2	FDP	50	1 A 7	8.090	18.5	8,22	•	4	
48	HIC	2	FDP	50	1 B1 1	8.080	18.6	8.27	•		
49	HIC	2	FDP	50	1B9	7.690	18.5	8.24	4 - 14 17 44 13 14 14 14 14 14 14 14 14		
50	HIC	3	FDP	0	• • • • • • • • • • • • • • • • • • •		,		1 84	128	389
51	HIC	3	FDP	100		•	1		184	140	409
52	HIC	3	FDP	200					182	153	438
53	HIC	3	FDP	300					176	163	464
54	HIC	3	FDP	400			***************************************	1823a 19-18-18-1	177	163	470
55	ніс	3	FDP	50	2 - 20 - 22 - 100 - 24 - 24 - 24 - 24 - 24 - 24 - 24 -			ar nakar shate share A	178	135	394
56	MUC	0	FDP	eranoroana		8.770	2 0.6	8.24	179	130	371
57	MUC	1	FDP	0	2A11	8.420	19.7	8.14		5.0.7.4 800-730	A Miller al a Land Mar - A
58	MUC	1	FDP	0	2A4	8.310	20.1	8.15			
59	MUC	1	FDP	0	2B10	8.450	19.7	8.18	•••••		
60	MUC	1	FDP	0	2B7	8.410	19.8	8.18		90°, 16° 60' 19' 19'	
61	MUC	1	FDP	100	2A6	8.330	19,8	8.09	•		
62	MUC	1	FDP	100	2A7	8.440	19.7	8.15	- ······ · · · · · · · ·	• • • • •	
63	мис		FDP	100	2B3	8.460	19.8				
64	мис		FDP	100	2B8	8.340	19.7		www.ee.e. vi	.v. u	
65	MUC		FDP	200		8.420	19.7				
		, ve venezen, e spoepepor y									

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD3896_I... 5/7/2014

SAS Output

Page 3 of 19

As free as	мис	1	FDP	200	2A5	8.440	19.7	8.13	1		-
67	MUC	1	FDP	200	2B11	8.460		8.09			
	MUC		FDP	200	2B12	8.420	19.6	8.04			
69	MUC		FDP	300	2A2	8.400		8.08	1	• ••• ····	· · · · · · · ·
70	MUC	1	FDP	300	2A9	8.420	19,6	8.04	; ;=		
71	мис	1	FDP	300	2B2	8.430	19.7	8.04		· · · · ·	
72	MUC	1	FDP	300	2B4	8.400	19.7	8.02	•		
73	мис	1	FDP	400	2A12	8.460	19.4	7.96			
74	мис	1	FDP	400	2A8	8.350	19.7	7.96		51 F. MARKA, AN	
75	MUC	1	FDP	400	2B1	8.410	19.6	7.93			
76	MUC	1	FDP	400	2B6	8.420	19.8	7.95		far	
77	MUC	1	FDP	50	2A10	8.370	19.7	8.14	-		(i provinsi ng nanonan gyan) gangangang gangang sa sa sa sa sa sa sa sa sa sa sa sa sa
78	MUC	1	FDP	50	2A3	8.380	20.1	8.15		10 JUN (110 JUN)	(1.5
79	MUC	1	FDP	50	2B5	8.370	19.8	8.14			3 mil - 00 10 - 1. J - 0 - 0
80	MUC	1	FDP	50	2B9	8.410	19.6	8.14	•	•	•
81	MUC	2	FDP	0	2A11	8.920	18.3	8.30	•	1 1 1	
82	MUC	2	FDP	0	2A4	8.780	18.8	8.12			•
83	MUC	2	FDP	0	2B10	8.970	18.2	8.35			
84	MUC	2	FDP	0	2B7	8.970	18.3	8.32			
85	MUC	2	FDP	100	2A6	8.570	18.7	8.21			
86	MUC	2	FDP	100	2A7	8.730	18.6	8.26			
87	MUC	2	FDP	100	2B3	8.790	18.4	8.30			
88	MUC	2	FDP	100	2B8	8.710	18.3	8.27		-	
89	MUC	2	FDP	200	2A1	8.490	18.9	8.23	fate carsonal	-	
90	MUC	2	FDP	200	2A5	8.270	18.7	8.13		-	
91	MUC	2	FDP	200	2B11	8.310	18.4	8.13		•	
92	MUC	2	FDP	200	2 B 12	8.230	18.6	8.13			•
93	MUC	2	FDP	300	2A2	8.120	18.8	8.12			
94	MUC	2	FDP	300	2A9	8.020	18.5	8.07			-
95	MUC	2	FDP	300	2B2	8.180	18.4	8.10		•	
96	MUC	2	FDP	300	2B4	7.290	18,5	7.98	, 		
97	MUC	2	FDP	400	2A12	7,450	18.3	7.96	ا بالمحمد المسمد ال		
98	MUC	2	FDP	400	2A8	7.670	18.4	er e e e e e e e e e e e e e e e e e e			
9 9	MUC	2	FDP	400	2B1	7.640	18.5	7.98		•	
1 0 0	MUC	2	FDP	400	2B6	7.740	18.3	8.01			

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD3896_I... 5/7/2014

	MUC	2	FDP	50	2A10	8.550	18.3	8.18			
102	MUC	2	FDP	50	2A3	8.650	18.8	8.26			
103	мис	2	FDP	50	285	8.590	18.5	8.22			
104	мис	2	FDP	50	2B9	8.760	18.2	8.25		•	
105	MUC	3	FDP	0		·····	-		1 76	129	39
106	MUC	3	FDP	100					1 78	154	43
107	мис	3	FDP	200			-		178	144	45
108	мис	3	FDP	300	• • •				179	166	48
109	MUC	3	FDP	400					178	163	48
110	MUC	3	FDP	50				•	184	138	414
111	WAS	0	FDP			8.700	20.1	8.20	178	125	38
112	WAS	1	FDP	0	2A11	8.120	19.8	8.05		r 6785, Folder	A data in a conspo
113	WAS	1	FDP	0	2A9	8.100	19.7	8.14		n mana na sala	a san ten ana
114	WAS	1	FDP	0	2B1	8.470	19.8	8.05		N 17"7" 3387 MARC	t tri nord all nordende
115	WAS	1	FDP	0	2B7	8.650	19.6	8.07	•		
116	WAS	1	FDP	100	2A2	8.320	20.0	8.04		hararan 5, 1	•••••
117	WAS	1	FDP	100	2A3	8.100	20.0	7.99			
118	WAS	1	FDP	100	2B12	8.540	19.9	8.11	•	•	
119	WAS	1	FDP	100	2B9	8.430	19.7	8.02			
120	WAS	1	FDP	200	2A10	8.110	19.8	7.97		•	
121	WAS	1	FDP	200	2A6	8.370	19.9	7.99	•		
122	WAS	1	FDP	200	2B10	8.550	19.6	8.05		•	····· 9, ø
123	WAS	1	FDP	200	2B3	8.450	19.8	8.01		*** H2 M 44	****
124	WAS	1	FDP	300	2A4	8.390	19.7	7.95	**************************************	· · · · · · · · · · · · · · · · · · ·	
125	WAS	1	FDP	300	2A8	8.380	19.7	7.97	•	•	Bandi tanan 15
126	WAS	1	FDP	300	2B4	8.470	19. 6	7.9 9			the second like second
127	WAS	1	FDP	300	2B6	8.350	19.6	7.97		•	.9722 BIORN 1994A
128	WAS	1	FDP	400	2A5	8.440	19.8	7.89		•	
129	WAS	1	FDP	400	2A7	8.520	19.8	7.82	NEM 85 YE . 2021 2014	• •	• • • • • • • • • • • • • • • • • • •
130	WAS	1	FDP	400	2B5	8.550	19.7	7.96		•	
131	WAS	1	FDP	400	2B8	8.530	1 9.5	7.89			
132	WAS	1	FDP	50	2A 1	8.240	19.6	7.98		• •	
133	WAS	1	FDP	50	2A12	8.300	19.6	7.96	, , , , , , , , , , , , , , , , , , ,	•	6
134	WAS	1	FDP	50	2B11	8.620	19.4	8.11		члуч мафа 	
135	WAS	1	FDP	50	2B2	8.520	19.6	8.05		# 374	

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD3896_1... 5/7/2014

		,									
n arfatharana .	WAS	2	FDP	0	2A11	8.630	19.2	8.24	*		
137	WAS	2	FDP	0	2A9	8.690	19.2	8.27			
138	WAS	2	FDP	0	2B1	8.590	19.9	8.27		[,	
139	WAS	2	FDP	0	2B7	8.610	19,8	8.26			·
140	WAS	2	FDP	100	2A2	7.960	19.6	8.02			-
141	WAS	2	FDP	100	2A3	8.130	19.4	8.0 0			
142	WAS	2	FDP	10 0	2B12	8.500	19.7	8.20			
143	WAS	2	FDP	100	2B9	8.170	19.6	8.06			1
144	WAS	2	FDP	200	2A10	7.500	19.2	7.93			•
145	WAS	2	FDP	200	2A6	7.600	19.4	7.93		141100-7-7-0 (1 marzona)	
146	WAS	2	FDP	200	2B10	8.220	19.4	8.08			
147	WAS	2	FDP	200	2B3	7.890	19.7	7.98		1	
148	WAS	2	FDP	300	2A4	7.080	19.4	7.85		,	
149	WAS	2	FDP	300	2A8	7.550	19.0	7.91			•
150	WAS	2	FDP	300	2B4	7.380	19.7	7.91			
151	WAS	2	FDP	300	2B6	7.170	19.8	7.86	5		
152	WAS	2	FDP	400	2A5	8.030	19.4	7. 9 1	\$*************************************		
153	WAS	2	FDP	400	2A7	6.770	19.2	7.82	· · ·	(1999) 	· · · · · · · ·
154	WAS	2	FDP	400	2B5	8.120	19.7	7,97	* • •		
165	WAS	2	FDP	400	2B8	8.040	19.7	8.01	60,		. ** 140401110 340
156	WAS	2	FDP	50	2A1	7.840	19.8	8.03			
157	WAS	2	FDP	50	2A12	8.090	19.3	8.04		•	
158	WAS	2	FDP	50	2B11	8,660	19.6	8.23		•	
159	WAS	2	FDP	50	2B2	8.520	19.6	8.18			
160	WAS	3	FDP	0				•	188	133	396
161	WAS	3	FDP	100		and the deal of the sound			188	143	416
162	WAS	3	FDP	2 0 0					1 92	154	435
163	WAS	3	FDP	300				•	188	159	451
164	WAS	3	FDP	4 0 0	1 10000 01 01 100 000 0121	5		-	188	162	471
165	WAS	3	FDP	50	•				190	138	405
166	BLS	0	SDP		•	8.770	19.9	8.32	180	125	376
167	BLS	1	SDP	0	2A6	8.790	19.4	8.02	• •	•	
168	BLS	1	SDP	0	2A8	8.810	1 9.2	8,04		••••••	
169	BLS	1	SDP	0	2B11	8.760	1 9 .5			•	
170	BLS	1	SDP	0	2B9	8.790	19.4	8.05		·····	**************************************
	(n. n. 1		•• •• •• •• •• •{	بمحفق منتح المحتصد الم				нь а асалын и	artina dallaren Marata dalartea e	hannand,	

Page 5 of 19

AEH-11-PSEUDO-02

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD3896_I... 5/7/2014

	BLS	1	SDP	100	2A3	8.790	19.3	7.99		•	
172	BLS	, 1	SDP	100	2A5	8.880	19.3	8.05		•	
173	BLS	1	SDP	100	2B2	8.780	19,4	8.02	•	, w. m	
174	BLS	1	SDP	100	2B7	8.790	19.5	8.03		•	201000.110
175	BLS	1	SDP	200	2A1	8.770	19.6	7.95	•		7 19 27 1 9 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1 937 1
176	BLS	1	SDP	20 0	2A4	8.810	19.3	7.95		•	2
177	BLS	1	SDP	200	2B12	8.790	19.4	7.98	•	•	
178	BLS	1	SDP	200	2B6	8.780	19.4	7.96		•	
179	BLS	1	SDP	300	2A10	8.870	19.2	7.91	•	•	
180	BLS	1	SDP	300	2A11	8.840	19.2	7.91		•••••	
181	BLS	1	SDP	300	2B1	8.780	19.5	7.91	•		
182	BLS	1	SDP	300	2B4	8.770	19.5	7.92	•	1	
183	BLS	1	SDP	400	2A2	8.740	19.6	7.90	**************************************		
184	BLS	1	SDP	400	2A7	8.790	19.3	7.85			
185	BLS	1	SDP	400	2B10	8. 78 3	19.4	7.87	•	•	
186	BLS	1	SDP	400	2B3	8.7 6 0	19.5	7.94	• • • • •		
187	BLS	1	SDP	50	2A12	8.790	19.4	8.07			
188	BLS	1	SDP	50	2A9	8.820	19.3	8.04	•		
189	BLS	1	SDP	50	2B5	8.750	19.6	8.04	•	•	
19 0	BLS	1	SDP	50	2B8	8.760	19.6	8.06	•		
191	BLS	2	SDP	0	2A6	8.340	19.8	8.39	· .		
192	BLS	2	SDP	0	2A8	8.690	19.5	8.43	•		••••••
193	BLS	2	SDP	0	2 B 1 1	8.910	19.8	8.40	аналаган солоон фо 1 1	,	
194	BLS	2	SDP	0	2B9	8.790	19.4	8.38	meesson a da		
195	BLS	2	SDP	100	2A3	7.950	19.9	8.07	•		
196	BLS	2	SDP	1 0 0	2A5	8.780	19.8	8.32	• ·	•	rida (1975-2019)
197	BLS	2	SDP	1 0 0	2B2	8.210	19.8	8.20	· · · · · · · · · · · · · ·		
198	BLS	2	SDP	1 0 0	2B7	7.970	19.9	8.16	· · · · · · · · · · · · ·	•	
199	BLS	2	SDP	200	2A1	7.390	20.1	8.04			44794
200	BLS	2	SDP	200	2A4	7.220	19.9	7.98		•	nn.o. (10040)
201	BLS	2	SDP	200	2B12	7.600	1 9. 9	8.05		,	
202	BLS	2	SDP	200	2B6	7.630	1 9. 9	8.07	•	•	
203	BLS	2	SDP	300	2A10	6.780	19.6	7.97			. W Jan k an e
204	BLS	2	SDP	300	2A11	7.310	19.5	8.05		• • • •	
205	BLS	2	SDP	300	2B1	5.850	19.9	7.84		n or annaich	

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD3896_I... 5/7/2014

SAS Output

	BLS	2	SDP	300	2B4	6.900	19.8	7.97			
207	BLS	2	SDP	400	2A2	7.720	19.9	8.13			
208	BLS	2	SDP	400	2A7	6.060	19.7	7.88			
209	BLS	2	SDP	400	2B10	7.090	19.4	8.00			•
210	BLS	2	SDP	400	2B3	7.830	19.7	8.15	•		• •
2 1 1	BLS	2	SDP	50	2A12	8.640	19.6	8.32			
212	BLS	2	SDP	50	2A9	8.750	19.4	8.33	· · · · ·		
213	BLS	2	SDP	50	2B5	8.620	19.9	8.25	•		
214	BLS	2	SDP	50	2B8	8.870	19.7	8.24			•
215	BLS	3	SDP	0		, ,			184	129	386
216	BLS	3	SDP	100		1	1997-17-981 75 KOMBANIS20		184	140	405
217	BLS	3	SDP	200			nand subscriptions of a second		182	151	407
218	BLS	3	SDP	300	Alig Mindrawijawa Lagy Aporton Ingo				18 4	161	430
219	BLS	3	SDP	400	100	0 uuru ar 1- u-angel 1		b5 ~ #2#1047.#4	182	161	430
220	BLS	3	SDP	50			•		184	136	398
221	FAM	0	SDP			8.500	20.8	7.68	180	126	396
222	FAM	1	SDP	0	1A1	8.650	19.1	8.16			•
223	FAM	1	SDP	0	1 A 7	8.660	19.1	8.13		•	•
224	FAM	1	SDP	0	1B10	8.510	19.1	7.98	•	.	*****
225	FAM	1	SDP	0	1 B5	8.570	19.2	7.98	10.0.1 TEANIN IN 10.1		•
226	FAM	1	SDP	100	1A11	8.560	19. 1	8.07		101 / A VIE 10 100 A 1	
227	FAM	1	SDP	100	1A2	8.530	19.0	8.05			
228	FAM	1	SDP	100	1B11	8.520	19.1	7.98			
229	FAM	1	SDP	100	1B3	8.650	19. 1	8.00		•	
230	FAM	1	SDP	200	1A12	8.580	19.1	8. 0 0			•
231	FAM	1	SDP	200	1A5	8.580	18.9	7.95			
232	FAM	1	SDP	200	1B7	8.640	19.0	7.99		•	
233	FAM	1	SDP	200	1B9	8.520	1 9.1	7.92		•	
234	FAM	1	SDP	300	1A10	8.610	18.8	7.94	•	•	
235	FAM	1	SDP	300	1A4	8.630	18.7	7.95			4 km mm 174 m mar 184
236	FAM	1	SDP	300	1B12	8.640	18.9	7,93	en de Christenskelden	•	
237	FAM	1	SDP	300	1B4	8.620	18.8	7.91		•	
238	FAM	1	SDP	400	1A6	8.510	18.9	8.04		the sector of th	
239	FAM	1	SDP	4 0 0	1 A 8	8.650	19.0	7.97	•		•
240	FAM	1	SDP	400	1B2	8.380	19.1	7.83	•	•	•

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD3896 I... 5/7/2014

SAS Output

Page 8 of 19

FAM 1 SDP 400 188 8.480 19.0 7.80 . 242 FAM 1 SDP 50 1A3 8.580 19.0 8.09 . . 243 FAM 1 SDP 50 1A9 8.630 19.0 8.15 . . 244 FAM 1 SDP 50 1B1 8.410 19.0 7.99 . . 244 FAM 1 SDP 50 1B6 8.570 19.1 8.04 . . 246 FAM 2 SDP 0 1A1 8.30 19.1 8.27 . . . 248 FAM 2 SDP 0 1B10 8.610 19.3 8.33 . . . 249 FAM 2 SDP 0 1B1 8.900 19.2 8.13 	
243 FAM 1 SDP 50 1A9 8.630 19.0 8.15 . . 244 FAM 1 SDP 50 1B1 8.410 19.2 7.99 . 245 FAM 1 SDP 50 1B6 8.570 19.1 8.04 . 246 FAM 2 SDP 0 1A1 8.830 19.1 8.04 . . 247 FAM 2 SDP 0 1A7 8.910 18.7 8.31 . . 248 FAM 2 SDP 0 1B10 8.610 19.3 8.33 . . . 249 FAM 2 SDP 0 1B15 8.700 19.2 8.19 .<	
244 FAM 1 SDP 50 1B1 8.410 19.2 7.99 . . 245 FAM 1 SDP 50 1B6 8.570 19.1 8.04 . 246 FAM 2 SDP 0 1A1 8.830 19.1 8.27 . . 247 FAM 2 SDP 0 1A7 8.910 18.7 8.31 . . 248 FAM 2 SDP 0 1B10 8.610 19.3 8.33 . . 249 FAM 2 SDP 0 1B15 8.720 19.2 8.35 . . 250 FAM 2 SDP 100 1A11 8.390 19.2 8.19 . . 251 FAM 2 SDP 100 1B1 8.500 19.2 8.14 . . 252 FAM 2 SDP 100 1B3 8.250 19.2 8.14 . . 253 </th <th></th>	
245 FAM 1 SDP 50 1B6 8.570 19.1 8.04 . 246 FAM 2 SDP 0 1A1 8.830 19.1 8.27 . . 247 FAM 2 SDP 0 1A7 8.910 18.7 8.31 . . 248 FAM 2 SDP 0 1B10 8.610 19.3 8.33 . . 249 FAM 2 SDP 0 1B5 8.720 19.2 8.35 . . 250 FAM 2 SDP 100 1A11 8.300 19.2 8.19 . . 251 FAM 2 SDP 100 1A2 8.300 19.0 8.14 . . . 252 FAM 2 SDP 100 1B3 8.250 19.2 8.14 253 FAM 2 SDP 200 1A5 8.490 18.5 8.17 .	
246 FAM 2 SDP 0 1A1 8.830 19.1 8.27 . . 247 FAM 2 SDP 0 1A7 8.910 18.7 8.31 . . 248 FAM 2 SDP 0 1B10 8.610 19.3 8.33 . . . 249 FAM 2 SDP 0 1B5 8.720 19.2 8.35 . . . 250 FAM 2 SDP 100 1A11 8.390 19.2 8.19 . . . 251 FAM 2 SDP 100 1A12 8.300 19.2 8.14 . . . 252 FAM 2 SDP 100 1B3 8.250 19.2 8.14 . . 253 FAM 2 SDP 200 1A12 8.060 19.3 8.13 . . <th>•</th>	•
247 FAM 2 SDP 0 1A7 8.910 18.7 8.31 248 FAM 2 SDP 0 1B10 8.610 19.3 8.33 249 FAM 2 SDP 0 1B5 8.720 19.2 8.35 250 FAM 2 SDP 100 1A11 8.390 19.2 8.19 251 FAM 2 SDP 100 1A12 8.300 19.0 8.14 252 FAM 2 SDP 100 1B11 8.500 19.2 8.23 252 FAM 2 SDP 100 1B13 8.250 19.2 8.14 252 FAM 2 SDP 100 1B3 8.250 19.2 8.14 253 FAM 2 SDP 200 1A12 8.060 19.3 8.13 255 FAM 2 SDP 200 1B7<	
248 FAM 2 SDP 0 1B10 8.610 19.3 8.33 . . 249 FAM 2 SDP 0 1B5 8.720 19.2 8.35 . . 250 FAM 2 SDP 100 1A11 8.390 19.2 8.19 . . 251 FAM 2 SDP 100 1A2 8.300 19.2 8.19 . . 252 FAM 2 SDP 100 1B11 8.500 19.2 8.14 . 253 FAM 2 SDP 100 1B3 8.250 19.2 8.14 . 254 FAM 2 SDP 200 1A12 8.060 19.3 8.13 . . 255 FAM 2 SDP 200 1A5 8.490 18.5 8.17 . . 256 FAM 2 SDP	660
250 FAM 2 SDP 100 1A11 8.390 19.2 8.19 . . 251 FAM 2 SDP 100 1A2 8.300 19.0 8.14 . 252 FAM 2 SDP 100 1B11 8.500 19.2 8.23 . . 253 FAM 2 SDP 100 1B3 8.250 19.2 8.14 . . 254 FAM 2 SDP 100 1B3 8.250 19.2 8.14 . . 254 FAM 2 SDP 200 1A12 8.060 19.3 8.13 . . 255 FAM 2 SDP 200 1A5 8.490 18.5 8.17 . . 256 FAM 2 SDP 200 1B7 7.810 19.0 7.99 . . 257 FAM 2 SDP 300 1A10 6.580 19.2 7.82 . .	• • • • • • •
250 FAM 2 SDP 100 1A11 8.390 19.2 8.19 . . 251 FAM 2 SDP 100 1A2 8.300 19.0 8.14 . 252 FAM 2 SDP 100 1B11 8.500 19.2 8.23 . . 253 FAM 2 SDP 100 1B3 8.250 19.2 8.14 . . 254 FAM 2 SDP 100 1B3 8.250 19.2 8.14 . . 254 FAM 2 SDP 200 1A12 8.060 19.3 8.13 . . 255 FAM 2 SDP 200 1A5 8.490 18.5 8.17 . . 256 FAM 2 SDP 200 1B7 7.810 19.0 7.99 . . 257 FAM 2 SDP 300 1A10 6.580 19.2 7.82 . .	• • • • • • • • • • • • • • • • • • •
252 FAM 2 SDP 100 1B11 8.500 19.2 8.23 . 253 FAM 2 SDP 100 1B3 8.250 19.2 8.14 . 254 FAM 2 SDP 200 1A12 8.060 19.3 8.13 . 255 FAM 2 SDP 200 1A5 8.490 18.5 8.17 . 256 FAM 2 SDP 200 1B7 7.810 19.0 7.99 . . 256 FAM 2 SDP 200 1B7 7.810 19.0 7.99 . . 257 FAM 2 SDP 200 1B9 6.940 19.3 7.95 . . 258 FAM 2 SDP 300 1A10 6.580 19.2 7.82 . . 259 FAM 2 SDP 300 1B12 7.450 18.7 7.81 . . 260 FAM 2	•
253 FAM 2 SDP 100 1B3 8.250 19.2 8.14 . 254 FAM 2 SDP 200 1A12 8.060 19.3 8.13 . . 255 FAM 2 SDP 200 1A5 8.490 18.5 8.17 . . 256 FAM 2 SDP 200 1B7 7.810 19.0 7.99 . . 256 FAM 2 SDP 200 1B7 7.810 19.0 7.99 . . 257 FAM 2 SDP 200 1B9 6.940 19.3 7.95 . . 258 FAM 2 SDP 300 1A10 6.580 19.2 7.82 . . 259 FAM 2 SDP 300 1A44 6.520 18.7 7.81 . . 260 FAM 2 SDP 300 1B12 7.450 19.4 8.03 . .	•
254 FAM 2 SDP 200 1A12 8.060 19.3 8.13 . . 255 FAM 2 SDP 200 1A5 8.490 18.5 8.17 . . 256 FAM 2 SDP 200 1B7 7.810 19.0 7.99 . . 256 FAM 2 SDP 200 1B7 7.810 19.0 7.99 . . 257 FAM 2 SDP 200 1B9 6.940 19.3 7.95 . . 258 FAM 2 SDP 300 1A10 6.580 19.2 7.82 . . 259 FAM 2 SDP 300 1A44 6.520 18.7 7.81 . . 260 FAM 2 SDP 300 1B12 7.450 19.4 8.03 . . 261 FAM	
255 FAM 2 SDP 200 1A5 8.490 18.5 8.17 . . 256 FAM 2 SDP 200 1B7 7.810 19.0 7.99 . . 257 FAM 2 SDP 200 1B9 6.940 19.3 7.95 . . 258 FAM 2 SDP 300 1A10 6.580 19.2 7.82 . . 259 FAM 2 SDP 300 1A44 6.520 18.7 7.81 . . 260 FAM 2 SDP 300 1B12 7.450 19.4 8.03 . . 260 FAM 2 SDP 300 1B44 6.960 19.2 7.92 . . 261 FAM 2 SDP 300 1B46 8.120 18.5 8.12 . .	•
256 FAM 2 SDP 200 1B7 7.810 19.0 7.99 . . 257 FAM 2 SDP 200 1B9 6.940 19.3 7.95 . . 258 FAM 2 SDP 300 1A10 6.580 19.2 7.82 . . 259 FAM 2 SDP 300 1A4 6.520 18.7 7.81 . . 260 FAM 2 SDP 300 1A4 6.520 18.7 7.81 . . 260 FAM 2 SDP 300 1B12 7.450 19.4 8.03 . . 261 FAM 2 SDP 300 1B4 6.960 19.2 7.92 . . 262 FAM 2 SDP 400 1A6 8.120 18.5 8.12 . .	s to etas nomes taena 1
257 FAM 2 SDP 200 1B9 6.940 19.3 7.95 . . 258 FAM 2 SDP 300 1A10 6.580 19.2 7.82 . . 259 FAM 2 SDP 300 1A40 6.520 18.7 7.81 . . 260 FAM 2 SDP 300 1B12 7.450 19.4 8.03 . . 260 FAM 2 SDP 300 1B12 7.450 19.4 8.03 . . 261 FAM 2 SDP 300 1B4 6.960 19.2 7.92 . . 261 FAM 2 SDP 400 1A6 8.120 18.5 8.12 . .	•
258 FAM 2 SDP 300 1A10 6.580 19.2 7.82 . . 259 FAM 2 SDP 300 1A4 6.520 18.7 7.81 . . 260 FAM 2 SDP 300 1B12 7.450 19.4 8.03 . . 261 FAM 2 SDP 300 1B4 6.960 19.2 7.92 . . 261 FAM 2 SDP 300 1B4 6.960 19.2 7.92 . . 261 FAM 2 SDP 400 1A6 8.120 18.5 8.12 . .	•
259 FAM 2 SDP 300 1A4 6.520 18.7 7.81 . . 260 FAM 2 SDP 300 1B12 7.450 19.4 8.03 . . 261 FAM 2 SDP 300 1B4 6.960 19.2 7.92 . . 262 FAM 2 SDP 400 1A6 8.120 18.5 8.12 . .	•
260 FAM 2 SDP 300 1B12 7.450 19.4 8.03 . . 261 FAM 2 SDP 300 1B4 6.960 19.2 7.92 . . 262 FAM 2 SDP 400 1A6 8.120 18.5 8.12 . .	•
261 FAM 2 SDP 300 1B4 6.960 19.2 7.92 . . 262 FAM 2 SDP 400 1A6 8.120 18.5 8.12 . .	
262 FAM 2 SDP 400 1A6 8.120 18.5 8.12	•
	•
202 FAM 0 200 400 400 2010 400 701	•
263 FAM 2 SDP 400 1A8 6.310 19.0 7.81	-
264 FAM 2 SDP 400 1B2 7.710 19.2 8.08 .	-
265 FAM 2 SDP 400 1B8 6.020 19.1 7.83	
266 FAM 2 SDP 50 1A3 8.520 19.0 8.18 . . .	
267 FAM 2 SDP 50 1A9 8.760 19.0 8.28	
268 FAM 2 SDP 50 1B1 8.240 19.4 8.15 . .	
269 FAM 2 SDP 50 1B6 8.610 19.2 8.25	-
270 FAM 3 SDP 0	395
271 FAM 3 SDP 100 196 143	417
272 FAM 3 SDP 200 . . 198 156	439
273 FAM 3 SDP 300	455
274 FAM 3 SDP 400 180 160	456
275 FAM 3 SDP 50	415

 $file:///C:/Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD3896_I,... 5/7/2014$

	HGE	0	SDP			8,790	20.5	8.22	174	128	370
277	HGE	1	SDP	0	1A1	8.360	19.6	8.13	•		•
278	HGE	1	SDP	0	1A8	8,590	19.5	8.23	•		
279	HGE	1	SDP	0	1B1	8.550	19.5	8.19	•	•••••	•
280	HGE	1	SDP	0	1B8	8.550	19.5	8.21			•
281	HGE	1	SDP	100	1A3	8.510	19.8	8.21			
282	HGE	1	SDP	1 00	1A9	8.500	19.7	8.15	•		
283	HGE	1	SDP	100	1B3	8.590	19.7	8.16		a na 101 014	
284	HGE	1	SDP	100	1B9	8.580	19.7	8.20			•
285	HGE	1	SDP	200	1A11	8.440	19.9	8.10		1	
286	HGE	1	SDP	200	1A4	8.480	19.9	8.09	•	,	• • • • • • • • • • •
287	HGE	1	SDP	200	1B2	8.510	19.8	8.07	• • • • •		
288	HGE	1	SDP	200	1B5	8.5 0 0	19.7	8.11			
289	HGE	1	SDP	300	1A12	8.450	19.8	8.11			
290	HGE	1	SDP	300	1A2	8.510	19.7	8.13	•		•
291	HGE		SDP	300	1B12	8.540	19.8	8.04		• 4-1	•
292	HGE	1	SDP	300	1B6	8.580	19.7	8.07		• •	
293	HGE	1	SDP	400	1A5	8.570	19.9	8.08	•	Are, u 4972.30-4, A	
294	HGE	1	SDP	400	1A7	8.480	20.1	8.06			
295	HGE	1	SDP	400	1B11	8.520	20.0	8.05		•	•
296	HGE	1	SDP	400	1B7	8.530	19.9	8.03		•	••• •••••
297	HGE	1	SDP	50	1A10	8.530	19.9	8.14			
298	HGE	1	SDP	50	1A6	8.560	19.8	8.18	aar ar meannar d	•	- 50-00-00-00 (MARLING -
299	HGE	1	SDP	50	1B 1 0	8,450	19.7	8.16			
300	HGE	1	SDP	50	1B4	8.390	19.6	8.14	•		
301	HGE	2	SDP	0	1A1	8.400	20.1	8.36			
302	HGE	2	SDP	0	1 A 8	8.420	20.1	8.39			
303	HGE	2	SDP	0	1B1	8.440	20.1	8.38			
304	HGE	2	SDP	0	1B8	8.490	20.0	8.40	•		•
305	HGE	2	SDP	100	1A3	8.200	20. 0	8.26		• • • • •	• • • • • • • • • • •
306	HGE	2	SDP	100	1A9	7.960	20.1	8.21		•	
307	HGE	2	SDP	100	1B3	7.900	20.0	8.22			
308	HGE	2	SDP	100	1B9	8.100	20.0	8.30			
309	HGE	2	SDP	200	1A11	6.940	20.2	7.91	1947.X.X.MANAR	······	
310	HGE	2		200	1A4	7.590		8.06	1.44. Aut 2004 for 3.44		

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD3896_1... 5/7/2014

SAS Output

Page 10 of 19

	HGE	2	SDP	200	1B2	6.840	20.0	7.93			
312	HGE	2	SDP	200	1B5	7.510	20.0	8.04		1	
313	HGE	2	SDP	300	1A12	7.520	20.2	8.05	4	(
314	HGE	2	SDP	300	1A2	6.890	20.0	7.83	hange steen some of		
315	HGE	2	SDP	300	1B12	6.130	20,4	7.81			10 - 10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
316	HGE	2	SDP	300	1B6	7.110	20.0	7.89			
317	HGE	2	SDP	400	1A5	7.690	20.0	8.06			-
318	HGE	2	SDP	400	1A7	7.880	20.0	8.14		· · ·	
319	HGE	2	SDP	400	1B11	7.080	20.2	7.98			
320	HGE	2	SDP	400	1B7	7.240	20.0	7.97		• • • • • • • •	
321	HGE	2	SDP	50	1A10	8.170	20.1	8.25			
322	HGE	2	SDP	50	1A6	8,110	20.0	8,28	•		
323	HGE	2	SDP	50	1B10	8.020	20.1	8.19		5-manun e re-mane	
324	HGE	2	SDP	50	1B4	7.900	20.0	8.10		•	
325	HGE	3	SDP	0	**************************************	- · · · ·			176	13 0	365
326	HGE	3	SDP	1 0 0					180	140	382
327	HGE	3	SDP	2 0 0				-	180	145	398
328	HGE	3	SDP	3 0 0	•		• • • •		178	148	410
329	HGE	3	SDP	400				alita por esta de la consecta de la	178	149	408
3 30	HGE	3	SDP	50					178	133	375
3 31	PPB	0	SDP			8.330	20.7	8.10	172	128	372
332	PPB	1	SDP	٥	1A1	8.540	20.1	8.31	,	,	
333	PPB	1	SDP	0	1A3	8.740	19.8	8.38	,	•	
334	PPB	1	SDP	0	1B10	8.760	19.8	8.37			1 - 200 A A A A A A A A A A A A A A A A A A
335	PPB	1	SDP	0	1B9	8.800	19.6	8.36			n ar an an 1717 anns a'
336	PPB	1	SDP	100	1A6	8.780	19.5	8.33	,		
337	PPB	1	SDP	100	1A7	8.710	19.7	8.31			
338	PPB	1	SDP	100	1B5	8.740	19.7	8.32			•
339	PPB	1	SDP	100	1B7	8.800	19.5	8.34			
340	PPB	1	SDP	200	1A11	8.750	19.8	8.30	•	. [
341	PPB	1	SDP	200	1A5	8.790	19.6	8.29			
342	PPB	1	SDP	200	1B12	8.650	19.8	8.29		•	
343	PPB	1	SDP	200	1B6	8.800	19.6	8.31	•		
344	PPB	1	SDP	300	1A12	8.510	19.8	8.25		•	
345	PPB	1	SDP	300	1A9	8.790	19.5	8.34			,

AEH-11-PSEUDO-02

 $file:///C:/Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD3896_I... 5/7/2014$

	PPB	1	SDP	300	1B 1 1	8.760	19.7	8.30			an indian
347	PPB	1	SDP	3 0 0	1B2	8.770	19.6	8.29			
348	PPB	1	SDP	400	1A2	8.790	19.6	8.37			
349	PPB	1	SDP	400	1A4	8.720	19,7	8.28		•	
350	PPB	1	SDP	400	1B1	8.630	19.6	8.26	÷	•	
351	PPB	1	SDP	400	1B4	8.780	19,6	8.31			
352	PPB	1	SDP	50	1A10	8.750	19.7	8.36	•	1	(1. 1 1. 1. 1. 1.
353	PPB	1	SDP	50	1A8	8,740	19.7	8.34			
354	РРВ	1	SDP	50	1B3	8.730	19.6	8.36			
355	РРВ	1	SDP	50	1B8	8.790	19.6	8.36		nijeno vener zmana mez	
356	PPB	2	SDP	0	1A1	8 .59 0	20.0	8.28	1999 - 1997 - 197 (r. 1997) -	ninensenuer als car 2014	oon, op aan
357	PPB	2	SDP	0	1A3	8.830	19.9	8.35		90+140-10-10+A1	
358	PPB	2	SDP	0	1B10	8.670	19.9	8.32	*	yeren aranan da	*********
359	PPB	2	SDP	0	1B9	8.680	19.8	8.34			
360	PPB	2	SDP	100	1A6	7.450	19.6	8.00			
361	PPB	2	SDP	100	1A7	8.410	19.6	8.25			nde in orderen om
362	PPB	2	SDP	100	1B5	8.210	19.7	8.20	•		
363	РРВ	2	SDP	100	1B7	8.320	19.7	8.22	•		
364	РРВ	2	SDP	200	1A11	7.490	19.9	8.01		(mr.warn.m.m.m.)	8. 19. 1. 1. 8 (18 "robus 1 0
365	PPB	2	SDP	200	1A5	7.360	19.7	7.96	Station and the state of the st		a
366	PPB	2	SDP	200	1B12	6.990	20.2	7.96		*****	
367	PPB	2	SDP	20 0	1B6	7.470	19.7	8.03	Sarana a contrata ta	(100-11-10-007-00-000)	
368	PPB	2	SDP	3 0 0	1A12	7.910	20.0	8.13		Control of the second	
369	PPB	2	SDP	300	1A9	7.410	19.8	7.98	dan ar 1646 m. ret ar - an		
370	PPB	2	SDP	300	1B11	7.330	19.9	8.02			
371	PPB	2	SDP	300	1B2	6.850	19.7	7.97			
372	PPB	2	SDP	400	1A2	8.280	19.9	8.19	1	*** *** *** ***	
373	PPB	2	SDP	400	1A4	6,700	19.8	7.88		•	
374	PPB	2	SDP	400	1B1	7.290	19.7	8.00		•	**** BAL DO T
375	PPB	2	SDP	400	1B4	7.370	19.7	7.99		•	9 YO LEVE OF COMES AND
376	PPB	2	SDP	50	1A10	8.200	19.9	8.21			
377	РРВ	2	SDP	50	1A8	8.550	19.8	8.31			anatoro-ne anna a
378	PPB	2	SDP	50	1B3	8.460	19.7	8.29		1 / - 1 - 10100 - 1	n na 1246 na 1946 na 1946 n
379	PPB	2	SDP	50	1B8	8.410	19.8	8.29		,,	
380	PPB	3	SDP	0	(178	131	37

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD3896_I.,. 5/7/2014

,	PPB	3	SDP	100				184	139	378
382	PPB	3	SDP	200		· · · · · · · · · · · · · · · · · · ·	•	 181	146	382
383	PPB	3	SDP	300				182	152	385
384	PPB	3	SDP	400	1			 180	157	389
385	PPB	3	SDP	50				178	133	381

Performed by K. Weber SAS version 9.4 10:41 07MAY14 W

AEH-11-PSEUDO-02

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD3896_I... 5/7/2014

Pre-exposure Period Water Chemistry Means by Species and Formulation Analyzes dissolved oxygen, temperature, pH, hardness, alkalinity, and conductivity

The MEANS Procedure

AEH-11-PSEUDO-02

form=FDP

sps	N Obs	Variable	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	
HIC	1	do	8.3300		8.3300	8.3300	n Min Min Y die Worden haars word as daal te die daalbegengen	
		temp	21.0000		21.0000	21.0000		
		ph	8.2100		8.2100	8.2100	•	
		hard	172.0		172.0	172.0	•	
		alk	118.0		118. 0	118.0		
		cond	374.0		374.0	374.0		•
MUC	1	do	8.7700		8.7700	8.7700	na an an an an an an an an an an an an a	an Landar ann an Landar a' La Ann Ann an
	1	temp	20.6000		20.6000	20,6000	,	
		ph	8.2400		8.2400	8.240 0	•	
		hard	179.0	,	179.0	179.0		
		alk	130.0		130.0	130.0	,	
		cond	371.0		371.0	371.0	•	
WAS	1	do	8.7000		8.7000	8.7000		
		temp	20.1000		20.1000	20.1000	-	,
		ph	8.2000		8.2000	8.2000		
		hard	178.0		178.0	178.0		
		alk	125.0		125.0	125.0		
		cond	387.0		387.0	387.0	,	

form=SDP

sps	N Obs	Variable	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	
BLS	1	do	8.7700	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.7700	8.7700		
		temp	19.9000		19.9000	19.9000		
		ph	8.3200		8.3200	8.3200		
		hard	180.0		180.0	180.0		
		alk	125.0		125,0	125.0		
		cond	376.0		376.0	376.0		
FAM	1	do	8.5000		8.5000	8,5000	an an an an an an an an an an an an an a	TALL STATE OF A PLANT AND A STATE
		temp	20.8000		20.8000	20.8000		
		ph	7.6800		7.6800	7.6800		
		hard	180.0		180.0	180.0		
		alk	126.0		126.0	126.0		
		cond	396.0		396.0	396.0		
HGE	1	do	8.7900		8.7900	8.7900		
		temp	20.5000		20.5000	20.5000		
		ph	8.2200		8.2200	8.2200		
		hard	174.0		174.0	174.0		
		alk	128.0		128.0	128.0		

file:///C:/Uscrs/klwcbcr/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD3896 I... 5/7/2014

SAS Output

			cond	370.0	-	370.0	370.0		•
P	PB	1	do	8.3300		8.3300	8.3300	•••••••••••••••••••••••••••••••••••••••	-
			temp	20.7000		20.7000	20.7000		
ł			ph	8.1000		8.1000	8.1000		
			hard	172.0		172.0	172.0		
			alk	128.0		128.0	128.0		
			cond	372.0		372.0	372.0	,	

Performed by K. Weber SAS version 9.4 10:41 07MAY14 \bigvee

AEH-11-PSEUDO-02

file:///C:/Users/klweber/AppData/Local/Tcmp/1/SAS%20Temporary%20Files/_TD3896_I... 5/7/2014

Exposure Period Water Chemistry Means by Species and Formulation Only dissolved oxygen, pH, and temperature measured

The MEANS Procedure

form=FDP

sps	conc	N Obs	Variable	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mear
HIC	0	8	do ph temp	8.6000 8.2750 19.2250	0.1882 0.0588 0.9498	8.3900 8.2000 18.2000	8.9800 8.3500 20.2000	8.4426 8.2258 18.4309	8.7574 8.3242 20.0191
	100	8	do ph temp	7.8638 8.1563 19.2250	0.9186 0.0414 0.8892	6.4100 8.0600 18.3000	8.5400 8.2000 20.2000	7.0957 8.1217 18.4816	8.6318 8.1908 19.9684
	200	8	do ph temp	7.9925 8.1500 19.2000	0.7610 0.0472 0.8864	6.3900 8.0800 18.3000	8,5500 8,2100 20,1000	7.3563 8.1105 18.4589	8.6287 8.1895 19.9411
	3 0 0	8	do ph temp	7.3725 8.0463 19.1250	1.2095 0.0558 0.8481	5.8600 7.9500 18.2000	8.5600 8.1100 20.1000	6.3613 7.9996 18.4160	8.3837 8.0929 19.8340
	400	8	do ph temp	7.7013 8.0125 19.2750	1.0293 0.0301 0.9146	6.0300 7.9700 18.3000	8.4900 8.0600 20.2000	6.8407 7.9873 18.5104	8.5618 8.0377 20.0396
	50	8	do ph temp	8.2525 8.2225 19.2500	0.2899 0.0311 0.8652	7.6900 8.1900 18.2000	8.5500 8.2700 20.1000	8.0102 8.1965 18.5267	8.4948 8.2485 19.9733
MUC	0	8	do ph temp	8.6538 8.2175 19.1125	0.2830 0.0908 0.7918	8.3100 8.1200 18.2000	8.9700 8.3500 20.1000	8.4172 8.1416 18.4505	8.8903 8.2934 19.7745
	100	8	do ph temp	8.5463 8.1963 19.1250	0.1807 0.0748 0.6798	8.3300 8.0900 18.3000	8.7900 8.3000 19.8000	8.3952 8.1337 18.5567	8.6973 8.2588 19.6933
	200	8	do ph temp	8.3800 8,1188 19.1500	0.0962 0.0564 0.5529	8.2300 8.0400 18.4000	8.4900 8.2300 19.7000	8.2996 8.0716 18.6878	8.4604 8.1659 19.6122
r never of states in the second second	300	8	do ph temp	8.1575 8.0563 19.1250	0.3844 0.0453 0.6274	7.2900 7.9800 18.4000	8.4300 8.1200 19.8000	7.8362 8.0183 18.6005	8.4788 8.0942 19.6495
	400	8	do ph temp	8.0175 7.9688 19.0000	0.4284 0.0264 0.6803	7.4500 7.9300 18.3000	8.4600 8.0100 19.8000	7.6593 7.9467 18.4312	8.3757 7.9908 19.5688
	50	8	do ph temp	8.5100 8.1850 19.1250	0.1494 0.0513 0.7555	8.3700 8.1400 18.2000	8.7600 8.2600 20.1000	8.3851 8.1421 18.4934	8.6349 8.2279 19.7566

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD3896_1... 5/7/2014

WAS	0	8	do ph temp	8.4825 8.1688 19.6250	0.2386 0.1019 0.2765	8.1000 8.0500 19.2000	8.6900 8.2700 19.9000	8.2830 8.0836 19.3939	8.6820 8.2539 19.8561
	100	8	do ph temp	8.2688 8.0550 19.7375	0.2099 0.0697 0.2134	7.9600 7.9900 19.4000	8.5400 8.2000 20.0000	8.0932 7.9967 19.5591	8.4443 8.1133 19.9159
	200	8	do ph temp	8.0863 7.9925 19.6000	0.3901 0.0531 0.2449	7.5000 7.9300 19.2000	8.5500 8.0800 19.9000	7.7602 7.9481 19.3952	8,4123 8.0369 19.8048
	300	8	do ph temp	7.8463 7.9263 19.5625	0.6063 0.0524 0.2560	7.0800 7.8500 19.0000	8.4700 7.9900 19.8000	7.3394 7.8825 19.3485	8.3531 7.9700 19.7765
	400	8	do ph temp	8.1250 7.9088 19.6000	0.5919 0.0688 0.2138	6.7700 7.8200 19.2000	8.5500 8.0100 19.8000	7.6302 7.8513 19.4213	8.6198 7.9662 19.7787
	50	8	do ph temp	8.3488 8.0725 19.5625	0.2851 0.0944 0.1506	7.8400 7.9600 19.3000	8.6600 8.2300 19.8000	8.1104 7.9936 19.4366	8.5871 8.1514 19.6884

form=SDP

sps	conc	N Obs	Variable	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean
BLS	0	8	do ph temp	8.7350 8.2213 19.5000	0.1707 0.1919 0.2070	8.3400 8.0200 19.2000	8.9100 8.4300 19.8000	8.5923 8.0608 19.3269	8.8777 8.3817 19.6731
	100	8	do ph temp	8.5188 8.1050 19.6125	0.4025 0.1125 0.2642	7.9500 7.9900 19.3000	8.8800 8.3200 19.9000	8.1822 8.0109 19.3916	8.8553 8.1991 19.8334
	200	8	do ph temp	8.1238 7.9975 19.6875	0.7208 0.0483 0.2997	7.2200 7.9500 19.3000	8.8100 8.0700 20.1000	7.5212 7.9571 19.4369	8.7263 8.0379 19.9381
	300	8	do ph temp	7.7625 7.9350 19.5250	1.1958 0.0619 0.2493	5.8500 7.8400 19.2000	8.8700 8.0500 19.9000	6.7628 7.8833 19.3166	8.7622 7.9867 19.7334
	400	8	do ph temp	7.9716 7.9650 19.5625	1.0039 0.1177 0.1996	6.0600 7.8500 19.3000	8.7900 8.1500 19.9000	7.1323 7.8666 19.3957	8.8109 8.0634 19.7293
	50	8	do ph temp	8.7500 8.1688 19.5625	0.0845 0.1283 0.1923	8.6200 8.0400 19.3000	8.8700 8.3300 19.9000	8.6793 8.0615 19.4018	8.8207 8.2760 19.7232
FAM	0	8	do ph temp	8.6825 8.1888 19.1000	0.1332 0.1506 0.1773	8.5100 7.9800 18.7000	8.9100 8.3500 19.3000	8.5712 8.0629 18.9518	8.7938 8.3146 19.2482
	100	8	do ph	8.4625 8.1000	0.1367 0.0894	8.2500 7.9800	8.6500 8.2300	8.3482 8.0252	8.5768 8.1748

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD3896 1... 5/7/2014

			temp	19.1125	0.0835	19.0000	19.2000	19.0427	19.1823
	200	8	do ph temp	8.2025 8.0125 19.0250	0.5890 0.0896 0.2550	6.9400 7.9200 18.5000	8.6400 8.1700 19.3000	7.7101 7.9376 18.8119	8.6949 8.0874 19.2381
	300	8	do ph temp	7.7513 7.9138 18.9625	0.9753 0.0711 0.2669	6.5200 7.8100 18.7000	8.6400 8.0300 19.4000	6.9359 7.8543 18.7393	8.5666 7.9732 19. 1 857
	40 0	8	do ph temp	7.7725 7.9350 18.9750	1.0364 0.1328 0.2121	6.0200 7.8000 18.5000	8.6500 8.1200 19.2000	6.9061 7.8240 18.7977	8.6389 8.0460 19.1523
	50	8	do ph temp	8.5400 8.1413 19.1125	0.1564 0.0989 0.1458	8.2400 7.9900 19.0000	8.7600 8.2800 19.4000	8.4093 8.0586 18.9906	8.6707 8.2239 19.2344
HGE	0	8	do ph temp	8.4750 8.2863 19.8000	0.0826 0.1073 0.2976	8.3600 8.1300 19.5000	8.5900 8.4000 20,1000	8.4059 8.1965 19.5512	8.544 8.3760 20.0488
	100	8	do ph temp	8.2925 8.2138 19.8750	0.2858 0.0490 0.1669	7.9000 8.1500 19.7000	8.5900 8.3000 20.1000	8.0536 8.1728 19.7355	8.5314 8.2547 20.0145
6 . 8 00. 1 00 10 10	200	8	do ph temp	7.8513 8.0388 19.9375	0.7206 0.0768 0.1506	6.8400 7.9100 19.7000	8.5100 8.1100 20.2000	7.2488 7.9745 19.8116	8.4537 8.1030 20.0634
	300	8	do ph temp	7.7163 7.9913 19.9500	0.9410 0.1279 0.2507	6.1300 7.8100 19.7000	8.5800 8.1300 20.4000	6.9296 7.8843 19.7404	8.5029 8.0982 20.1596
	400	8	do ph temp	7.9988 8.0463 20.0125	0.6142 0.0545 0.0991	7.0800 7.9700 19.9000	8.5700 8.1400 20.2000	7.4852 8.0007 19.9296	8.5123 8.0918 20.0954
	50	8	do ph temp	8.2663 8.1800 19.9000	0.2488 0.0598 0.1852	7.9000 8.1000 19.6000	8.5600 8.2800 20.1000	8.0582 8.1300 19.7452	8.4743 8.2300 20.0548
PP B	0	8	do ph temp	8.7013 8.3388 19.8625	0.1008 0.0336 0.1506	8.5400 8.2800 19.6000	8.8300 8.3800 20.1000	8.6170 8.3107 19.7366	8.7855 8.3668 19.9884
	100	8	do ph temp	8.4275 8.2463 19.6250	0.4559 0.1126 0.0886	7.4500 8.0000 19.5000	8.8000 8.3400 19.7000	8.0463 8.1521 19.5509	8.8087 8.3404 19.6991
	200	8	do ph temp	8.0375 8.1438 19.7875	0.7754 0.1661 0.1959	6.9900 7.9600 19.6000	8.8000 8.3100 20.2000	7.3893 8.0049 19.6237	8.6857 8.2826 19.9513
	300	8	do ph temp	8.0412 8.1600 19.7500	0.7717 0.1540 0.1604	6.8500 7.9700 19.5000	8.7900 8.3400 20.0000	7.3961 8.0313 19.6159	8.6864 8.2887 19.8841
	400	8	do ph	8.0700 8.1600	0.8262 0.1792	6.7000 7.8800	8.7900 8.3700	7.3793 8.0102	8.7607 8.3098

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD3896_I... 5/7/2014

SAS Output

Page 18 of 19

AEH-11-PSEUDO-02

		temp	19.7000	0.1069	19.6000	19.9000	19.6106	19.7894
50	8	do	8.5788	0.2103	8.2000	8.7900	8.4029	8.7546
		ph	8.3150	0.0521	8.2100	8.3600	8.2714	8.3586
 		temp	19.7250	0.1035	19.6000	19.9000	19.6385	19.8115

Performed by K. Weber SAS version 9.4 10:41 07MAY14

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD3896_I... 5/7/2014

384

Exposure Termination Period Water Chemistry Means Only hardness, alkalinity, and conductivity measured

The MEANS Procedure

form≖FDP

sps	N Obs	Variable	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	
HIC	6	hard	180.2	3,6009	176.0	184.0	176.4	183.9
		alk	147.0	14.8459	128.0	163.0	131.4	162.6
	: ; ;	cond	427.3	35.2004	389.0	470 .0	390.4	464.3
MUC	6	hard	178.8	2 .7142	176.0	184.0	176.0	181.7
		alk	14 9 .0	14.5327	129.0	166.0	133.7	164.3
		cond	444.3	36.8492	397.0	486.0	405.7	483.0
WAS	6	hard	189.0	1.6733	188.0	192.0	187.2	190.8
		alk	148.2	11.8561	133.0	162.0	135.7	160.6
		cond	429.0	28.6984	396.0	471.0	398.9	459,1

form=SDP

sps	N Obs	Variable	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean
BLS	6	hard alk cond	183.3 146.3 409.3	13.4114	182.0 129.0 386.0		182.2 132.3 390.8	184.4 160.4 427.8
FAM	6	hard alk cond	192.0 148.3 429.5	6.5727 12.0775 24.4929	180.0 131.0 395.0	198.0 160.0 456.0	185.1 135.7 403.8	198.9 161.0 455.2
HGE	6	hard alk cond	178.3 140.8 389.7	1.5055 7.9352 18.4463	176.0 130.0 365.0	180.0 149.0 410.0	176.8 132.5 370.3	179.9 149.2 409.0
PPB	6	hard alk cond	180.5 143.0 381.8	2.3452 10.4499 4.7081	178.0 131.0 376.0	157.0	178.0 132.0 376.9	183.0 154.0 386.8

Performed by K. Weber SAS version 9.4 10:41 07MAY14 \mathcal{W}^{μ}

.

FF #)
Item No.	đ
Pg_19	of <u>19</u>

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD3896_I... 5/7/2014

```
DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
FOOTNOTE1 'Performed by K. Weber SAS version' &SYSVER &SYSTIME &SYSDATE;
options ls=97 ps=57 formdlim='-' pageno = 1 nocenter nodate nosource2;
title1 h=2 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels fr(
title2 h=2 'Statistical analysis of exposure period water chemistry';
title3 h=2 'SAS v. 9.4 Analysis Completion Date: 07MAY2014 Analysis prepared by: KLW';
/***************************
* SAS ver 9.4 Analysis prepared by: KLW 🕼
                                                                AEH-11-PSEUDO-02
* Analysis completion date: 07MAY14
* Variable Names:
* sps = three letter code for mussel species
          BLS = Black sandshell (Ligumia recta)
*
          FAM = Fatmucket (Lampsilis siliquoidea)
*
          WAS = Washboard (Megalonaias nervosa)
          HGE = Higgins eye (Lampsilis higginsii)
          PPB = Plain pocketbook (Lapsilis cardium)
          HIC = Hickorynut (Obovaria olivaria)
          MUC = Mucket (Actinonaias ligamentina)
* time = water sampling time
          0 = Pre-exposure
          1 = Time 1 during exposure
          2 = Time 2 during exposure
          3 = Exposure termination
* form = formulation (FDP [freeze dried powder] vs. SDP [spray dried powder])
* conc = concentration (in mg/L)
          0 = control (0 mg/L)
4
          50 = 50 mg/L active ingredient
          100 = 100 mg/L active ingredient
          200 = 200 mg/L active ingredient
          300 = 300 mg/L active ingredient
          400 = 300 \text{ mg/L} heat deative
* id = exposure chamber ID
          i.e., 3A5 = \text{test} system (1, 2 or 3), Block ID (A or B), and Position in Block (1 - 12)
* do = dissolved oxygen (mg/L)
* temp = temperautre (C)
* pH = pH
* hard = hardness (mg/L CaCO3)
* alk = alkalinity (mg/L CaCO3)
* cond = conductivity (uS/cm2) temperature compensate to 25C
data exp_water_chem; set Pseudo02.exp_water chem;
   disso = do + 0;
      drop do;
                                                                 FF #_10
      rename disso = do;
                                                                 Item No.
   tempy = temp + 0;
                                                                 Pg 1
      drop temp;
      rename tempy = temp;
   pHval = pH + 0;
      drop pH;
```

```
rename pHval = ph;
    hardy = hard + 0;
        drop hard;
        rename hardy = hard;
    alky = alk + 0;
        drop alk;
        rename alky = alk;
    condy = cond + 0;
        drop cond;
        rename condy = cond;
                                                                         AEH-11-PSEUDO-02
proc sort data=exp_water_chem; by form sps time conc id; run;
proc print data=exp_water_chem; run;
data pre_exp; set exp_water_chem;
    If time ne O then delete;
    run;
                                                                           2 1 AX 2 214
data exp; set exp_water_chem;
    If time <1 then delete;
    If time >2 then delete;
    run;
data post; set exp_water_chem;
    If time ne 3 then delete;
    run;
title1 h=2 'Pre-exposure Period Water Chemistry Means by Species and Formulation';
title2 h=2 'Analyzes dissolved oxygen, temporature, pH, hardness, alkalinity, and conductivity';
proc means data = pre__exp mean std min max clm fw=8;
by form;
class sps;
var do temp ph hard alk cond;
run;
title1 h=2 'Exposure Period Water Chemistry Means by Species and Formulation';
title2 h=2 'Only dissolved oxygen, pH, and temperature measured';
proc means data = exp mean std min max clm fw=8;
by form;
class sps conc;
var do ph temp;
run;
title1 h=2 'Exposure Termination Period Water Chemistry Means';
title2 h=2 'Only hardness, alkalinity, and conductivity measured';
proc means data = post mean std min max clm fw=8;
by form;
class sps;
var hard alk cond;
run;
                                                                         Item No.
```

2

```
DM 'LOG; CLEAR; OUTPUT; CLEAR; '; * CLEAR LOG AND OUTPUT;
1
2
з
     FOOTNOTE1 'Performed by K. Weber SAS version' &SYSVER &SYSTIME &SYSDATE;
WARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
4
     options ls=97 ps=57 formdlim='-' pageno = 1 nocenter nodate nosource2;
5
6
7
     title1 h=2 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile
7 ! mussels from seven different unionid species';
8
     title2 h=2 'Statistical analysis of exposure period water chemistry';
     title3 h=2 'SAS v. 9.4 Analysis Completion Date: 07MAY2014 Analysis prepared by: KLW';
9
    10
                  Analysis prepared by: KLW
    * SAS ver 9.4
11
                                               1m
12
    * Analysis completion date: 07MAY14
                                                                   AEH-11-PSEUDO-02
13
     ******
14
     /***********
                   15
15 ! **********
     * Variable Names:
16
16 !
               *
17
    * sps = three letter code for mussel species
17 1
18 *
               BLS = Black sandshell (Ligumia recta)
18 !
19 *
               FAM = Fatmucket (Lampsilis siliquoidea)
19 |
20
               WAS = Washboard (Megalonaias nervosa)
20 1
               HGE = Higgins eye (Lampsilis higginsii)
21
21 !
22
               PPB = Plain pocketbook (Lapsilis cardium)
22 |
23
               HIC = Hickorynut (Obovaria olivaria)
23 1
               MUC = Mucket (Actinonaias ligamentina)
24
24 1
25 * time = water sampling time
25 1
               *
26 *
               0 = Pre-exposure
26 L
27 *
               1 = Time 1 during exposure
27 |
28
               2 = Time 2 during exposure
28 1
29
               3 = Exposure termination
29 1
30 * form = formulation (FDP [freeze dried powder] vs. SDP [spray dried powder])
30 !
31 * conc = concentration (in mg/L)
31 1
32
               0 = \text{control} (0 \text{ mg/L})
                                                                FF# 10
32 !
                                                                <u>item No. 식</u>
33
               50 = 50 \text{ mg/L} active ingredient
                                                                       of 4
                                                                Pq
33 1
34
               100 = 100 mg/L active ingredient
34 !
```

```
388
```

35 * 200 = 200 mg/L active ingredient 35 1 36 * 300 = 300 mg/L active ingredient 36 I * 37 * 400 = 300 mg/L heat deative 37 ! * 38 * id = exposure chamber ID 38 ! 39 * i.e., 3A5 = test system (1, 2 or 3), Block ID (A or B), and Position in Block (1 39 1 - 12) 40 * do = dissolved oxygen (mg/L) 40 ! 41 * temp = temperautre (C) 41 ! AEH-11-PSEUDO-02 42 * pH = pH 42 1 * 43 * hard = hardness (mg/L CaCO3) * 43 ! 44 * alk = alkalinity (mg/L CaCO3) 44 ! * 45 * cond = conductivity (uS/cm2) temperature compensate to 25C 45 ! * 46 46 ! **********/ 47 48 data exp_water_chem; set Pseudo02.exp_water_chem; 49 disso = do + 0;50 drop do; 51 rename disso = do; tempy = temp + 0;52 53 drop temp; 54 rename tempy = temp; pHval = pH + 0;55 56 drop pH; 57 rename pHval = ph; 58 hardy = hard + 0; 59 drop hard; 60 rename hardy = hard; 61 alky = alk + 0;62 drop alk; 63 rename alky = alk; 64 condy = cond + 0; 65 drop cond; 66 rename condy = cond; 67 68 NOTE: Missing values were generated as a result of performing an operation on missing values. Each place is given by: (Number of times) at (Line):(Column). 336 at 58:18 336 at 61:16 336 at 64:18 42 at 49:16 42 at 52:18 42 at 55:16 NOTE: There were 385 observations read from the data set PSEUD002.EXP_WATER_CHEM. NOTE: The data set WORK.EXP_WATER_CHEM has 385 observations and 11 variables. NOTE: DATA statement used (Total process time): real time 0.03 seconds cpu time 0.03 seconds

Page _ 2_ of _ 4___

69 proc sort data=exp_water_chem; by form sps time conc id; run; NOTE: There were 385 observations read from the data set WORK.EXP WATER CHEM. NOTE: The data set WORK.EXP_WATER_CHEM has 385 observations and 11 variables. NOTE: PROCEDURE SORT used (Total process time): real time 0.00 seconds 0.00 seconds cpu time AEH-11-PSEUDO-02 proc print data=exp_water_chem; run; 70 NOTE: Writing HTML Body file: sashtml.htm NOTE: There were 385 observations read from the data set WORK.EXP_WATER_CHEM. NOTE: PROCEDURE PRINT used (Total process time): 1.78 seconds real time cpu time 0.60 seconds 71 72 data pre_exp; set exp water chem; 73 If time ne O then delete; 74 run; NOTE: There were 385 observations read from the data set WORK.EXP_WATER CHEM. NOTE: The data set WORK.PRE_EXP has 7 observations and 11 variables. NOTE: DATA statement used (Total process time): real time 0.00 seconds cpu time 0.00 seconds 75 76 data exp; set exp_water_chem; 77 If time <1 then delete; 78 If time >2 then delete; 79 run; NOTE: There were 385 observations read from the data set WORK.EXP_WATER_CHEM. NOTE: The data set WORK.EXP has 336 observations and 11 variables. NOTE: DATA statement used (Total process time): 0.00 seconds real time cpu time 0.00 seconds 80 81 data post; set exp_water chem; 82 If time ne 3 then delete; 83 run; NOTE: There were 385 observations read from the data set WORK.EXP WATER CHEM. NOTE: The data set WORK.POST has 42 observations and 11 variables. NOTE: DATA statement used (Total process time): real time 0.00 seconds Page 3 of 4 cpu time 0.01 seconds

84 85 title1 h=2 'Pre-exposure Period Water Chemistry Means by Species and Formulation'; 86 title2 h=2 'Analyzes dissolved oxygen, temperature, pH, hardness, alkalinity, and 86 ! conductivity'; 87 proc means data = pre_exp mean std min max clm fw=8; 88 by form; class sps; 89 90 var do temp ph hard alk cond; AEH-11-PSEUDO-02 91 run; NOTE: There were 7 observations read from the data set WORK.PRE_EXP. NOTE: PROCEDURE MEANS used (Total process time): real time 0.06 seconds cpu time 0.03 seconds 92 93 title1 h=2 'Exposure Period Water Chemistry Means by Species and Formulation'; 94 title2 h=2 'Only dissolved oxygen, pH, and temperature measured'; 95 proc means data = exp mean std min max clm fw=8; 96 by form; 97 class sps conc; 98 var do ph temp; 99 run; NOTE: There were 336 observations read from the data set WORK.EXP. NOTE: PROCEDURE MEANS used (Total process time): real time 0.12 seconds opu time 0.11 seconds 100 101 title1 h=2 'Exposure Termination Period Water Chemistry Means'; 102 title2 h=2 'Only hardness, alkalinity, and conductivity measured'; 103 proc means data = post mean std min max clm fw=8; 104 by form; 105 class sps; 106 var hard alk cond; 107 run; NOTE: There were 42 observations read from the data set WORK.POST. NOTE: PROCEDURE MEANS used (Total process time): real time 0.05 seconds AND ON ON Day cpu time 0.03 seconds

FF # 10 Item No. Pg <u>4</u> of <u>4</u>

Study Number: AEH-11-PSEUDO-02	Action	Date	Initials
Data Source: File Folders: 10c, 10c2, 10d, 10h	Created	1-May-14	KLW KW
Water Quality Forms: 2, 2a, 3a, LTRMP Reports	Revised	19-Nov-14	KLW W
	Reviewed	19NOV14	IN
	Certified.,.		1,

File Name: h\AEH-11-PSEUDO-02\Data\[PSEUDO-02 Water Chem for SAS.xlsx]Ammonla

Total Ammonia Nitrogen

Scientific Name	Commor Name	Abbreviation	Formulation Type	Test Article Lot Number	Exposure Date	Assessment Date
Obovaria olivaria	Hickorynut	HIC	FDP	110510FD	12-Ju -11	20-Jul-11
Actinonaias ligamentina	Mucket	MUC	FDP	110510FD	14-Jul-11	22-Ju -11
Megalonaias nervosa	Washboard	WAS	FDP	110928FD	13-Dec-11	21-Dec-11
Lampsilis siliquoidea	Fatmucket	FAM	SDP	MBI-401 SDP 4655-12-Mix	27-Jan-12	4-Feb-12
Ligumia recta	Black sandsheli	BLS	SDP	TR4669-4-(7-8) 2nd shipment	17-Apr-12	25-Apr-12
Lampsilis cardium	Plain pocketbook	PPB	SDP	TR4669-4-(5)	16-May-12	24-May-12
Lampsilis higginsii	Higgins eye	HGE	SOP	TR4669-4-(S)	26 May 12	3 Jun 12

Data codes used within SAS

sps = Juvenile mussel species (see 3 letter abbreviation codes above)

time = Sample time 0 = Pre-exposure 1 = Dosing initiation 6 = 6 h post dosing Initiation 12 = 12 h post dosing initiation 24 = 24 h post dosing initiation 25 = Weekly from holding period form = Product formulation FDP = Freeze dried powder SDP = Spray dried powder conc = Concentration (mg/L) 0 = Control (no product added) 50 = 50 mg/L active ingredient 100 = 100 mg/L active ingredient 200 = 200 mg/L active ingredient 300 = 300 mg/L active ingredient 400 = 300 mg/L deactive ingredient id = Exposure chamber ID i.e., 1A2 = Test system (1, 2, or 3), Block ID (A or 8), and Position in Block (1:12) temp = Temperature (in ° C) pH≑pH tan = Total ammonia nitrogen (in mg NH₃-N/L)

Data Explanation

Water chemistry data analyses were limited to simple descriptive statistics (Proc Means) using SAS Version 9.4.

Data Anomalies and Deviations NONE

sps	time	form	conc	id	ph	temp	tan	
BLS	0	SDP	•		8.32	20.2	0.078	
BLS	6	SDP	200	2A1	8.19	20.5	0.138	
BLS	6	SDP	300	2A10	8.22	20.0	0.155	
BLS	6	SDP	300	2A11	8.22	19.9	0.159	AEH-11-PSEUDO-02
BLS	6	SDP	50	2A12	8.28	20.1	0.062	
BLS	6	SDP	400	2A2	8,17	20.1	0.167	
BLS	6	SDP	100	2A3	8.20	20.2	0.091	
BLS	6	SDP	200	2A4	8.16	20.1	0.115	
BLS	6	SDP	100	2A5	8.28	20.0	0.083	
BLS	6	SDP	0	2A6	8.29	20.1	0.035	
BLS	6	SDP	400	2A7	8.11	20.1	0.159	
BLS	6	SDP	0	2A8	8.27	20.1	0.045	
BLS	6	SDP	50	2A9	8.29	20.1	0.058	
BLS	6	SDP	300	2B1	8.20	20.1	0.161	
BLS	6	SDP	400	2B10	8.18	19.4	0.154	
BLS	6	SDP	0	2B11	8.29	19.8	0.041	
BLS	6	SDP	200	2B12	8.21	20.0	0.107	
BLS	6	SDP	100	2B2	8.19	20.0	0.100	
BLS	6	SDP	400	2B3	8.21	19.8	0.164	
BLS	6	SDP	300	2B4	8.16	19.7	0.164	
BLS	6	SDP	50 ⁻	2B5	8.27	19.8	0.054	
BLS	6	SDP	200	2B6	8.14	19.8	0.134	
BLS	6	SDP	10 0	2B7	8.20	19.8	0.076	
BLS	6	SDP	50	2B8	8.26	19.6	0.057	
BLS	6	SDP	0	2B9	8.28	19.4	0.047	
BLS	12	SDP	200	2A1	7.89	18.6	0.080	
BLS	12	SDP	300	2A10	8.00	17.5	0.103	
BLS	12	SDP	300	2A11	8.06	17.4	0.139	
BLS	12	SDP	50	2A12	8.15	17.6	0.057	
BLS	12	SDP	400	2A2	7.87	18.4	0.082	
BLS	12	SDP	100	2A3	7.94	18.4	0.042	
BLS	12	SDP	200	2 A4	7.89	18.2	0.044	
BLS	12	SDP	100	2A5	8.17	18.1	0.038	
BLS	12	SDP	0	2A6	8.30	18.1	0.046	
BLŞ	12	SDP	400	2A7	7.71	17.9	0.076	
BLS	12	SDP	0	2A8	8.27	17.7	0,054	
BLS	12	SDP	50	2A9	8.13	17.6	0.040	
BLS	12	SDP	300	2B1	7.97	17.8	0.119	
BLS	12	SDP	400	2B10	7.81	17.7	0.068	
BLS	12	SDP	0	2B11	8.30	17.9	0.049	
BLS	12	SDP	200	2B12	8.04	18.0	0.059	
BLS	12	SDP	100	2B2	8.01	17.9	0.056	
BLS	12	SDP	400	2B3	7.89	17.8	0.030	
BLS	12	SDP	300	2B3	7.94	17.8	0.114	
BLS	12	SDP	50	2B5	8.11	17.9	0.035	
BLS	12	SDP	200	286	7.87	18.0	0.062	• 0 · · ·
	-	·				0	0.502	Page <u>2</u> of <u>13</u>

BLS	12	SDP	100	2B7	7.97	17.9	0.043	
BLS	12	SDP	50	2B8	8.14	17.9	0.050	
BLS	12	SDP	0	2B9	8.28	17.6	0.042	
BLS	24	SDP	200	2A1	8.04	20.1	4.918	
BLS	24	SDP	300	2A10	7.97	19.6	4.078	AEH-11-PSEUDO-02
BLS	24	SDP	300	2A11	8.05	19.5	4.967	
BLS	24	SDP	50	2A12	8.32	19.6	0.201	
BLS	24	SDP	40 0	2A2	8.13	19.9	5.153	
BLS	24	SDP	100	2A3	8.07	19.9	1.292	
BLS	24	SDP	20 0	2A4	7.98	19.9	3.782	
BLS	24	SDP	10 0	2A5	8.32	19.8	1.969	
BLS	24	SDP	0	2A6	8.39	19.8	0.064	
BLS	24	SDP	40 0	2A7	7.88	19.7	5.010	
BLS	24	SDP	0	2A8	8.43	19.5	0.084	
BLS	24	SDP	50	2A9	8.33	19.4	0.175	
BLS	24	SDP	300	2B1	7.84	19.9	4.234	
BLS	24	SDP	400	2B10	8.00	19.4	4.911	
BLS	24	SDP	0	2B11	8.40	19.8	0.058	
BLS	24	SDP	200	2B12	8.05	19.9	0.458	
BLS	24	SDP	100	282	8.20	19.8	3.928	
BLS	24	SDP	400	2B3	8.15	19.7	4.871	
BLS	24	SDP	300	2 B 4	7.97	19.8	3.778	
BLS	24	SDP	50	2B5	8.25	19.9	0.178	
BLS	24	SDP	200	2B6	8.07	19. 9	3.381	
BLS	24	SDP	100	2B7	8,16	19.9	1.453	
BLS	24	SDP	50	2B8	8.24	19.7	0.217	
BLS	24	SDP	0	2B9	8,38	19.4	0.060	
BLS	25	SDP			8.31	20.1	0.053	
FAM	0	SDP	•	•	7.89	20.8	0.182	
FAM	6	SDP	0	1A1	8.30	19. 4	0.137	
FAM	6	SDP	300	1A10	8.09	19.5	0.719	
FAM	6	SDP	100	1A11	8.20	19.5	0.403	
FAM	6	SDP	200	1A12	8.15	19.5	0.619	
FAM	6	SDP	100	1A2	8.17	19.3	0.242	
FAM	6	SDP	50	1A3	8,22	19.3	0.186	
FAM	6	SDP	300	1A4	8.12	19.1	0.753	
FAM	6	SDP	200	1A5	8.25	18.8	0.582	
FAM	6	SDP	4 0 0	1A6	8.22	18 .8	0.698	
FAM	6	SDP	0	1A7	8.30	19.1	0.082	
FAM	6	SDP	400	1A8	8.17	19.1	0.665	
FAM	6	SDP	50	1A9	8.28	19.3	0.203	
FAM	6	SDP	50	1B1	8.19	19.5	0.162	
FAM	6	SDP	0	1B10	8.32	19.5	0.077	
FAM	6	SDP	100	1811	8.27	19.4	0.252	
FAM	6	SDP	300	1B12	8.20	19.7	0.751	
FAM	6	SDP	400	1B2	8.34	19.3	0.698	
FAM	6	SDP	100	1B3	8.24	19.4	0.242	Page <u>3</u> of <u>13</u>

FAM	6	SDP	300	1B4	8.12	19.4	0.774	
FAM	6	SDP	0	185	8.34	19.4	0 .0 8 4	
FAM	6	SDP	50	186	8.26	1 9 .3	0.14 9	
FAM	6	SDP	200	1B7	8.24	19.1	0.566	
FAM	6	SDP	400	188	8.12	19.3	0.798	
FAM	6	SDP	200	1B9	8.15	19.4	0.569	
FAM	12	SDP	0	1A1	8,38	19.6	0.068	AEH-11-PSEUDO-02
FAM	12	SDP	300	1A10	7,85	19.8	0.672	
FAM	12	SDP	100	1A11	8.04	19.8	0.066	
FAM	12	SDP	200	1A12	7.87	19.9	0.419	
FAM	12	SDP	100	1A2	8.01	19.6	0.052	
FAM	12	SDP	50	1A3	8.11	19.5	0.064	
FAM	12	SDP	300	1A4	7.85	19.4	0.735	
FAM	12	S DP	200	1A5	8.13	19.1	0.406	
FAM	12	SDP	400	1A6	8.05	19.0	0.661	
FAM	12	SDP	0	1A7	8.38	19.4	0.049	
FAM	12	SDP	400	1A8	7.87	19.6	0.677	
FAM	12	SDP	50	1A9	8.27	19.6	0.135	
FAM	12	SDP	50	1B1	8.12	19.9	0.098	
FAM	12	SDP	0	1B10	8.35	19.8	0.089	
FAM	12	SDP	100	1B11	8.18	19.7	0.165	
FAM	12	SDP	300	1 B12	7.97	20.0	0.880	
FAM	12	SDP	400	1B2	7.83	19.7	0.813	
FAM	12	SDP	100	1B3	8.05	19.8	0.059	
FAM	12	SDP	3 0 0	1 B4	7.81	19.8	0.828	
FAM	12	SDP	0	1B5	8.38	1 9.8	0.060	
FAM	12	SDP	50	1B6	8.20	19.7	0.058	
FAM	12	SDP	200	1B7	8.02	19.5	0.217	
FAM	12	SDP	400	1B8	7,73	19.7	1.025	
FAM	12	SDP	200	1B 9	7.81	19.8	0.567	
FAM	24	SDP	0	1A1	8.27	19.1	0.063	
FAM	24	SDP	300	1A10	7.82	19.2	4.034	
FAM	24	SDP	100	1A11	8.19	19.2	1.618	
FAM	24	SDP	200	1A12	8.13	19.3	3.360	
FAM	24	SDP	100	1A2	8.14	19.0	1.352	
FAM	24	SDP	50	1A3	8.18	19.0	0.750	
FAM	24	SDP	300	1A4	7.81	18.7	3.348	
FAM	24	SDP	200	1A5	8.17	18.5	3.170	
FAM	24	SDP	400	1A6	8.12	18.5	3.664	
FAM	24	SDP	0	1A7	8.31	18,7	0.050	
FAM	24	SDP	400	1A8	7.81	19.0	5.135	
FAM	24	SDP	50	1A9	8.28	1 9 .0	0.504	
FAM	24	SDP	50	1B1	8,15	19,4	0.749	
FAM	24	SDP	0	1B10	8,33	19.3	0.103	
FAM	24	SDP	100	1B11	8.23	19.2	1.400 、	
FAM	24	SDP	300	1B12	8.03	19.4	5.037	·
FAM	24	SDP	400	182	8.08	19.2	3.759	Page <u>4</u> of <u>1</u> 3

FAM	24	SDP	100	1B 3	8.14	19.2	1.509	
FAM	24	SDP	300	1B4	7.92	19.2	4.510	
FAM	24	SDP	0	1B5	8.35	19.2	0.088	
FAM	24	SDP	50	1B6	8.25	19.2	0.866	
FAM	24	SDP	200	1B7	7.99	19 .0	2,569	
FAM	24	SDP	400	1B8	7.83	19 .1	4.041	
FAM	24	SDP	200	1B9	7.95	19.3	3.520	AEH-11-PSE
FAM	25	SDP			8.03	20.5	0.094	
HGE	0	SDP	•		8.22	20.5	0.056	
HGE	6	SDP	0	1A1	8.33	20.0	0.019	
HGE	6	SDP	50	1A10	8.28	20.0	0.068	
HGE	6	SDP	200	1A11	8.23	20.1	0.167	
HGE	6	SDP	300	1A12	8.26	20.1	0.188	
HGE	6	SDP	300	1A2	8.27	19.9	0.226	
HGE	6	SDP	100	1A3	8.29	19.9	0.111	
HGE	6	SDP	200	1A4	8.24	20.0	0.154	
HGE	6	SDP	400	1A5	8.21	19.8	0.235	
HGE	6	SDP	50	1A6	8.29	19.8	0.073	
HGE	6	SDP	400	1A7	8.22	19.9	0.205	
HGE	6	SDP	0	1A8	8.38	19.8	0.028	
HGE	6	SDP	100	1A9	8.25	19.9	0.056	
HGE	6	SDP	0	1 B1	8.37	19.7	0.022	
HGE	6	SDP	50	1B10	8.20	20.0	0.170	
HGE	6	SDP	400	1 B1 1	8.19	20.1	0.175	
HGE	6	SDP	300	1B12	8.17	20.3	0.255	
HGE	6	SDP	200	182	8.23	19.9	0.151	
HGE	6	SDP	100	1B3	8.29	19.8	0.096	
HGE	6	SDP	50	1B4	8,25	19.8	0.032	
HGE	6	SDP	200	1B5	8.25	19.9	0.170	
HGE	6	SDP	300	1B6	8.25	19.9	0.189	
HGE	6	SDP	400	187	8.15	19.8	0.216	
HGE	6	SDP	0	1 B 8	8.37	19.8	0 .032	
HGE	6	SDP	100	1 B 9	8.32	19.9	0.099	
HGE	12	SDP	0	1A1	8.36	20.1	0 .0 31	
HGE	12	SDP	50	1A10	8.08	20.2	0 .0 65	
HGE	12	SDP	200	1A11	7.85	20.2	0.159	
HGE	12	SDP	300	1A12	8.01	20.3	0.158	
HGE	12	SDP	300	1A2	7.98	20.1	0.282	
HGE	12	SDP	100	1A3	8.04	20.1	0.065	
HGE	12	SDP	200	1A4	7.96	20.1	0.086	
HGE	12	SDP	400	1A5	7.88	19.9	0.347	
HGE	12	SDP	50	1A6	8.07	20.0	0.050	
HGE	12	SDP	400	1A7	7.94	20.0	0.186	
HGE	12	SDP	0	1A8	8,40	20.1	0.017	
HGE	12	SDP	100	1A9	7.95	20.2	0.066	
HGE	12	SDP	0	1.B1	8.40	20.1	0.013	Page <u>5</u>
HGE	12	SDP	50	1 B1 0	7.87	20.2	0.027	· ugo <u></u>

0.013 0.027 Page <u>5</u> of <u>3</u>

HGE	12	SDP	400	1 B1 1	7.76	20.3	0.087	
HGE	12	SDP	300	1B12	7.71	20.5	0.439	
HGE	12	SDP	200	1B2	7.83	20.0	0.129	
HGE	12	SDP	100	1B3	8,00	20.1	0.161	
HGE	12	SDP	50	1B4	8.12	20.1	0.099	
HGE	12	SDP	200	1B5	7.82	20.1	0.389	
HGE	12	SDP	300	186	8.03	20.1	0.178	AEH-11-PSEUDO-02
HGE	12	SDP	400	1B7	7.73	20,1	0.492	
HGE	12	SDP	0	18 8	8.40	20.0	0.024	
HGE	12	SDP	100	189	8.07	20.1	0.207	
HGE	24	SDP	0	1A1	8.36	20.1	0.056	
HGE	24	SDP	50	1A10	8.25	20.1	0.290	
HGE	24	SDP	200	1A11	7.91	20.2	2.247	
HGE	24	SDP	300	1A12	8.05	20.2	3.462	
HGE	24	SDP	300	1A2	7.83	20.0	2.739	
HGE	. 24	SDP	100	1A3	8.26	20.0	1,590	
HGE	24	SDP	200	1A4	8.06	20.0	1.882	
HGE	24	SDP	400	1A5	8.06	20.0	3.955	
HGE	24	SDP	50	1A6	8.28	20.0	0.272	
HGE	24	SDP	400	1A7	8.14	20.0	2.901	
HGE	24	SDP	0	1A8	8,39	20.1	0.062	
HGE	24	SDP	100	1A9	8.21	20.1	0.411	
HGE	24	SDP	0	1B1	8.38	20,1	0.056	
HGE	24	SDP	50	1B10	8.19	20.1	0.203	
HGE	24	SDP	400	1B11	7.98	20.2	3.631	
HGE	24	SDP	300	1812	7.81	20.4	2.283	
HGE	24	SDP	200	1B2	7.93	20.0	1.826	
HGE HGE	24 24	SDP	100	1B3	8.22	20.0	1.449	
HGE	24 24	SDP SDP	50	1B4	8.10	20.0	0.064	
HGE	24	SDP	200 300	1B5 1B6	8,04	20.0	2.925	
HGE	24	SDP SDP	40 0	1B0 1B7	7,89 7.97	20.0 20.0	1.516 3.613	
HGE	24	SDP	400 0	187	8.40	20.0 20.0	0.058	
HGE	24	SDP	100	189	8.30	20.0 20.0	1.418	
HGE	25	SDP	100		8.28	20.0	0.057	
HIC	0	FDP	·		8.35	20.9	0.040	
HIC	1	FDP	Ō		8.18	20.1	0.022	
HIC	1	FDP	50		8.11	20.2	0.033	
HIC	1	FDP	100		8.06	20.3	0.045	
HIC	1	FDP	200		7.99	20.3	0.069	
HIC	1	FDP	300		7.91	20.3	0.104	
HIC	1	FDP	400		7.91	20.3	0.096	
HIC	6	FDP	200	1A1	8.33	19,0	0.109	
HIC	6	FDP	400	1A10	8.30	19.2	0.094	
HIC	6	FDP	200	1A11	8,35	19.2	0.084	
HIC	6	FDP	300	1A12	8.23	19.3	0.154	Page <u>6</u> of <u>13</u>
HIC	6	FDP	0	1A2	8.39	19.0	0.013	

HIC	6	FDP	300	1A3	8.30	19.0	0.140	
HIC	6	FDP	50	1A4	8.35	19.0	0.063	
HIC	6	FDP	0	1A5	8.40	19.0	0.015	
HIC	6	FDP	100	1A6	8.35	19 .0	0.054	
HIC	6	FDP	50	1A7	8.35	19.1	0,031	
HIC	6	FDP	400	1A8	8.31	19.2	0.088	
HIC	6	FDP	100	1A9	8.34	19.2	0.062	AEH-11-PSEUDO-02
HIC	6	FDP	300	1B1	8.27	19.0	0.139	
HIC	6	FDP	100	1810	8.34	19.0	0.054	
HIC	6	FDP	50	1B11	8.36	19.1	0.034	
HIC	6	FDP	0	1B12	8.38	19.3	0.021	
HIC	6	FDP	0	1B2	8.40	19.0	0.016	
HIC	6	FDP	100	1B3	8.30	19.0	0.036	
HIC	6	FDP	300	1B4	8.27	19.0	0.305	
HIC	6	FDP	200	1B5	8.34	19.0	0.093	
HIC	6	FDP	400	1B6	8.29	19.1	0.082	
HIC	6	FDP	400	1B7	8.30	19.1	0.083	
HIC	6	FDP	200	1B8	8.32	19.2	0.098	
HIC	6	FDP	50	1B9	8.36	19.1	0.039	
HIC	12	FDP	200	1A1	8.11	18.3	0.508	
HIC	12	FDP	400	1A10	8.03	18.8	0.068	
HIC	12	FDP	200	1A11	8.15	18.7	0.151	
HIC	12	FDP	300	1A12	7.88	18.7	0.466	
HIC	12	FDP	Ó	1A2	8.26	18.3	0.017	
HIC	12	FDP	300	1A3	7.98	18.3	0.324	
HIC	12	FDP	50	1A4	8.21	18.3	0.206	
HIC	12	FDP	0	1A5	8.34	18.3	0.012	
HIC	12	FDP	100	1A6	8.15	18.3	0.068	
HIC	12	FDP	50	1A7	8.17	18.5	0.131	
HIC	12	FDP	400	1A8	7.95	18.6	0.117	
HIC	12	FDP	100	1A9	8.09	18.6	0.129	
HIC	12	FDP	300	1B1	7.95	18.4	0.325	
HIC	12	FDP	100	1B10	8.10	18.4	0.071	
HIC	12	FDP	50	1B11	8,21	18.5	0.076	
HIC	1.2	FDP	0	1B12	8.34	18.7	0.033	
HIC	12	FDP	0	182	8.36	18.2	0.022	
HIC	12	FDP	100	163	8.08	18.3	0.022	
HIC	12	FDP	300	184	7.93	18.3	0.353	
HIC	12	FDP	200	1B5	8.12	18.3	0.066	
HIC	12	FDP	400	1B6	7.81	18,4	0.064	
HIC	12	FDP	400	1B7	7.90	18.4	0.064	
HIC	12	FDP	200	1B8	8.12	18.4	0.008	
HIC	12	FDP	50	1 B9	8.18	18.4	0.079	
HIC	24	FDP	200	1A1	8.21	18.3	8.313	
HIC	24	FDP	400	1A10	8.00	18.5	11.630	Page <u>7</u> of 13
HIC	24	FDP	200	1A11	8.17	18.5	8.181	
HIC	24	FDP	300	1A12	8.03	18.7	11.500	

HIC	24	FDP	0	1A2	8.30	18.3	0.017	
HIC	24	FDP	300	1A3	8.04	18.2	11,244	
HIC	24	FDP	50	1A4	8.26	18.2	1.210	
HIC	24	FDP	0	1A5	8.33	18.2	0.012	
HIC	24	FDP	100	1A 6	8,17	18.3	3.657	
HIC	24	FDP	5 0	1A7	8.22	18.5	1.174	
HIC	24	FD₽	400	1A8	8.00	18.6	11.780	
HIC	24	FDP	100	1A9	8.17	18.5	3.714	AEH-11-PSEUDO-02
HIC	24	FDP	300	1B1	7.99	18.2	9.028	
HIC	24	FDP	100	1B10	8.16	18.5	3.130	
HIC	24	FDP	50	1B11	8.27	18.6	1.352	
HIC	24	FDP	0	1B12	8.33	18.7	0.010	
HIC	24	FDP	0	182	8.35	18.2	0.022	
HIC	24	FDP	100	1B3	8.06	18.3	3.511	
HIC	24	FDP	300	1B4	7,95	18.3	10.235	
HIC	24	FDP	200	1B5	8.08	18.3	6,744	
HIC	24	FDP	400	1 B6	8.02	18.3	11.906	
HIC	24	FDP	400	1B7	7.97	18.3	11,304	
HIC	24	FDP	200	188	8.14	18.4	7.968	
HIC	24	FDP	50	189	8.24	18.5	1.302	
HIC	25	FDP			8.29	19.3	0.100	
MUC	0	FDP			8.28	19.6	0.080	
MUC	1	FDP	0		8.09	20.2	0.011	
MUC	1	FDP	50		8.04	20.1	0.022	
MUC	1	FDP	100		8.01	19.9	0.033	
MUC	1	FDP	200		7.94	19.8	0.057	
MUC	1	FDP	300		7.89	19.9	0.083	
MUC	1	FDP	40 0		7.78	19,9	0.080	
MUC	6	FDP	20 0	2A1	8.25	19.1	0.106	
MUC	6	FDP	50	2A10	8.31	18.3	0.058	
MUC	6	FDP	0	2A11	8.32	18.3	0.021	
MUC	6	FDP	400	2A12	8.23	18,3	0.100	
MUC	6	FDP	300	2A2	8.27	18.8	0,151	
MUC	6	FDP	50	2A3	8.33	18.8	0.042	
MUC	6	FDP	0	2A4	8.30	18.8	0.018	
MUC	6	FDP	200	2A5	8.30	18.7	0.110	
MUC	6	FDP	100	2A6	8.16	18.6	0.225	
MUC	6	FDP	100	2A7	8.34	18.6	0.061	
MUC	6	FDP	400	2A8	8.20	18.6	0.105	
MUC	6	FDP	300	2A9	8.26	18.4	0.187	
MUC	6	FDP	400	2B1	8.26	18,4	0,087	
MUC	6	FDP	0	2B10	8.36	18.2	0.018	Page <u>8</u> of <u>13</u>
MUC	6	FDP	200	2B11	8.28	18.3	0.109	
MUC	6	FDP	200	2B12	8.24	18.5	0.103	
MUC	6	FDP	300	2B2	8.29	18.3	0.138	
MUC	6	FDP	100	2B3	8.36	18.3	0.075	
MUC	6	FDP	300	2B4	8.26	18,4	0.150	

MUC	6	FDP	50	2B5	8.31	18.5	0.080	
MUC	6	FDP	400	2B6	8.27	18.4	0.093	
MUC	6	FDP	0	2B7	8.35	18.4	0.017	
MUC	6	FDP	100	2B8	8.30	18.3	0.061	
MUC	6	FDP	50	2B9	8.32	18.2	0.043	
MUC	12	FDP	200	2A1	8.00	18.8	0.435	
MUC	12	FDP	50	2A10	8.15	18.2	0.162	
MUC	12	FDP	0	2A11	8.36	18.1	0.051	A more a construction of the second
MUC	12	FDP	400	2A12	7.92	18.1	0.209	AEH-11-PSEUDO-02
MUC	12	FDP	300	2A2	8.12	18.7	0.531	
MUC	1 2	FDP	50	2A3	8,23	18.7	0.150	
MUC	12	FDP	0	2A4	8.35	18.7	0.017	
MUC	12	FDP	200	2A5	8.16	18.6	0.285	
MUC	12	FDP	100	2/16	7.92	18.6	1.567	
MUC	12	FDP	100	2A7	8.24	18.4	0.141	
MUC	12	FDP	400	2A8	7.95	18.3	0.152	
MUC	12	FDP	300	2A9	8.06	18.3	0.375	
MUC	12	FDP	400	2B1	7.98	18.2	0.124	
MUC	12	FDP	0	2B10	8.37	18.0	0.022	
MUC	12	FDP	200	2B11	8.13	18.3	0.370	
MUC	12	FDP	200	2B12	8.03	18.5	0.342	
MUC	12	FDP	300	2B2	8.13	18.2	0.600	
MUC	12	FDP	100	2B3	8.28	18.3	0.162	
MUC	12	FDP	300	2B4	8.05	18.3	0.473	
MUC	12	FDP	50	2B5	8.22	18.3	0.124	
MUC	12	FDP	400	2B6	8.00	18.3	0.128	
MUC	12	FDP	0	287	8.38	18.2	0.019	
MUC	12	FDP	100	2B8	8.21	18.2	0.264	
MUC	12	FDP	50	2 B 9	8.24	18.1	0.132	
MUC	24	FDP	200	2A1	8.23	18.9	8.800	
MUC	24	FDP	50	2A10	8.18	18.3	1.266	
MUC	24	FDP	0	2A11	8.30	18.3	0.013	
MUC	24	FDP	40 0	2A12	7.96	18.3	11.237	
MUC	24	FDP	300	2A2	8.12	18.8	12.373	
MUC	24	FDP	50	2A3	8.26	18.8	1.495	
MUC	24	FDP	0	2A4	8.12	18.8	0.012	
MUC	24	FDP	200	2A5	8.13	18.7	10.165	
MUC	24	FDP	100	2A6	8.21	18.7	4.212	
MUC	24	FDP	100	2A7	8.26	18.6	4,133	
MUC	24	FDP	400	2A8	8.00	18.4	10.208	
MUC	24	FDP	300	2A9	8.07	18.5	9.696	
MUC	24	FDP	400	2B1	7.98	18.5	10.533 ·	
MUC	24	FDP	0	2B10	8.35	18.2	0.011	Page _ 9 _ of _ 13
MUC	24	FDP	200	2B11	8.13	18.4	7.168	Page of
MUC	24	FDP	200	2B12	8.13	18.6	7.083	
MUC	24	FDP	300	2B2	8.10	18.4	12.130	
MUC	24	FDP	100	2B3	8.30	18.4	2.477	

MUC	24	FDP	300	2B4	7.98	18.5	11.610	
MUC	24	FDP	50	2B5	8.22	18.5	1.271	
MUC	24	FDP	400	2B6	8.01	18,3	10.703	
MUC	24	FDP	0	2B7	8.32	18.3	0.012	
MUC	24	FDP	100	2B8	8.27	18,3	3.999	
MUC	24	FDP	50	2B9	8.25	18.2	1.395	
MUC	25	FDP			8.31	19.3	0.060	AEH-11-PS
РРВ	0	SDP	.*		8.07	20.7	0.108	
PPB	6	SDP	0	1A1	8.38	20.1	0.086	
РРВ	6	SDP	50	1A10	8.38	19.8	0.089	
РРВ	6	SDP	200	1A11	8.33	19.8	0.159	
PPB	6	SDP	300	1A12	8,30	20.0	0.147	
PPB	6	SDP	400	1A2	8.38	19.6	0.153	
РРВ	6	SDP	0	1A3	8.45	19.8	0.093	
РРВ	6	SDP	400	1A4	8.31	19.8	0.173	
PPB	6	SDP	200	1A5	8,34	19.5	0.160	
PPB	6	SDP	100	1A6	8.36	19.6	0.134	
РРВ	6	SDP	100	1A7	8.33	19.7	0.133	
РРВ	6	SDP	50	1A8	8.38	19.7	0.115	
ррв	6	SDP	300	1A9	8.40	19.6	0.200	
РРВ	6	SDP	400	1B1	8.25	19.8	0.116	
РРВ	6	SDP	0	1B10	8.37	19.9	0.097	
РРВ	6	SDP	300	1B11	8.31	19.8	0.176	
PPB	6	SDP	200	1B12	8.25	20.0	0.104	
PPB	6	SDP	300	1B2	8.30	19.6	0.197	
PPB	6	SDP	50	1B3	8.34	19.8	0.088	
PPB	6	SDP	400	1B4	8.30	19.7	0,161	
PPB	6	SDP	100	1B5	8.31	19.8	0.107	
PPB	6	SDP	200	1B6	8.30	19.6	0.145	
PPB	6	SDP	100	1B7	8.33	19.7	0.116	
ррв	6	SDP	50	188	8.33	19.7	0.101	
PPB	6	SDP	0	1B 9	8.41	19.7	0.107	
PP B	12	SDP	0	1A1	8.33	20.1	0.104	
PPB	12	SDP	50	1A10	8.19	19.8	0.096	
PPB	12	SDP	200	1A11	8.08	19.9	0.111	
PPB	12	SDP	300	1A12	8.04	20.1	0.120	
РРВ	12	SDP	400	1A2	8.23	19.4	0.123	
PPB	12	SDP	0	1A3	8.42	19.7	0.117	
РРВ	12	SDP	400	1A4	7.94	19.8	0.159	
РРВ	12	SDP	200	1A5	8.06	19.6	0.102	
ррв	12	SDP	100	1A6	8.14	19.5	0.122	
ррв	12	SDP	100	1A7	8.05	19.6	0.102	
PPB	12	SDP	50	1/18	8.15	19.6	0.092	
PPB	12	SDP	300	1A9	8.14	19.6	0.111	Page <u>10</u>
РРВ	12	SDP	400	1B1	8.07	19.8	0.087	,
PPB	12	SDP	0	1810	8,42	19,8	0.093	
ррв	12	SDP	300	1B11	8,12	19.8	0.093	

PSEUDO-02

<u>0_of_13</u>

РРВ	12	SDP	200	1812	8.02	20.0	0.085	
РРВ	12	SDP	300	1B2	8.04	19.7	0.107	
PPB	12	SDP	50	1B3	8.08	19.7	0.090	
РРВ	12	SDP	400	1B4	7.99	19.8	0.115	
РРВ	12	SDP	100	1B5	8.09	19.7	0.087	
PPB	12	SDP	200	1B6	8.02	19.6	0.104	
PPB	12	SDP	100	1B7	8.14	19.6	0.098	
РРВ	12	SDP	50	1B8	8.17	19.7	0.090	
РРВ	12	SDP	0	1B9	8.43	19.7	0.105	AEH-11-PSEUDO-02
РРВ	24	SDP	0	1A1	8.28	20.0	0.089	
РРВ	24	SDP	50	1A10	8.21	19.9	0.188	
PPB	24	SDP	200	1A11	8.01	19.9	0.438	
PPB	24	SDP	300	1A12	8.13	20.0	0.493	
РРВ	24	SDP	400	1A2	8.19	19. 9	2.118	
PPB	24	SDP	0	1A3	8.35	19.9	0.118	
PPB	24	SDP	400	1A4	7.88	19 .8	0.498	
PPB	24	SDP	200	1A5	7.96	19.7	0.418	
PPB	24	SDP	100	1A6	8.00	19.6	0.412	
ррв	24	SDP	100	1A7	8.25	19 .6	0.492	
ррв	24	SDP	50	1A8	8.31	19 .8	0.233	
РРВ	24	SDP	300	1A9	7.98	19 <i>.</i> 8	0.514	
РРВ	24	SDP	400	1B1	8.00	19.7	0.411	
PPB	24	SDP	0	1B10	8.32	19.9	0.068	
PPB	24	SDP	300	1B11	8.02	19.9	2.194	
PPB	24	SDP	200	1B12	7.96	20.2	1.305	
PPB	24	SDP	300	1B 2	7.97	19.7	2,016	
PPB	24	SDP	50	1B3	8,29	19.7	0.329	
PPB	24	SDP	400	1B4	7.99	19.7	2.114	
PPB	24	SDP	100	1B5	8.20	19.7	0.572	
PPB	24	SDP	200	1B6	8.03	19.7	2.059	
РРВ	24	SDP	100	187	8.22	19.7	1.176	
ррв	24	SDP	50	1B8	8.29	19.8	0.401	
РРВ	24	SDP	0	189	8.34	19.8	0.054	
РРВ	25	SDP	•	•	8.09	20.2	0.052	
WAS	0	FDP	•	•	8.18	20.3	0.089	
WAS	6	FDP	50	2A1	8.06	20.8	0.127	
WAS	6	FDP	200	2A10	7,95	20.5	0.232	
WAS	6	FDP	0	2A11	8.22	20.6	0.070	
WAS	6	FDP	50	2A12	8.08	20.8	0.151	
WAS	6	FDP	100	2A2	8.04	20.6	0.293	
WAS	6	FDP	100	2A3	8.00	20.5	0.127	
WAS	6	FDP	300	2A4	8.03	20.6	0.302	- 4
WAS	6	FDP	400	2A5	8.08	20.6	0.264	Page <u>11</u> of <u>13</u>
WAS	6	FDP	200	2A6	8.06	20.7	0.329	
WAS	6	FDP	400	2A7	8.07	20.6	0.251	
WAS	6 C	FDP	300	2A8	7.97	20.5	0.374	
WAS	6	FDP	0	2A9	8.26	20.4	0.065	

WAS	6	FDP	0	2B1	8.21	20.8	0.080	
WAS	6	FDP	200	2810	8.13	20,2	0.286	
WAS	6	FDP	5 0	2B11	8.22	20.4	0.171	
WAS	6	FDP	100	2B12	8.18	20.6	0.255	
WAS	6	FDP	5 0	2B2	8.21	20.7	0.194	
WAS	6	FDP	200	2B3	8.12	20.7	0.263	
WAS	6	FDP	300	2B4	8.08	20.6	0.339	
WAS	6	FDP	40 0	2B5	8.26	19.6	0.247	
WAS	6	FDP	300	2B6	8.05	20.5	0.338	AEH-11-PSEUDO-02
WAS	6	FDP	0	287	8.23	20.4	0.082	- Vite-
WAS	6	FDP	40 0	2B8	8.10	20,4	0.232	
WAS	6	FDP	100	2 B 9	8.13	20.4	0.188	
WAS	12	FDP	50	2A1	8.02	20.1	0.320	
WAS	12	FDP	200	2A10	7.83	19.9	1.704	
WAS	12	FDP	0	2A11	8.23	19.9	0.071	
WAS	12	FDP	50	2A12	8.04	20.1	0.234	
WAS	12	FDP	100	2A2	, 7,97	19.9	0.563	
WAS	12	FDP	100	2A3	7.97	19.7	0.430	
WAS	12	FDP	300	2/\4	7.91	19.8	1.389	
WAS	12	FDP	400	2A5	7.84	19.9	1.547	
WAS	12	FDP	200	2A6	7.97	19.8	0.576	
WAS	12	FDP	400	2A7	7.80	19.7	1.925	
WAS	12	FDP	300	2A8	7.83	19.6	1,848	
WAS	12	FDP	0	2A9	8.25	19.8	0.079	
WAS	12 12	FDP	0	2B1	8.33	20.3	0.076	
WAS WAS	12	FDP FDP	200 50	2B10 2B11	8.11 8.25	19.5 19.7	1.527 0.389	
WAS	12	FDP	30 100	2B11 2B12	8.23	20.0	1.200	
WAS	12	FDF	50	2B12 2B2	8.22	20.0	0.444	
WAS	12	FDP	20 0	2B2 2B3	8.10	20.1	0.444	
WAS	12	FDP	300	2B3 2B4	8.02	19.9	1.169	
WAS	12	FDP	400	2B5	8.25	18.7	1.073	
WAS	12	FDP	300	2B6	7.95	19.9	1.207	
WAS	12	FDP	0	2B7	8.33	20.0	0.095	
WAS	12	FDP	400	2B8	7.95	19.8	1.391	
WAS	12	FDP	100	2B9	8.04	19,6	0.403	
WAS	24	FDP	50	2A1	8.03	19.8	0.993	
WAS	24	FDP	200	2A10	7.93	19.2	5.119	
WAS	24	FDP	0	2A11	8.24	19.2	0.034	
WAS	24	FDP	50	2A12	8.04	19.3	0.980	
WAS	24	FDP	100	2A2	8.02	19.6	2.641	
WAS	24	FDP	100	2A3	8.00	19.4	2.308	Page 17 + 17
WAS	24	FDP	300	2A4	7.85	19.4	8.460	Page 12 of 13
WAS	24	FDP	400	2A5	7.91	19.4	7.693	
WAS	24	FDP	200	2A6	7.93	19.4	4.288	
WAS	24	FDP	400	2A7	7.82	19.2	9.719	
WAS	24	FDP	300	2A8	7.91	19.0	7.269	

	0.037	19.2	8.27	2A9	0	FDP	24	WAS
	0.053	19.9	8.27	2 B1	0	FDP	24	WAS
	5.424	19.4	8.08	2B10	200	FDP	24	WAS
	1.670	19.6	8.23	2811	50	FDP	24	WAS
	2,744	19.7	8.20	2B12	100	FDP	24	WAS
	1.631	1 9 .6	8.18	2B2	50	FDP	24	WAS
	6.741	19.7	7.98	2B3	200	FDP	24	WAS
	5.593	19.7	7.91	284	300	FDP	24	WAS
AEH-11-	5.435	19.7	7.97	2B5	400	FDP	24	WAS
	5.928	19.8	7.86	2B6	300	FDP	24	WAS
	0.015	19.8	8.26	2B7	0	FDP	24	WAS
	5.527	19.7	8.01	2B8	400	FDP	24	WAS
	2,535	19.6	8.06	2B9	100	FDP	24	WAS
	0.025	20.9	7.99			FDP	25	WAS

FF #	10	_
item İ Pg	No4 13_ 0	<u> </u>

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

Statistical analysis of ammonia levels (TAN and un-ionized)

SAS v. 9.4 Analysis Completion Date: 07MAY2014 Analysis prepared by: KLW $\psi \psi$

Obs	sps	time	form	conc	ld	ph	temp	tan	un_ion
1	BLS	0	SDP			8.32	20.20	0.0780	0.00606
2	BLS	6	SDP	0	2A6	8.29	20.10	0.0350	0.00253
3	BLS	6	SDP	0	2A8	8.27	20.10	0.0450	0.00312
4	BLS	6	SDP	0	2B11	8.29	19.80	0.0410	0.00291
5	BLS	6	SDP	0	2B9	8.28	19.40	0.0470	0.00317
6	BLS	6	SDP	50	2A12	8.28	20.10	0.0620	0.00439
7	BLS	6	SDP	50	2A9	8.29	20.10	0.0580	0.00420
8	BLS	6	SDP	50	2B5	8.27	19.80	0.0540	0.00367
9	BLS	6	SDP	50	2B8	8.26	19.60	0.0570	0.00374
10	BLS	6	SDP	100	2A3	8.20	20.20	0.0910	0.00546
11	BLS	6	SDP	100	2A5	8.28	20.00	0.0830	0.00584
12	BLS	6	SDP	100	2B2	8.19	20.00	0.1000	0.00580
13	BLS	6	SDP	100	2B7	8.20	19.80	0. 0760	0.0 0 44 4
14	BLS	6	SDP	200	2 A1	8.19	20.50	0.1380	0.00828
15	BLS	6	SDP	200	2A4	8.16	20 .10	0.1150	0.00629
16	BLS	6	SDP	200	2B12	8.21	20.00	0.1070	0.00648
17	BLS	6	SDP	200	2B6	8.14	19.80	0.1340	0.00687
18	BLS	6	SDP	300	2A10	8,22	20.00	0.1550	0.00959
19	BLS	6	SDP	300	2A11	8.22	19.90	0.1590	0.00977
20	BLS	6	SDP	300	2B1	8.20	20.10	0.1610	0.00960
21	BLS	6	SDP	300	2B4	8.16	19.70	0.1640	0.00872
22	BLS	6	SDP	400	2A2	8.17	20.10	0,1670	0.00933
23	BLS	6	SDP	400	2A7	8.11	20.10	0.1590	0.00779
24	BLS	6	SDP	40 0	2B10	8.18	19,40	0. 1540	0.00838
25	BLS	6	SDP	400	2B3	8.21	19.80	0.1640	0.00979
26	BLS	12	SDP	0	2A6	8.30	18.10	0.0460	0.00297
27	BLS	12	SDP	0	2A8	8.27	17.70	0.05 40	0.00317
28	BLS	12	SDP	0	2B11	8.30	17.90	0.0490	0.00312
29	BLS	12	SDP	0	2B9	8.28	17.60	0.0420	0.00250
30	BLS	12	SDP	50	2A12	8,15	17,60	0.0570	0.00256

FF # Item No. Pg of

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_1... 5/7/2014

Page 2 of 31

:	1	ſ.,	2		i	1	1	5	;
31	BLS	12	SDP	50	2A9	8.13	17.60	0.0400	0.00172
32	BLS	12	SDP	50	2B5	8.11	17.90	0.0350	0.00147
33	BLS	12	SDP	50	2B8	8.14	17.90	0.0500	0.00224
34	BLS	12	SDP	100	2A3	7.94	18.40	0.0420	0.00125
35	BLS	12	SDP	100	2A5	8.17	18.10	0.0380	0.00185
36	BLS	12	SDP	100	2B2	8.01	17,9 0	0.0560	0.00188
37	BLS	12	SDP	100	2B7	7.97	17.9 0	0.0430	0.00132
38	BLS	12	SDP	2 0 0	2A1	7.89	18.60	0.0800	0.00217
39	BLS	12	SDP	200	2A4	7.89	18.20	0.0440	0.00116
40	BLS	12	SDP	200	2B12	8,04	18.00	0.0590	0.00214
41	BLS	12	SDP	200	2B6	7.87	18.00	0.0620	0.00154
42	BLS	12	SDP	300	2A10	8.00	17.50	0.1030	0.00329
43	BLS	12	SDP	300	2A11	8.06	17.40	0.1390	0.00504
44	BLS	12	SDP	300	2B1	7.97	17.80	0.1190	0.00364
45	BLS	12	SDP	300	2B4	7.94	17.80	0.1140	0.00326
46	BLS	12	SDP	400	2A2	7.87	18.40	0.0820	0.00209
47	BLS	12	SDP	400	2 A7	7.71	17.90	0.0760	0.00130
48	BLS	12	SDP	400	2B10	7.81	17.70	0.0680	0.0 01 4 4
49	BLS	12	SDP	400	2B3	7.89	17. 8 0	0.0740	0.00189
50	BLS	24	SDP	0	2A6	8.39	19. 8 0	0.0640	0.00561
51	BLS	24	SDP	0	2A8	8.43	19.50	0. 0840	0.00785
52	BLS	24	SDP	0	2B11	8.40	19.80	0.0580	0.00519
53	BLS	24	SDP	0	2B9	8.38	19.40	0.0600	0.00501
54	BLS	24	SDP	50	2A12	8.32	19.60	0.2010	0.01499
55	BLS	24	SDP	50	2A9	8.33	19.40	0.1750	0.01315
56	BLS	24	SDP	50	2B5	8.25	19,90	0.1780	0.01 16 6
57	BLS	24	SDP	50	2B8	8.24	19.70	0.2170	0.01373
58	BLS	24	SDP	100	2A3	8.07	19.90	1.2920	0.05721
59	BLS	24	SDP	100	2A5	8.32	19.80	1.9690	0.14886
60	BLS	24	SDP	100	2B2	8.20	19.80	3.9280	0.22947
61	BLS	24	SDP	100	2B7	8.16	19.90	1.4530	0.07835
62	BLS	24	SDP	200	2A1	8.04	20.10	4.9180	0.20671
63	BLS	24	SDP	200	2A4	7.98	19.90	3.7820	0.13726
64	BLS	24	SDP	200	2B12	8.05	19.90	0.4580	0.01941
65	BLS	24	SDP	200	2B6	8.07	19.90	3.3810	0.14971

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_I... 5/7/2014

Page 3 of 31

an 1990 a 1	BLS	24	SDP	300	2A10	7.97	19.60	4.0780	0.14171
67	BLS	24	SDP	300	2A11	8.05	19.50	4.9670	0.20463
68	BLS	24) 	300	2B1	7.84		4.2340	0.11244
69	BLS		SDP	300	2B4	7.97		3.7780	0.13316
70	BLS		SDP	400	2A2	8.13	19.90	5.1530	0.26027
71	BLS		SDP	400	2A7	7.88	19.70	5.0100	0.14346
72		24		400	2B10	8.00	19.40	4.9110	0.17985
73	BLS	1	SDP	400		8.15		4.8710	0.25346
74	BLS	25	SDP			8.31	20.10	0.0525	0.00397
75	FAM	0	SDP	1		7.89	20.80	0.1820	0.00576
76	FAM	6	SDP	0	1A 1	8.30	19.40	0.1370	
77	FAM	6	SDP	0	1A7	8.30	19.10	0.0820	0.00566
78	FAM	6	SDP	D	1B10	8.32	19.50	0.0770	0.00570
79	FAM	6	SDP	0	1B5	8.34	19.40	0.0840	0.00645
80	FAM	6	SDP	50	1A3	8.22	19.30	0.1860	0.01096
81	FAM	6	SDP	50	1A9	8.28	19.30	0.2030	0.01362
82	FAM	6	SDP	50	1 B1	8.19	19.50	0.1620	0.00907
83	FAM	6	SDP	50	1B6	8.26	19.30	0.1490	0.00957
84	FAM	6	SDP	100	1A11	8.20	19.50	0.4030	0.02306
85	FAM	6	SDP	100	1A2	8.17	19.30	0.2420	0.01279
86	FAM	6	SDP	100	1 B11	8.27	19.40	0.2520	0.01666
87	FAM	6	SDP	100	1 B 3	8.24	19.40	0.2420	0.01500
88	FAM	6	SDP	200	1A12	8.15	19.50	0.6190	0.03177
89	FAM	6	SDP	200	1A5	8.25	18.80	0.5820	0.03536
90	FAM	6	SDP	200	1B7	8.24	19.10	0.5660	0.03436
91	FAM	6	SDP	200	1B9	8.15	19.40	0.5 6 90	0.02900
92	FAM	6	SDP	300	1A10	8.09	19.5 0	0.7190	0.03235
93	FAM	6	SDP	3 0 0	1A4	8.12	19 .10	0. 7530	0.03519
94	FAM	6	SDP	300	1B12	8.20	19.70	0.7510	0.04357
95	FAM	6	SDP	300	1B4	8.12	19.40	0.7740	0.03694
96	FAM	6	SDP	400	1A6	8.22	18.80	0.6980	0.03974
97	FAM	6	SDP	400	1A8	8.17	19.10	0.6650	0.03467
98	FAM	6	SDP	400	1B2	8.34	19.30	0.6980	0.05323
99	FAM	6	SDP	400	1B8	8.12	19.30	0.7980	0.03782
100	FAM	12	SDP	0	1A1	8.38	19.60	0.0680	0.00576

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_I... 5/7/2014

102 FAM 112 SDP 0 1B10 8.35 19.80 0.0890 0.007 103 FAM 12 SDP 0 1B5 8.38 19.80 0.0600 0.0050 104 FAM 12 SDP 50 1A4 8.11 19.50 0.0640 0.0030 105 FAM 12 SDP 50 1A8 8.11 19.50 0.0640 0.0031 106 FAM 12 SDP 50 1B6 5.20 19.70 0.0580 0.0022 107 FAM 12 SDP 100 1A11 8.04 19.80 0.0520 0.0013 108 FAM 12 SDP 100 1B13 8.05 19.80 0.0520 0.0013 110 FAM 12 SDP 200 1A2 7.87 19.90 0.4190 0.0192 111 FAM 12 SDP 200 1B5 7.81 </th <th></th> <th>1</th> <th>1</th> <th></th> <th>1</th> <th></th> <th>:</th> <th></th> <th></th> <th>1</th>		1	1		1		:			1
103 FAM 112 SDP 0 1B5 8.38 19.80 0.0600 0.0057 104 FAM 12 SDP 50 1A3 8.11 19.50 0.0640 0.0033 105 FAM 12 SDP 50 1A9 8.27 19.60 0.1350 0.0044 106 FAM 12 SDP 50 1B6 5.20 19.70 0.0580 0.0033 108 FAM 12 SDP 100 1A11 8.04 19.80 0.0660 0.0024 109 FAM 12 SDP 100 1B11 8.18 19.70 0.1650 0.0024 110 FAM 12 SDP 100 1B13 8.05 19.80 0.0500 0.024 111 FAM 12 SDP 200 1A5 8.13 19.80 0.6720 0.0133 113 FAM 12 SDP 200 1B5 7.81		FAM	12	SDP		ł	8.38	19.40	: }	0.00409
104 FAM 12 SDP 50 1A3 8.11 19.50 0.0640 0.0034 105 FAM 12 SDP 50 1A9 8.27 19.60 0.1350 0.0094 106 FAM 12 SDP 50 1B1 8.12 19.60 0.0380 0.0044 107 FAM 12 SDP 50 1B6 8.20 19.70 0.0580 0.0022 108 FAM 12 SDP 100 1A11 8.04 19.80 0.0660 0.0022 109 FAM 12 SDP 100 1B13 8.05 19.80 0.0590 0.0024 110 FAM 12 SDP 200 1A12 7.87 19.90 0.4190 0.0113 111 FAM 12 SDP 200 1B7 8.21 19.80 0.6720 0.0133 113 FAM 12 SDP 300 1A12 7.					0		8.35	19.80	0.0890	0.00717
105 FAM 12 SDP 50 1A9 8.27 19.60 0.1350 0.0941 106 FAM 12 SDP 50 1B1 8.12 19.60 0.1350 0.0940 107 FAM 12 SDP 50 1B6 6.20 19.70 0.0580 0.0031 108 FAM 12 SDP 100 1A1 8.04 19.80 0.0660 0.0022 109 FAM 12 SDP 100 1B3 8.05 19.80 0.0590 0.0024 111 FAM 12 SDP 200 1A12 7.87 19.90 0.4190 0.0173 113 FAM 12 SDP 200 1A5 8.13 19.10 0.4060 0.0133 114 FAM 12 SDP 200 1B7 8.21 19.80 0.6720 0.0133 114 FAM 12 SDP 300 1A10 7.8	103	FAM	12	SDP	0	185	8.38	19.80	0.0600	0.00515
106 FAM 12 SDP 50 1B1 8.12 19.90 0.0980 0.0044 107 FAM 12 SDP 50 1B6 5.20 19.70 0.0580 0.0033 108 FAM 12 SDP 100 1A1 6.44 19.80 0.0660 0.0024 109 FAM 12 SDP 100 1A2 8.01 19.60 0.0520 0.0014 110 FAM 12 SDP 100 1B3 8.05 19.80 0.0590 0.0024 111 FAM 12 SDP 200 1A12 7.87 19.90 0.4190 0.0113 113 FAM 12 SDP 200 1B3 8.13 19.40 0.4660 0.0133 114 FAM 12 SDP 200 1B3 7.81 19.80 0.6670 0.0133 114 FAM 12 SDP 300 1A10 7.	104	FAM	12	SDP	50	1A3	8.11	19.50	0.0640	0.00301
107 FAM 12 SDP 50 1B6 8.20 19.70 0.0580 0.0033 108 FAM 12 SDP 100 1A11 6.04 19.80 0.0660 0.0023 109 FAM 12 SDP 100 1A2 8.01 19.60 0.0520 0.0013 110 FAM 12 SDP 100 1B1 8.18 19.70 0.1650 0.0099 111 FAM 12 SDP 200 1A12 7.87 19.90 0.4190 0.0113 113 FAM 12 SDP 200 1A5 8.13 19.40 0.4060 0.0133 114 FAM 12 SDP 200 1B7 8.02 19.80 0.6570 0.0133 114 FAM 12 SDP 300 1A41 7.85 19.40 0.7350 0.0134 118 FAM 12 SDP 300 1B42 <th< th=""><th>105</th><th>FAM</th><th>12</th><th>SDP</th><th>50</th><th>1A9</th><th>8.27</th><th>19.60</th><th>0.1350</th><th>0.00905</th></th<>	105	FAM	12	SDP	50	1A9	8.27	19.60	0.1350	0.00905
108 FAM 12 SDP 100 1A11 8.04 19.80 0.0660 0.0022 109 FAM 12 SDP 100 1A2 8.01 19.60 0.0520 0.0013 110 FAM 12 SDP 100 1B11 8.18 19.70 0.1650 0.0092 111 FAM 12 SDP 100 1B3 8.05 19.80 0.0590 0.0022 111 FAM 12 SDP 200 1A12 7.87 19.90 0.4190 0.0113 113 FAM 12 SDP 200 1B7 8.02 19.50 0.2170 0.0083 114 FAM 12 SDP 300 1A41 7.81 19.80 0.6670 0.0133 115 FAM 12 SDP 300 1B41 7.81 19.80 0.6640 0.0264 117 FAM 12 SDP 300 1B42	106	FAM	12	SDP	50	1B1	8.12	19.90	0.0980	0.00484
109 FAM 112 SDP 100 1A2 8.01 19.60 0.0520 0.0113 110 FAM 12 SDP 100 1B11 8.18 19.70 0.1650 0.0097 111 FAM 12 SDP 100 1B3 8.05 19.80 0.0590 0.0024 111 FAM 12 SDP 200 1A12 7.87 19.90 0.4190 0.0113 113 FAM 12 SDP 200 1B5 8.13 19.10 0.4060 0.0133 114 FAM 12 SDP 200 1B9 7.81 19.80 0.6720 0.0133 115 FAM 12 SDP 300 1A4 7.85 19.40 0.7350 0.0142 118 FAM 12 SDP 300 1B4 7.87 19.80 0.8280 0.0261 118 FAM 12 SDP 300 1B4 <th< th=""><th>107</th><th>FAM</th><th>12</th><th>SDP</th><th>50</th><th>1B6</th><th>8.20</th><th>19.70</th><th>0.0580</th><th>0.00336</th></th<>	107	FAM	12	SDP	50	1B6	8.20	19.70	0.0580	0.00336
110 FAM 12 SDP 100 1B11 8.18 19.70 0.1650 0.099 111 FAM 12 SDP 100 1B3 8.05 19.80 0.0590 0.024 112 FAM 12 SDP 200 1A12 7.87 19.90 0.4190 0.0193 113 FAM 12 SDP 200 1A5 8.13 19.10 0.4060 0.0193 114 FAM 12 SDP 200 1B9 7.81 19.80 0.6720 0.0183 115 FAM 12 SDP 300 1A10 7.85 19.80 0.6720 0.0183 116 FAM 12 SDP 300 1B12 7.97 20.00 0.8800 0.0204 118 FAM 12 SDP 400 1A6 8.05 19.00 0.6610 0.0262 121 FAM 12 SDP 400 1A8	108	FAM	12	SDP	100	1A11	8.04	19.80	0.0660	0.00272
111 FAM 12 SDP 100 1B3 8.05 19.80 0.0590 0.0024 112 FAM 12 SDP 200 1A12 7.87 19.90 0.4190 0.0119 113 FAM 12 SDP 200 1A5 8.13 19.10 0.4060 0.0193 114 FAM 12 SDP 200 1B7 8.02 19.50 0.2170 0.0083 115 FAM 12 SDP 200 1B9 7.81 19.80 0.6720 0.0133 116 FAM 12 SDP 300 1A4 7.85 19.40 0.7350 0.0192 118 FAM 12 SDP 300 1B4 7.85 19.40 0.7350 0.0204 119 FAM 12 SDP 300 1B4 7.81 19.80 0.8280 0.0204 120 FAM 12 SDP 400 1A8 7	109	FAM	12	SDP	100	1A2	8.01	19.60	0.0520	0.00197
112 FAM 12 SDP 200 1A12 7.87 19.90 0.4190 0.0113 113 FAM 12 SDP 200 1A5 8.13 19.10 0.4060 0.0113 114 FAM 12 SDP 200 1B7 8.02 19.50 0.2170 0.0083 115 FAM 12 SDP 200 1B9 7.81 19.80 0.5670 0.0133 116 FAM 12 SDP 300 1A10 7.85 19.80 0.6720 0.0133 117 FAM 12 SDP 300 1A41 7.85 19.40 0.7350 0.0192 118 FAM 12 SDP 300 1B12 7.97 20.00 0.8880 0.0204 119 FAM 12 SDP 400 1A8 7.87 19.60 0.6670 0.0186 122 FAM 12 SDP 400 1B8 <t< th=""><th>110</th><th>FAM</th><th>12</th><th>SDP</th><th>100</th><th>1B11</th><th>8.18</th><th>19.70</th><th>0.1650</th><th>0.00917</th></t<>	110	FAM	12	SDP	1 0 0	1B11	8.18	19.70	0.1650	0.00917
113 FAM 12 SDP 200 1A5 8.13 19.10 0.4060 0.0193 114 FAM 12 SDP 200 1B7 8.02 19.50 0.2170 0.0083 115 FAM 12 SDP 200 1B9 7.81 19.80 0.5670 0.0133 116 FAM 12 SDP 300 1A40 7.85 19.80 0.6720 0.0133 117 FAM 12 SDP 300 1A4 7.85 19.40 0.7350 0.0192 118 FAM 12 SDP 300 1B4 7.81 19.80 0.8280 0.0202 119 FAM 12 SDP 400 1A6 8.05 19.00 0.6610 0.0262 120 FAM 12 SDP 400 1B2 7.83 19.70 1.0250 0.0208 121 FAM 12 SDP 0 1A7 8.3	111	FAM	12	SDP	100	1B3	8.05	19.80	0.0590	0.00248
114 FAM 12 SDP 200 1B7 8.02 19.50 0.2170 0.0083 115 FAM 12 SDP 200 1B9 7.81 19.80 0.5670 0.0133 116 FAM 12 SDP 300 1A10 7.85 19.80 0.6720 0.0183 117 FAM 12 SDP 300 1A44 7.85 19.40 0.7350 0.0192 118 FAM 12 SDP 300 1B12 7.97 20.00 0.8800 0.0314 119 FAM 12 SDP 300 1B4 7.81 19.80 0.6610 0.0262 120 FAM 12 SDP 400 1A8 7.81 19.60 0.6770 0.0186 122 FAM 12 SDP 400 1B2 7.83 19.70 1.0250 0.0208 123 FAM 12 SDP 0 1A1 8	112	FAM	12	SDP	200	1A12	7.87	19.90	0.4190	0.01190
115 FAM 12 SDP 200 1B9 7.81 19.80 0.5670 0.0138 116 FAM 12 SDP 300 1A10 7.85 19.80 0.6720 0.0138 117 FAM 12 SDP 300 1A4 7.85 19.40 0.7350 0.0192 118 FAM 12 SDP 300 1B4 7.81 19.40 0.7350 0.0204 119 FAM 12 SDP 300 1B4 7.81 19.80 0.8280 0.0204 110 FAM 12 SDP 400 1A6 8.05 19.00 0.6610 0.0262 120 FAM 12 SDP 400 1A8 7.81 19.80 0.8280 0.0262 121 FAM 12 SDP 400 1B8 7.81 19.00 0.6610 0.0268 122 FAM 12 SDP 0 1A1 8.2	113	FAM	12	SDP	2 0 0	1A5	8.13	19.10	0.4060	0.01939
116 FAM 12 SDP 300 1A10 7.85 19.80 0.6720 0.0187 117 FAM 12 SDP 300 1A4 7.85 19.40 0.7350 0.0197 118 FAM 12 SDP 300 1B12 7.97 20.00 0.8800 0.0314 119 FAM 12 SDP 300 1B4 7.81 19.80 0.8280 0.0204 120 FAM 12 SDP 400 1A6 8.05 19.00 0.6610 0.0204 121 FAM 12 SDP 400 1A8 7.83 19.70 0.8130 0.0204 122 FAM 12 SDP 400 1B8 7.73 19.70 0.0830 0.0040 123 FAM 24 SDP 0 1A1 8.27 19.10 0.0630 0.0040 124 FAM 24 SDP 0 1A7 8.31	114	FAM	12	SDP	200	1B7	8.02	19.50	0.2170	0.00837
117 FAM 12 SDP 300 1A4 7.85 19.40 0.7350 0.0192 118 FAM 12 SDP 300 1B12 7.97 20.00 0.8800 0.0314 119 FAM 12 SDP 300 1B4 7.81 19.80 0.8280 0.0204 120 FAM 12 SDP 400 1A6 8.05 19.00 0.6610 0.0262 121 FAM 12 SDP 400 1A8 7.87 19.60 0.6770 0.0186 122 FAM 12 SDP 400 1B2 7.83 19.70 0.8130 0.0206 123 FAM 12 SDP 400 1B8 7.73 19.70 1.0250 0.0206 124 FAM 24 SDP 0 1A7 8.31 18.70 0.0500 0.0034 125 FAM 24 SDP 0 1B5 8.35<	115	FAM	12	SDP	200	1B9	7.81	19.80	0.5670	0.01398
118 FAM 12 SDP 300 1B12 7.97 20.00 0.8800 0.0314 119 FAM 12 SDP 300 1B4 7.81 19.80 0.8280 0.0204 120 FAM 12 SDP 400 1A6 8.05 19.00 0.6610 0.0262 121 FAM 12 SDP 400 1A8 7.87 19.60 0.6770 0.0186 122 FAM 12 SDP 400 1B2 7.83 19.70 0.8130 0.0206 123 FAM 12 SDP 400 1B8 7.73 19.70 1.0250 0.0068 124 FAM 24 SDP 0 1A1 8.27 19.10 0.0630 0.0076 125 FAM 24 SDP 0 1A7 8.31 18.70 0.0500 0.0034 126 FAM 24 SDP 0 1B5 8.35 <th>116</th> <th>FAM</th> <th>12</th> <th>SDP</th> <th>300</th> <th>1A10</th> <th>7.85</th> <th>19.80</th> <th>0.6720</th> <th>0.01812</th>	116	FAM	12	SDP	300	1A10	7.85	19.80	0.6720	0.01812
119 FAM 12 SDP 300 1B4 7.81 19.80 0.8280 0.0204 120 FAM 12 SDP 400 1A6 8.05 19.00 0.6610 0.0262 121 FAM 12 SDP 400 1A8 7.87 19.60 0.6770 0.0188 122 FAM 12 SDP 400 1B2 7.83 19.70 0.8130 0.0208 123 FAM 12 SDP 400 1B8 7.73 19.70 1.0250 0.0208 124 FAM 24 SDP 0 1A1 8.27 19.10 0.0630 0.0040 125 FAM 24 SDP 0 1A7 8.31 18.70 0.0500 0.0034 126 FAM 24 SDP 0 1B5 8.35 19.20 0.0880 0.0068 128 FAM 24 SDP 50 1A9 8.28	117	FAM	12	SDP	300	1 A4	7.85	19.40	0.7350	0.01926
120 FAM 12 SDP 400 1A6 8.05 19.00 0.6610 0.0262 121 FAM 12 SDP 400 1A8 7.87 19.60 0.6610 0.0262 122 FAM 12 SDP 400 1B2 7.83 19.70 0.8130 0.0208 123 FAM 12 SDP 400 1B8 7.73 19.70 1.0250 0.0208 124 FAM 24 SDP 0 1A1 8.27 19.10 0.0630 0.0040 125 FAM 24 SDP 0 1A7 8.31 18.70 0.0500 0.0034 126 FAM 24 SDP 0 1B10 8.33 19.30 0.1030 0.0076 127 FAM 24 SDP 0 1B5 8.35 19.20 0.0880 0.0088 128 FAM 24 SDP 50 1A9 8.28	118	FAM	12	SDP	300	1 B1 2	7.97	20.00	0.8800	0.03146
121 FAM 12 SDP 400 1A8 7.87 19.60 0.6770 0.0188 122 FAM 12 SDP 400 1B2 7.83 19.70 0.8130 0.0208 123 FAM 12 SDP 400 1B8 7.73 19.70 0.8130 0.0208 124 FAM 24 SDP 0 1A1 8.27 19.10 0.0630 0.0040 125 FAM 24 SDP 0 1A7 8.31 18.70 0.0500 0.0040 126 FAM 24 SDP 0 1B10 8.33 19.30 0.1030 0.0076 127 FAM 24 SDP 0 1B5 8.35 19.20 0.0880 0.0088 128 FAM 24 SDP 50 1A3 8.18 19.00 0.7500 0.334 130 FAM 24 SDP 50 1B6 8.25	119	FAM	12	SDP	300	1B4	7.81	19.80	0.8280	0.02041
122 FAM 12 SDP 400 1B2 7.83 19.70 0.8130 0.0208 123 FAM 12 SDP 400 1B8 7.73 19.70 1.0250 0.0208 124 FAM 24 SDP 0 1A1 8.27 19.10 0.0630 0.0040 125 FAM 24 SDP 0 1A7 8.31 18.70 0.0500 0.0034 126 FAM 24 SDP 0 1B10 8.33 19.30 0.1030 0.0076 127 FAM 24 SDP 0 1B5 8.35 19.20 0.0880 0.0068 128 FAM 24 SDP 50 1A3 8.18 19.00 0.7500 0.0386 129 FAM 24 SDP 50 1A9 8.28 19.00 0.5040 0.0381 130 FAM 24 SDP 50 1B6 8.25	120	FAM	12	SDP	400	1 A 6	8.05	19.00	0.6610	0.02629
123 FAM 12 SDP 400 1B8 7.73 19.70 1.0250 0.0205 124 FAM 24 SDP 0 1A1 8.27 19.10 0.0630 0.0040 125 FAM 24 SDP 0 1A7 8.31 18.70 0.0530 0.0040 126 FAM 24 SDP 0 1A7 8.31 18.70 0.0500 0.0040 126 FAM 24 SDP 0 1B10 8.33 19.30 0.1030 0.0076 127 FAM 24 SDP 0 1B5 8.35 19.20 0.0880 0.0088 128 FAM 24 SDP 50 1A3 8.18 19.00 0.7500 0.0386 130 FAM 24 SDP 50 1B1 8.15 19.40 0.7490 0.0386 131 FAM 24 SDP 50 1B6 8.25	121	FAM	12	SDP	4 0 0	1A8	7.87	19.60	0.6770	0.01882
124 FAM 24 SDP 0 1A1 8.27 19.10 0.0630 0.0040 125 FAM 24 SDP 0 1A7 8.31 18.70 0.0530 0.0034 126 FAM 24 SDP 0 1A7 8.31 18.70 0.0500 0.0034 126 FAM 24 SDP 0 1B10 8.33 19.30 0.1030 0.0076 127 FAM 24 SDP 0 1B5 8.35 19.20 0.0880 0.0088 128 FAM 24 SDP 50 1A3 8.18 19.00 0.7500 0.0331 129 FAM 24 SDP 50 1A9 8.28 19.00 0.5040 0.0381 130 FAM 24 SDP 50 1B1 8.15 19.40 0.7490 0.0381 131 FAM 24 SDP 50 1B6 8.25	122	FAM	12	SDP	400	1B2	7.83	19.70	0.8130	0.02081
125 FAM 24 SDP 0 1A7 8.31 18.70 0.0500 0.0034 126 FAM 24 SDP 0 1B10 8.33 19.30 0.1030 0.0076 127 FAM 24 SDP 0 1B10 8.33 19.30 0.1030 0.0076 127 FAM 24 SDP 0 1B5 8.35 19.20 0.0880 0.0088 128 FAM 24 SDP 50 1A3 8.18 19.00 0.7500 0.0396 129 FAM 24 SDP 50 1A9 8.28 19.00 0.5040 0.0381 130 FAM 24 SDP 50 1B1 8.15 19.40 0.7490 0.0381 131 FAM 24 SDP 50 1B6 8.25 19.20 0.6180 0.0887 133 FAM 24 SDP 100 1A11 8.19	123	FAM	12	SDP	400	1B8	7.73	19.70	1.025 0	0.02095
126 FAM 24 SDP 0 1B10 8.33 19.30 0.1030 0.0076 127 FAM 24 SDP 0 1B5 8.35 19.20 0.0880 0.0068 128 FAM 24 SDP 50 1A3 8.18 19.00 0.7500 0.0396 129 FAM 24 SDP 50 1A9 8.28 19.00 0.5040 0.0331 130 FAM 24 SDP 50 1B1 8.15 19.40 0.7490 0.0381 131 FAM 24 SDP 50 1B6 8.25 19.20 0.8660 0.0540 132 FAM 24 SDP 100 1A11 8.19 19.20 1.6180 0.0887 133 FAM 24 SDP 100 1A2 8.14 19.00 1.3520 0.06857 133 FAM 24 SDP 100 1B11 8.23 </th <th>124</th> <th>FAM</th> <th>24</th> <th>SDP</th> <th>0</th> <th>1A1</th> <th>8.27</th> <th>19.10</th> <th>0.0630</th> <th>0.00408</th>	124	FAM	24	SDP	0	1A1	8.27	19 .10	0.0630	0.00408
127 FAM 24 SDP 0 1B5 8.35 19.20 0.0880 0.0068 128 FAM 24 SDP 50 1A3 8.18 19.00 0.7500 0.0396 129 FAM 24 SDP 50 1A3 8.18 19.00 0.5040 0.0396 130 FAM 24 SDP 50 1B1 8.15 19.40 0.7490 0.0381 131 FAM 24 SDP 50 1B6 8.25 19.20 0.8660 0.0540 131 FAM 24 SDP 100 1A11 8.19 19.20 1.6180 0.0887 132 FAM 24 SDP 100 1A21 8.14 19.00 1.3520 0.0685 133 FAM 24 SDP 100 1A2 8.14 19.00 1.3520 0.0685 134 FAM 24 SDP 100 1B11 8.23<	125	FAM	24	SDP	0	1A7	8.31	18.70	0.0500	0.00343
128 FAM 24 SDP 50 1A3 8.18 19.00 0.7500 0.0396 129 FAM 24 SDP 50 1A9 8.28 19.00 0.5040 0.0331 130 FAM 24 SDP 50 1B1 8.15 19.40 0.7490 0.0381 131 FAM 24 SDP 50 1B6 8.25 19.20 0.8660 0.0540 132 FAM 24 SDP 100 1A11 8.19 19.20 1.6180 0.0887 133 FAM 24 SDP 100 1A2 8.14 19.00 1.3520 0.0655 133 FAM 24 SDP 100 1A2 8.14 19.00 1.3520 0.0655 134 FAM 24 SDP 100 1B11 8.23 19.20 1.4000 0.0837	126	FAM	24	SDP	0	1B10	8.33	19.30	0.1030	0.00769
129 FAM 24 SDP 50 1A9 8.28 19.00 0.5040 0.0331 130 FAM 24 SDP 50 1B1 8.15 19.40 0.7490 0.0381 131 FAM 24 SDP 50 1B6 8.25 19.20 0.8660 0.0540 132 FAM 24 SDP 100 1A11 8.19 19.20 1.6180 0.0887 133 FAM 24 SDP 100 1A2 8.14 19.00 1.3520 0.0655 134 FAM 24 SDP 100 1B11 8.23 19.20 1.4000 0.0887	127	FAM	24	SDP	0	1B5	8.35	19.20	0.0880	0,00681
130 FAM 24 SDP 50 1B1 8.15 19.40 0.7490 0.0381 131 FAM 24 SDP 50 1B6 8.25 19.20 0.8660 0.0540 132 FAM 24 SDP 100 1A11 8.19 19.20 1.6180 0.0887 133 FAM 24 SDP 100 1A2 8.14 19.00 1.3520 0.0655 134 FAM 24 SDP 100 1B11 8.23 19.20 1.4000 0.0837	128	FAM	24	SDP	50	1A3	8.18	19.00	0.7500	0.03969
131 FAM 24 SDP 50 1B6 8.25 19.20 0.8660 0.0540 132 FAM 24 SDP 100 1A11 8.19 19.20 1.6180 0.0887 133 FAM 24 SDP 100 1A2 8.14 19.00 1.3520 0.0655 134 FAM 24 SDP 100 1B11 8.23 19.20 1.4000 0.0887	129	FAM	24	SDP	50	1A9	8.28	19.00	0.5040	0.03312
132 FAM 24 SDP 100 1A11 8.19 19.20 1.6180 0.0887 133 FAM 24 SDP 100 1A2 8.14 19.00 1.3520 0.0655 134 FAM 24 SDP 100 1B11 8.23 19.20 1.4000 0.0837	130	FAM	24	SDP	50	1 B1	8,15	19.40	0.7490	0.03817
133 FAM 24 SDP 100 1A2 8.14 19.00 1.3520 0.0655 134 FAM 24 SDP 100 1B11 8.23 19.20 1.4000 0.0837	131	FAM	24	SDP	50	1B6	8.25	19.20	0.8660	0.05409
134 FAM 24 SDP 100 1B11 8.23 19.20 1.4000 0.0837	132	FAM	24	SDP	100	1A11	8.19	19.20	1.6180	0.08873
10.00000000000000000000000000000000000	133	FAM	24	SDP	100	1A2	8.14	19.00	1.3520	0.06555
ANY DESCRIPTION OF A DE	134	FAM	24	SDP	100	1B11	8.23	19.20	1.4000	0.08374
135 FAM 24 SDP 100 1B3 8.14 19.20 1.5090 0.0741	135	FAM	24	SDP	100	1B3	8.14	19.20	1.5090	0.07419

AEH-11-PSEUDO-02

Page 4 of 31

	FAM	24	SDP	200	1A12	0.40	40.00	0.0000	0 40070
137	1							3.3600	0.16276
	FAM	24	SDP	200	1A5	8.17		3.1700	0.15847
138	FAM	24	SDP	200	1B7	7.99	19.00	2.5690	0.08944
139	FAM		SDP	200	1B9	7.95	19.30	3.5200	0.11453
140	FAM	24	SDP	300		7.82	19.20	4.0340	0.09743
141	FAM	24	SDP	300	1A4	7.81	18.70	3.3480	0.07627
142	FAM	24	SDP	300	1B12	8.03	19.40	5.0370	0.19714
143	FAM	24	SDP	300	1B4	7.92	19.20	4.5100	0.13628
144	FAM	24	SDP	400	1A6	8.12	18.50	3.6640	0.16414
145	FAM	24	SDP	400	1A8	7.81	19.00	5.1350	0.11953
146	FAM	24	SDP	400	1B2	8.08	19.20	3.7590	0.16200
147	FAM	24	SDP	400	1B8	7.83	19.10	4.04 10	0.09910
148	FAM	25	SDP			8.03	20,50	0.0940	0.00397
149	HGE	0	SDP		,	8.22	20.50	0.0560	0.00358
150	HGE	6	SDP	0	1A1	8.33	20.00	0.0190	0.00149
151	HGE	6	SDP	0	1A8	8.38	19.80	0.0280	0.00240
152	HGE	6	SDP	0	1B1	8.37	19.70	0.0220	0.00184
153	HGE	6	SDP	0	1 B8	8.37	19.80	0.0320	0.00269
154	HGE	6	SDP	50	1A10	8.28	20.00	0.0680	0.00478
155	HGE	6	SDP	50	1 A 6	8.29	19.80	0.0730	0.00518
156	HGE	6	SDP	50	1 B10	8.20	20.00	0.1700	0.01007
157	HGE	6	SDP	50	1 B 4	8.25	19.80	0.0320	0.00208
158	HGE	6	SDP	100	1A3	8.29	19.90	0.1110	0.00793
159	HGE	6	SDP	100	1A9	8.25	19.90	0.0560	0.00367
160	HGE	6	SDP	100	1B3	8.29	19.80	0.0 9 6 0	0.00681
161	HGE	6	SDP	100	1B9	8.32	19.90	0.0990	0.00754
162	HGE	6	SDP	20 0	1A11	8.23	20.10	0.1670	0.01063
163	HGE	6	SDP	2 0 0	1A4	8.24	20.00	0.1540	0.00994
164	HGE	6	SDP	200	1B2	8.23	19.90	0.1510	0.00948
165	HGE	6	SDP	200	1B5	8.25	19.90	0.1700	0.01114
166	HGE	6	SDP	300	1 A12	8.26	20.10	0.1880	0.01276
167	HGE	6	SDP	300	1A2	8.27	19.90	0.2260	0.01546
168	HGE	6	SDP	300	1B12	8.17	20.30	0.2550	0.0 14 45
169	HGE	6	SDP	300	1B6	8.25	19.90	0.1890	0.01238
170	HGE	6	SDP	400	1 A 5	8.21	19.80	0.2350	0.01 40 3
	TUE		JUL		170	0.21	19.00	0.200	0.01403

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_I... 5/7/2014

Page 6 of 31

	HGE	6	SDP	40 0	1A7	8.22	19.90	0.2050	0.01259
172	HGE	6	SDP	40 0	1B11	8.19	20.10	0.1750	0.01021
173	HGE	6	SDP	40 0	187	8.15	19.80	0.2160	0.01132
174	HGE	12	SDP	0	1A1	8.36	20.10	0.0310	0.00260
175	HGE	12	SDP	0	1A8	8.40	20.10	0.0170	0.00155
176	HGE	12	SDP	0	1B1	8,40	20.10	0.0130	0.00119
177	HGE	12	SDP	0	1B8	8.40	20.00	0.0240	0.00218
178	HGE	12	SDP	50	1A10	8.08	20.20	0.0650	0.00300
179	HGE	12	SDP	50	1A6	8.07	2 0.0 0	0.0500	0.00223
180	HGE	12	SDP	50	1B 1 0	7.87	20.20	0.0270	0.00078
181	HGE	12	SDP	50	1B4	8.12	20.1 0	0. 0990	0.00496
182	HGE	12	SDP	100	1 A3	8.04	20.10	0.0650	0.00273
183	HGE	12	SDP	100	1 A 9	7.95	20.20	0.0660	0.00229
184	HGE	12	SDP	100	1B3	8.00	20.10	0.1610	0.00619
185	HGE	12	SDP	100	1B9	8.07	20.10	0.2070	0.00929
186	HGE	12	SDP	200	1A11	7.85	20.20	0.1590	0.00441
187	HGE	12	SDP	200	1A4	7.96	20.10	0.0860	0.00303
188	HGE	12	SDP	200	1B2	7.83	20.00	0.1290	0.00337
189	HGE	12	SDP	200	1B5	7.82	20.10	0.3890	0. 0 10 0 2
190	HGE	12	SDP	300	1A12	8.01	20.30	0.1580	0.00630
191	HGE	12	SDP	300	1A2	7.98	20.10	0.2820	0.01038
192	HGE	12	SDP	300	1 B1 2	7.71	20.50	0.4390	0. 0090 8
193	HGE	12	SDP	300	1B6	8.03	20.10	0.1780	0.00732
194	HGE	12	SDP	400	1A5	7.88	19.90	0.3470	0.01008
195	HGE	12	SDP	400	1A7	7.94	20.00	0.1860	0.00622
196	HGE	12	SDP	400	1B1 1	7.76	20.30	0.0870	0.00199
197	HGE	12	SDP	400	1B7	7.73	20.10	0.4920	0.01035
198	HGE	24	SDP	0	1 A1	8.36	20.10	0.0560	0.00470
199	HGE	24	SDP	0	1A8	8.39	20,10	0.0620	0.00555
200	HGE	24	SDP	0	1B1	8.38	20.10	0.0560	0.00490
201	HGE	24	SDP	0	1B8	8.40	20.00	0.0580	0.00526
202	HGE	24	SDP	50	1A10	8.25	20.10	0.2900	0.01926
203	HGE	24	SDP	50	1A6	8.28	20.00	0.2720	0 .01914
204	HGE	24	SDP	50	1B10	8.1 9	20.10	0.2030	0.01185
205	HGE	24	SDP	50	1 B4	8.10	20.00	0.0640	0.00305

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_I... 5/7/2014

	HGE	24	SDP	100	1A3	8 26	20.00	1.5900	0.10718
207	HGE		SDP	•			20.10	0.4110	0.02505
208	HGE	24	SDP	100	1B3		20.00	1.4490	0.08962
209	HGE	}	SDP	100		*	20.00	1.4180	0.10413
210	HGE		SDP		1A11	7.91	20.20		0.07128
211	HGE	\$	SDP	200	1A4		20.00	1.8820	0.08209
212	HGE	24	SDP	200	1B2		20.00	1.8260	0.05972
213	HGE	24	SDP	200	1B5	8.04		2.9250	0.12208
214	HGE	24	SDP	300	1A12	8.05		3,4620	
215	HGE	24	SDP	300	1A2	7.83	20.00	2,7390	0.07163
216	HGE	24	SDP	300	1B12	2 15 (7 (7) (7) (7) (7) (7) (7) (7)	20.40	2.2830	0.05874
217	HGE	24	SDP	300	1B6	7.89	20.00	1.5160	0.04535
218	HGE	24	SDP	400	1A5	8.06	20.00	3.9550	0.17251
219	HGE	24	SDP	400	1 A7	8.14	20.00	2.9010	0.15080
220	HGE	24	SDP	400	1 B11	7.98	20.20	3.6310	0.13459
221	HGE	24	SDP	400	1B7	7.97	20.00	3.6130	0.12915
222	HGE	25	SDP	•	•	8.28	20.20	0.0570	0.00407
223	HIC	0	FDP		1 - 16 - 17 - 18 - 18 - 18 - 18 - 18 - 18 - 18	8.35	20.90	0.0400	0.00347
224	HIC	1	FDP	0	•	8.18	20.10	0.0220	0.00126
225	HIC	1	FDP	50	•	8.11	20.20	0.0330	0.00163
226	ніс	1	FDP	100	anana na manana ang kana kana kana kana kana kana	8.06	20.30	0.0450	0.00200
227	HIC	1	FDP	200	•	7. 9 9	2 0.3 0	0.0690	0.00263
228	HIC	1	FDP	300	•	7.91	20.30	0.1040	0.00332
229	HIC	1	FDP	400	-	7.91	20.30	0.0960	0.00307
230	HIC	6	FDP	0	1A2	8.39	19.00	0.0130	0.00108
231	HIC	6	FDP	0	1A5	8.40	19.00	0.0150	0.00127
232	HIC	6	FDP	0	1B12	8.38	19.30	0.0210	0,00174
233	HIC	6	FDP	0	1B2	8.40	19.00	0.0160	0.00136
234	HIC	6	FDP	50	1A4	8.35	19.00	0.0630	0.00481
235	HIC	6	FDP	50	1 A 7	8.35	19.10	0.0310	0.00238
236	HIC	6	FDP	50	1B11	8.36	19. 10	0.0340	0.00267
237	HIC	6	FDP	50	1B9	8.36	19. 10	0.0390	0.00306
238	HIC	6	FDP	100	1 A 6	8.35	19.0 0	0.0540	0.00412
239	HIC	6	FDP	100	1A9	8.34	19.20	0.0620	0.00470
240	HIC	6	FDP	100	1B10	8.34	19.00	0.0540	0.00404

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_I... 5/7/2014

Page 8 of 31

	ніс	6	FDP	100	1B3	8.30	19.00	0.0360	0.00247
242	ніс	6	FDP	200	1A1		19.00		0.00797
243	HIC	6	FDP	200	1A11	8.35	19.20	0.0840	0.00650
	HIC	6	FDP	200	1B5	8.34	1 9 .0 0	0.0930	0.00695
245	HIC	6	FDP	200	1 B 8	8.32	19.20	0.0980	0.00711
246	HIC	6	FDP	300	1A12	8.23	19.30	0.1540	0.00927
247	ніс	6	FDP	300	1A3	8.30	19.00	0.1400	0.00960
248	HIC	6	FDP	300	1B1	8.27	19.00	0.1390	0.00894
249	HIC	6	FDP	300	1B4	8.27	19.00	0.3050	0.01962
250	ніс	6	FDP	400	1A10	8.30	19.20	0.0940	0.00654
251	ніс	6	FDP	400	1A8	8.31	19.20	0.0880	0.00625
252	HIC	6	FDP	400	1B6	8.29	19. 1 0	0.0820	0.00554
253	HIC	6	FDP	400	1B7	8.30	19.10	0.0830	0.00573
254	HIC	12	FDP	0	1A2	8.26	18.30	0.0170	0.00102
255	HIC	12	FDP	0	1A5	8.34	18.30	0.0120	0.00085
256	HIC	12	FDP	0	1B12	8.34	18.70	0.0330	0.00242
257	HIC	12	FDP	0	1B 2	8.36	18.20	0.0220	0.00162
258	HIC	12	FDP	50	1 A4	8.2 1	18.30	0.2060	0.01108
259	HIC	12	FDP	50	1 A 7	8.17	18.50	0.1310	0.00655
260	HIC	12	FDP	50	1B 11	8.21	18.50	0.0760	0.00415
261	HIC	12	FDP	50	1 B9	8.18	18.40	0.0790	0.004 0 1
262	HIC	12	FDP	100	1 A 6	8.15	18.30	0.0680	0.00321
263	HIC	12	FDP	100	1A9	8.09	18.60	0. 1290	0.00545
264	HIC	12	FDP	100	1B10	8.10	18 .40	0. 0710	0.00302
265	HIC	12	FDP	100	1B3	8.08	18.30	0.0220	0.00089
266	HIC	12	FDP	200	1A1	8.11	18.30	0.5080	0.02195
267	HIC	12	FDP	200	1A11	8.15	18.70	0.1510	0.00733
268	HIC	12	FDP	20 0	1B5	8.12	18.30	0.0660	0.00292
269	HIC	12	FDP	20 0	1B8	8.12	18.40	0.0080	0.00036
270	ніс	12	FDP	300	1A12	7.88	18.70	0.4660	0.01242
271	HIC	12	FDP	300	1A3	7.98	18.30	0.3240	0.01050
272	HIC	12	FDP	300	1B1	7.95	18.40	0.3250	0.00992
273	HIC	12	FDP	300	1B4	7. 93	18.30	0.3530	0.01023
274	ніс	12	FDP	400	1A10	8.0 3	18.80	0.0680	0. 0025 5
275	HIC	12	FDP	400	1A8	7. 9 5	18.60	0.1170	0. 0036 2

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_f... 5/7/2014

Page 9 of 31

1	HIC	12	FDP	400	1B6	7.81	18,40	0.0640	0.00143
277	HIC	12	FDP	400	1B7	7.90	18.40	0.0640	0.00175
278	ніс	24	FDP	0	1A2	8.30	18.30	0.0170	0.00111
279	HIC	24	FDP	0	1A5	8.33	18.20	0.012 0	0.00083
280	HIC	24	FDP	0	1B12	8.33	18.70	0.0100	0.00072
281	HIC	24	FDP	0	1B2	8.35	18.20	0.0220	0.00159
282	HIC	24	FDP	50	1A4	8.26	18.20	1. 210 0	0.07205
283	HIC	24	FDP	50	1A7	8.22	18.50	1.1740	0.06545
284	ніс	24	FDP	50	1 B11	8.27	18.60	1.3520	0.08458
285	ніс	24	FDP	50	1B9	8.24	18.50	1.3020	0.07581
286	HIC	24	FDP	100	1A6	8.17	18.30	3.6570	0.18027
287	HIC	24	FDP	100	1A9	8.17	18.50	3.7140	0.18567
288	HIC	24	FDP	100	1B10	8.16	18.50	3,1300	0.15308
289	HIC	24	FDP	100	1B3	8.06	18.30	3.5110	0.13584
290	HIC	24	FDP	200	1A1	8.21	18.30	8.3130	0.44718
291	HIC	24	FDP	200	1A11	8.17	18.50	8.1810	0.40898
292	HIC	24	FDP	200	1B5	8.08	18.30	6.7440	0.27273
293	HIC	24	FDP	200	1B 8	8.14	18.40	7.9680	0.37037
294	HIC	24	FDP	300	1 A12	8.03	18.70	11.5000	0.42834
295	HIC	24	FDP	300	1 A 3	8.04	18.20	11.2440	0.41323
296	HIC	24	FDP	300	1B1	7.99	18.20	9.0280	0.29689
297	HIC	24	FDP	300	1B4	7.95	18.30	10.2350	0.31008
298	HIC	24	FDP	400	1A10	8.00	18.50	11.6300	0.39954
299	HIC	24	FDP	400	1A8	8.00	18.60	11.7800	0.40759
300	HIC	24	FDP	400	1B6	8.02	18.30	11.9060	0.42155
301	HIC	24	FDP	400	1B7	7.97	18.30	11.3040	0.358 0 9
302	HIC	25	FDP	4		8.29	19.30	0.1000	0.00685
303	MUC	0	FDP		Sector is sent	8.28	19.60	0.0800	0.00548
304	MUC	1	FDP	0	•	8.09	20.20	0.0110	0.00052
305	MUC	1	FDP	50		8.04	20.10	0.0220	0.00092
306	MUC	1	FDP	100		8.01	19.90	0.0330	0.00128
307	MUC	1	FDP	200	,	7.94	19.80	0.0570	0.00188
308	MUC	1	FDP	300		7.89	19.90	0.0830	0.00247
309	MUC	1	FDP	400		7.78	19.90	0.0800	0.00186
310	MUC	6	FDP	0	2A11	8.32	18.30	0.0210	0.00143

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_I... 5/7/2014

Page 10 of 31

i	мис	6	FDP	0	2A4	8.30	18.80	0.0180	0.00122
312	MUC		FDP	0		8.36	18.20	0.0180	0.00122
313	мис		FDP	0	2B7	8.35	18.40	0 0170	0.00125
314	MUC	6		50	2A10	8.31	18.30	0.0580	0.00387
315	MUC		FDP	50	2A3	8.33	18.80	0.0420	0.00303
316	MUC		FDP	50	2B5	8.31	18.50	0.0800	0.00542
317	MUC		FDP	50	2B9	8.32	18.20	0.0430	0.00291
318	мис		FDP	100	2A6	8.16		0.2250	0.01108
	MUC		FDP	100	2A7	8.34	18.60	0.0610	0.00444
320	MUC	6	FDP	100	2B3	8.36	18.30	0.0750	0.00558
321	MUC	****	FDP	100	2B8	8.30	18.30	0.0610	0.00399
322	MUC	6	FDP	200	2A1	8.25	19.10	0.1060	0.00657
323	мис	6	FDP	200	2A5	8.30	18.70	0.1100	0.00739
324	мис	6	FDP	200	2B 1 1	8.28	18.30	0.1090	0.00682
325	MUC	6	FDP	200	2B12	8.24		0.1030	0.00600
326	MUC	6	FDP	300	2A2	8.27	18.80		0.00958
327	мис	6	FDP	300	2A9	8.26	18.40	0.1870	0.01129
328	MUC		FDP	300	2B2	8.29	18.30	0.1380	0.00883
329	MUC	6	FDP	300	2B4	8.26	18.40	0.1500	0.00906
3 30	MUC	6	FDP	400	2A12	8.23	18.30	0.1000	0.00562
3 31	MUC	6	FDP	400	2A8	8.20	18,60	0.1050	0.00564
332	MUC	6	FDP	400	2B1	8.26	18.40	0.0870	0.00525
333	MUC	6	FDP	400	2B6	8,27	18.40	0.0930	0.00574
334	MUC	12	FDP	0	2A11	8.36	18. 1 0	0.0510	0.00374
335	MUC	12	FDP	0	2A4	8.35	18.70	0.0170	0.00127
336	MUC	12	FDP	0	2B10	8.37	18.00	0.0220	0.00164
337	MUC	12	FDP	0	2B7	8.38	18.20	0.0190	0.00146
338	MUC	12	FDP	50	2A10	8.15	18.20	0.1620	0.00759
339	MUC	12	FDP	50	2A3	8.23	18.70	0.150 0	0.00867
340	MUC	12	FDP	50	2B5	8.22	18.30	0.1240	0.00682
341	MUC	12	FDP	50	2B9	8.24	18.10	0.1320	0.00747
342	MUC	12	FDP	100	2A6	7.92	18.60	1.5670	0.04536
343	мис	12	FDP	100	2A7	8.24	18.40	0.1410	0.00815
344	MUC	12	FDP	100	2B3	8.28	18.30	0.1620	0.01014
345	MUC	12	FDP	100	2B8	8.21	18.20	0.2640	0.01410

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_I... 5/7/2014

Page 11 of 31

347	MUC	12	FDP					· 0 4050	0.04507
- 241	MUC	10	FDP	200	2A1	8.00	5	ł	0.01527
348				200	2A5	8.16	8 6 - 1 - 10 10 10 10 10 10 10 10 1		
340 349	MUC MUC	12 12	FDP	200 200	2B11 2B12	8.13	18.30	0.3700	0.01671
		12				8.03	18.50		0.01256
350 351	MUC MUC		FDP FDP	300	2A2 2A9	8.12	18.70	0.5310	0.02413
352		12		300	2A9 2B2	8.06 8.13		· · · · · · · · · · · · · · · · · · ·	0.01451
352	MUC	12	FDP FDP	300			18.20		0.02690
	MUC	12		300	2B4	8.05	18.30	0.4730	0.01790
354	MUC	12	FDP	400	2A12	7.92	18.10		0.00584
355 356	MUC .	12 12	FDP FDP	400	2A8	7.95	18.30	s d 990 kayana shingara ng milayo ng milayo ng milayo ng milayo f	0.00460
		12		400	2B1	7.98	18.20	0.1240	0.00399
357 358	MUC	24	FDP FDP	400 0	2B6 2A11	8.00 8.30	18.30	0.1280	0.00434
359	MUC	24 24	FDP	0		8.12	18.30 18.80	0.0130	0.00085
360	MUC	24 24	FDP	0	2/14 2B10	8.35	18.20	0.0120	0.00055
361	MUC	. 24 24	FDP	0	2B70	8.32			
362	MUC	24 24	FDP	50	2D7 2A10	8.18	18.30 18.30	0.0120	0.00082
363	MUC	24	FDP	50	2A10		aa.a.a.a.	1.2660 1.4950	0.06379
364	MUC	24 24	FDP	50 50	2R5	8.26 8.22	18.80 18.50	1.4350	0.09281 0.07086
365	MUC		FDP	50	2B9	8.25	18.20	1.3950	0.08129
366	MUC	24	FDP	100	2A6	8.21	18.70	4.2120	0.23300
367	MUC	24	FDP	100	2A7	8.26	18.60	4.1330	0.25304
368	MUC		FDP	100	2B3	8.30	18.40	2.4770	0.16305
369	MUC		FDP	100	2B8	8.27	an an sha a dhi an and han and na	3.9990	0.24504
370	MUC	24	FDP	200	2A1	8.23	18.90	8.8000	0.51552
371	MUC	24	FDP	200	2A5	8.13	18.70	10.1650	0.47210
372	MUC	24	FDP	200	2B11	8.13	18.40	7.1680	0.32594
373	мис	24	FDP	200	2B12	8.13	18,60		D.32665
374	мис	24	FDP	300	2A2	8.12	18.80	12.3730	0.56613
375	мис	24	FDP	300	2A9	8,07	18.50	9.6960	0.38902
376	мис	24	FDP	300	2B2	8.10	18.40	12.1300	0.51633
377	мис	24	FDP	300	2B4	7.98	18. 50	11.6100	0.38149
378	MUC	24	FDP	400	2A12	7.96	18.30	11.2370	0.34812
379	MUC	24	FDP	400	2A8	8.00	18.40	10.2080	0.34820
380	MUC	24	FDP	400	2B1	7.98	18.50	10.5330	0.34610

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/__TD6232_1... 5/7/2014

Page 12 of 31

	мис	24	FDP	400	2B6	8.01	18.30	10.7030	0.37063
382	MUC	25	FDP	†	•	8.31	19.30	0.0600	0.00429
383	PPB	0	SDP	• • • • • • • •	•	8.07	20.70	0.1080	0.00506
384	PPB	6	SDP	0	1A1	8.38	20.10	0.0860	0.00753
385	PPB	6	SDP	0	1A3	8,45	19.80	0.0930	0.00924
386	PPB	6	SDP	0	1B10	8.37	19.90	0.0970	0.00821
387	PPB	6	SDP	0	1B9	8.41	19.70	0.1070	0.00972
388	PPB	6	SDP	50	1A10	8.38	19.80	0.0890	0.00764
389	PPB	6	SDP	50	1A8	8.38	19.70	0.1150	0.00981
390	PPB	6	SDP	50	1B3	8.34	19.80	0.0880	0.00694
391	PPB	6	SDP	50	1 B8	8.33	19.70	0.1010	0.00775
392	PPB	6	SDP	100	1 A6	8.36	19.60	0.1340	0.01088
393	PPB	6	SDP	100	1 A 7	8.33	19.70	0.1330	0.01020
394	РРВ	6	SDP	100	1B5	8.31	19.80	0.1070	0.00792
395	PPB	6	SDP	100	1B7	8.33	19.70	0.1160	0.00890
396	PPB	6	SDP	200	1A11	8.33	19.80	0.1590	0.01228
397	PPB	6	SDP	200	1 A 5	8.34	19.50	0.1600	0.01237
398	PPB	6	SDP	200	1B 12	8.25	20.00	0.1040	0.00686
399	PPB	6	SDP	200	1B6	8.30	19.60	0.1450	0.01036
400	PPB	6	SDP	300	1A12	8.30	20. 0 0	0.1470	0.01080
401	PPB	6	SDP	300	1 A9	8.40	19.60	0.2000	0.01767
402	PPB	6	SDP	300	1B1 1	8.31	19.80	0.1760	0.01303
403	PPB	6	SDP	300	1B2	8.30	19.60	0.1970	0.01408
404	PPB	6	SDP	400	1A2	8.38	19.60	0.1530	0.01296
405	PPB	6	SDP	400	1A4	8.31	19.80	0.1730	0.01280
406	PPB	6	SDP	400	1B1	8.25	19.80	0.1160	0.00755
407	PPB	6	SDP	400	1B4	8.30	19 .70	0.1610	0.01159
408	PPB	12	SDP	0	1A1	8.33	20.10	0.1040	0.00820
40 9	PPB	12	SDP	0	1A3	8.42	19.70	0.1170	0.01085
410	PPB	12	SDP	0	1B10	8.42	19.80	0.0930	0.00868
411	PPB	12	SDP	0	1B9	8.43	19.70	0.1050	0.00994
412	PPB	12	SDP	50	1A10	8.19	19.80	0.0960	0.00549
413	PPB	12	SDP	50	1A8	8.15	19.60	0.0920	0.00475
414	PPB	12	SDP	50	1B3	8.08	19.70	0.0900	0.00402
415	PPB	12	SDP	50	1B8	8.17	19.70	0.0900	0,00489

AEH-11-PSEUDO-02

Page 13 of 31

1		1 40	000	400	440		10 50		
6477	PPB	12	SDP	100	1A6	8,14	}	0.1220	0.00613
<u>}</u>	PPB	12	SDP	100	1A7	8.05	19.60	0.1020	0.00423
	PPB	12	SDP	100	1B5	8.09	19.70	0.0870	0.00397
419	PPB	12	SDP	100	1B7	8,14	· ·	0.0980	0.00495
420	PPB	12	SDP	200	1 A11	8.08	19.90	0.1110	0.00502
421	PPB	12	SDP	200	1A5	8.06	19.60	0.1020	0.00433
422	PPB	12	SDP	200	1B12	8.02	20.00	0.0850	0.00339
423	PPB	12	SDP	200	1B6	8.02	19.60	0.1040	0.00404
424	PPB	12	SDP	300	1A12	8.04	20.10	0.1200	0.00504
425	PPB	12	SDP	300	1A9	8.14	19.60	0.1 1 10	0.00561
426	PPB	12	SDP	300	1B11	8.12	19.80	0.0930	0.00456
427	PPB	12	SDP	300	1 B2	8.04	19,70	0.1070	0.00437
428	PPB	12	SDP	400	1A2	8.23	19.40	0.1230	0.00746
429	PPB	12	SDP	400	1A4	7.94	19.80	0.1590	0.00524
430	PPB	12	SDP	400	1 B1	8.07	19.80	0.0870	0.00383
431	PPB	12	SDP	400	1B4	7.99	19.8 0	0. 1 150	0.00424
432	PPB	24	SDP	0	1A1	8.28	20.00	0.0890	0.00626
433	PPB	24	SDP	0	1A3	8.35	19.90	0.1180	0.00957
434	PPB	24	SDP	0	1B10	8.32	19.90	0.0680	0.00518
435	PPB	24	SDP	0	1B9	8.34	19.80	0.0540	0.00426
436	PPB	24	SDP	50	1A10	8.21	19.90	0.1880	0.01130
437	PPB	24	SDP	50	1A8	8.31	19.80	0.2330	0.01724
438	PPB	24	SDP	50	1B3	8.29	19.70	0.3290	0.02317
439	PPB	24	SDP	50	1B8	8.29	19.80	0.4010	0.02844
440	PPB	24	SDP	100	1A6	8.00	19.60	0.4120	0.01530
441	PPB	24	SDP	100	1 A 7	8.25	19.60	0.4920	0.03158
442	PPB	24	SDP	100	1B5	8.20	19.70	0.5720	0.03319
443	PPB	24	SDP	100	1B7	8.22	19.70	1.1760	0.07 12 5
444	PPB	24	SDP	200	1A11	8.01	19.90	0.4380	0.01699
445	PPB	24	SDP	200	1A5	7.96	19.70	0.4180	0.01431
446	PPB	24	SDP	200	1B12	7.96	20.20	1.3050	0.04627
447	PPB	24	SDP	200	1B6	8.03	19.70	2.0590	0.08231
448	PPB	24	SDP	300	1A12	8.13	20.00	0,4930	0.02507
449	PPB	24	SDP	300	1A9	7.98	19.80	0.5140	0.01852
450	PPB	24	SDP	300	1B11	8.02	19.90	**************************************	0.08700
				· • • • •					

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_I... 5/7/2014

Page 14 of 31

		· .		:			•		:
	PPB	24		300			19.70	2.0160	0.07055
452	PPB	24	SDP	400	They ere en the first second	8.19	19.90	2.1180	0.12191
453	РРВ	24	SDP	400	5 5	7.88	19.80	0.4980	0.01436
454	PP8	24	SDP	400	1B1	8.00	19.70	0.4110	0.01537
455	PPB	24	SDP	400	184	7.99	19.70	2.1140	0.07734
456	PPB	25	SDP		•	8.09	20.20	0.0520	0.00246
457	WAS	0	FDP			8,18	20.30	0.0890	0.00515
458	WAS	6	FDP	0	2A11	8.22	20.60	0.0700	0.00451
459	WAS	6	FDP	0	2A9	8.26	20.40	0.0650	0.00450
460	WAS	6	FDP	0	2B1	8.21	20.80	0.0800	0.00511
461	WAS	6	FDP	0	2B7	8.23	20.40	0.0820	0.00533
462	WAS	6	FDP	50	2A1	8.06	20,80	0.1270	0.00586
463	WAS	6	FDP	50	2A12	8.08	20.80	0.1510	0.00728
464	WAS	6	FDP	50	2 B11	8.22	20.40	0.1710	0.01087
465	WAS	6	FDP	50	2B2	8.21	20.70	0.1940	0.01232
466	WAS	6	FDP	100	2A2	8.04	20.60	0.2930	0.01275
467	WAS	6	FDP	100	2A3	8.00	20.50	0.1270	0.00503
468	WAS	6	FDP	100	2B12	8.18	20.60	0.2550	0.01507
469	WAS	6	FDP	100	2B9	8.13	20.40	0.1880	0.00983
470	WAS	6	FDP	200	2A10	7.95	20.50	0.2320	0.00822
471	WAS	6	FDP	200	2A6	8.06	20.70	0,3290	0.01507
472	WAS	6	FDP	200	2B10	8.13	20.20	0.2860	0.01475
473	WAS	6	FDP	200	2B3	8.12	2 0 .70	0. 2630	0.01374
474	WAS	6	FDP	300	2A4	8.03	20.6 0	0.3020	0.01286
475	WAS	6	FDP	300	2A8	7.97	20,50	0.3740	0.01385
476	WAS	6	FDP	300	2B4	8.08	20.60	0.3390	0.01611
477	WAS	6	FDP	300	2B6	8.05	20.50	0.3380	0.01493
478	WAS	6	FDP	400	2A5	8.08	20.63	0.2640	0.01257
479	WAS	6	FDP	400	2A7	8.07	20,60	0.2510	0.0 1 167
480	WAS	6	FDP	400	2B5	8.26	19.60	0.2470	0.01620
481	WAS	6	FDP	400	2B8	8.10	20.40	0.2320	0.01136
482	WAS	12	FDP	0	2A11	8.23	19.90	0.0710	0.00446
483	WAS	12	FDP	0	2A9	8.25	19.80	0.0790	0.00514
484	WAS	12	FDP	0	2B1	8.33	20.30	0.076 0	0.00607
485	WAS	12	FDP	0	2B7	8.33	20.00	0.0950	0.00744

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_I... 5/7/2014

Page 15 of 31

ar an an an an an an an an an an an an an	WAS	12	FDP	50	2A1	8.02	20.10	0.3200	0.01287
487	WAS	12	FDP	50	2A12	8.04	20.10	0.2340	0.00984
488	WAS	12	FDP	50	2B11	8.25	19.70	0.3890	0.02514
489	WAS	12	FDP	50	2B2	8.20	20.10	0.4440	0.02648
490	WAS	12	FDP	100	2A2	7.97	19.90	0.5630	0.01998
491	WAS	12	FDP	100	2A3	7.97	19,70	0.4300	0.01505
492	WAS	12	FDP	100	2B12	8.22	20.00	1.2000	0.07422
493	WAS	12	FDP	100	2B9	8.04	19.60	0.4030	0.01635
494	WAS	12	FDP	200	2A10	7.83	19.90	1 .7040	0.04425
495	WAS	12	FDP	200	2A6	7.97	19.80	0.5760	0.02030
496	WAS	12	FDP	200	2B10	8.11	19.50	1.5270	0.07179
497	WAS	12	FDP	200	2B3	8.10	20.20	0.9790	0.04728
498	WAS	12	FDP	300	2A4	7.91	19.80	1.3890	0.04283
499	WAS	12	FDP	300	2A8	7.83	19.60	1.8480	0.04697
500	WAS	12	FDP	300	2B4	8.02	19.90	1.1690	0.04636
501	WAS	12	FDP	300	2B6	7.95	19.9 0	1.2070	0.04098
502	WAS	12	FDP	400	2A5	7.84	19.90	1.5470	0.04108
503	WAS	12	FDP	40 0	2A7	7.80	19 .70	1.9250	0.04607
504	WAS	12	FDP	40 0	2B5	8.25	18.70	1.0730	0.06474
505	WAS	12	FDP	400	2B8	7.95	19.80	1.3910	0.04689
506	WAS	24	FDP	0	2A11	8.24	19.20	0.0340	0.00208
507	WAS	24	FDP	0	2A9	8.27	19.20	0.0370	0.00241
508	WAS	24	FDP	0	2B1	8.27	19.90	0.0530	0.00363
509	WAS	24	FDP	0	2B7	8.26	19.80	0.0150	0.00100
510	WAS	24	FDP	50	2A1	8.03	19.80	0.9930	0.03998
511	WAS	24	FDP	50	2A12	8.04	19.30	0.9800	0.03894
512	WAS	24	FDP	50	2B11	8.23	19,60	1.6700	0.10268
513	WAS	24	FDP	50	2B2	8.18	19.60	1.6310	0.08998
514	WAS	24	FDP	100	2A2	8.02	19.60	2.6410	0.10254
515	WAS	24	FDP	100	2 A 3	8.00	19.40	2.3080	0.08452
516	WAS	24	FDP	100	2B12	8.20	19.70	2.7440	0.15920
517	WAS	24	FDP	100	2B9	8.06	19.60	2.5350	0.10752
518	WAS	24	FDP	200	2A10	7.93	1 9.20	5.1190	0.15817
519	WAS	24	FDP	200	2A6	7.93	19.40	4.2880	0.13439
520	WAS	24	FDP	200	2B10	8.08	19.40	5.4240	0.23706

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_J... 5/7/2014

.

	WAS	24	FDP	200	2B3	7.98	19,7 0	6.7410	0.24122
522	WAS	24	FDP	300	2A4	7.85	19.40	8.4600	0.22171
523	WAS	24	FDP	300	2A8	7.91	19.0 0	7.2690	0.21175
524	WAS	24	FDP	300	2B4	7.91	19.70	5.5930	0.17126
525	WAS	24	FDP	300	2B6	7.86	19.80	5.9280	0.16347
526	WAS	24	FDP	400	2A5	7.91	19.40	7.6930	0.23058
527	WAS	24	FDP	400	2A7	7.82	19.20	9.7190	0.23473
528	WAS	24	FDP	400	2B5	7.97	19.70	5.4350	0.19021
529	WAS	24	FDP	400	2B8	8.01	19.70	5.5270	0.21138
530	WAS	25	FDP		•	7.99	20.90	0.0250	0.00100

Performed by K. Weber SAS version 9.4 09:25 07MAY14 $\psi^{\mathcal{W}}$

AEH-11-PSEUDO-02

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_I... 5/7/2014

.

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

Statistical analysis of ammonia levels (TAN and un-ionized)

SAS v. 9.4 Analysis Completion Date: 07MAY2014 Analysis prepared by: KLW

The MEANS Procedure

AEH-11-PSEUDO-02

sps=BLS time=6 form=SDP

conc	N Obs	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
0	4	tan un_ion	tan	0.0420 0.00293	0.0350 0.00253		0.00529 0.000291	0.0336 0.00247	0.0504 0.00340
50	4	tan un_ion	tan	0.0578 0.00400	0.0540 0.00367	0.0620 0.00439	0. 0033 0 0.000352	0.0525 0.00344	0.0630 0.00456
100	4	tan un_ion	tan	0.0875 0.00539	0.0760 0.00444		0.0103 0.000652	0.0710 0.00435	0.1040 0.00642
200	4	tan un_ion	tan	0.1235 0.00698	0.1070 0.00629	0.1380 0.00828	0.0149 0.000900	0.0998 0.00555	0.1472 0.00841
300	4	tan un_ion	tan	0.1598 0.00942	0.1550 0.00872	0.1640 0.00977		0.1537 0.00867	0.1658 0.0102
400	4	tan un_ion	tan	0.1610 0.00882	0.1540 0.00779	0.1670 0.00979	0.00572 0.000904	0.1519 0.00739	0.1701 0.0103

sps=BLS time=12 form=SDP

conc	N Obs	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
0	4	tan un_ion	tan	0.0478 0.00294	0,0420 0.00250	0.0540 0.00317	0.00506 0.000303	0.0397 0.00246	0.0558 0.00342
50	4	tan un_ion	tan	0. 0455 0.00200	0.0350 0.00147	0.0570 0.00256	0.00988 0.000494	0.0298 0.00121	0.0612 0.00278
100	4	tan un_ion	tan	0.0448 0.00158	0.0380 0.00125	0.0560 0.00188	0.00780 0.000335	0.0323 0.00104	0.0572 0.00211
200	4	tan un_ion	tan	0.0613 0.00175	0.04 4 0 0.00116	0.0800 0.00217	0.0148 0.000490	0.0377 0.000970	0.0848 0.00253
300	4	tan un_ion	tan	0.1188 0.00381		0.1390 0.00504	0.0151 0.000841	0.0948 0.00247	0.1427 0.00515
400	4	tan un_ion	tan	0.0750 0.00168	0.0680 0.00130	0.0820 0.00209	0.00577 0.000371	0.0658 0.00109	0.0842 0.00227

sps=BLS time=24 form=SDP

							1	Lower 95%	Upper 95%
conc		Variable	-0.001	Mean M	linimum 🛽	Maximum	Std Dev	CL for Mean	CL for Mean
: 100000 010.000 W12970	(**************************************			in an an an an an an an an an an an an an		

AEH-11-PSEUDO-02

0	4	tan un_ion	tan	0.0665 0.00592	0.0580 0.00501	0.0840 0.00785	0.0119 0.00131	0.0475 0.00383	0.0855 0.00800
50	4	tan un_ion	tan	0.1928 0.0134	0.1 75 0 0.0117	0.2170 0.0150	0.0199 0.00138	0.1611 0.0112	0.2244 0.0156
100	4	tan un_ion	tan	2.1605 0.1285	1.2920 0.0572	3.9280 0.2295	1.2132 0.0779	0.2300 0.00451	4.0910 0.2524
200	4	tan un_ion	tan	3.1348 0.1283	0.4580 0.0194	4.9180 0.2067	1.8995 0.0786	0.1122 0.00316	6.1573 0.2534
300	4	tan un_ion	tan	4.2643 0.1480	3.7780 0.1124	4.9670 0.2046	0.5053 0.0397	3.4602 0.0848	5.0683 0.2112
40 0	4	tan un_ion	tan	4.9863 0.2093	4.8710 0.1435	5.1530 0.2603	0.1256 0.0570	4.7864 0.1185	5.1861 0.3000

sps=FAM time=6 form=SDP

conc	N Obs	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	
0	4	tan un_ion	tan	0.0950 0.00687		0.1370 0.00966	0.0282 0.00189	0.0502 0.00385	0.1398 0.00988
50	4	tan un_ion	tan	0.1750 0.0108	0.1490 0.00907	0.2030 0.0136	0,0242 0.00204	0.1366 0.00756	0.2134 0.0140
100	4	tan un_ion	tan	0.2848 0.0169	0.2420 0.0128	0.4030 0.0231	0.0790 0.00442	0.159 1 0.00985	0.4104 0.0239
200	4	tan un_íon	tan	0.5840 0.0326	0.5660 0.0290	0.6190 0.0354		0.5453 0.0281	0.6227 0.0372
300	4	tan un_ion	tan	0.7493 0.0370	0.7190 0.0323	0.77 40 0.0436	0.0227 0.00476	0.7131 0.0294	0.7854 0.0446
400	4	tan un_ion	tan	0.7148 0.0414	0.6650 0.0347	0.7980 0.0532	0.0576 0.00818	0.6230 0.0283	0.8065 0.0544

sps=FAM time=12 form=SDP

conc	N Obs	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower.95% CL for Mean	Upper 95% CL for Mean
0	4	tan un_ion	tan	0.0665 0.00554	0.0490 0.00409	0.0890 0.00717	0.0169 0.00128	0.0396 0.00350	0.0934 0.00759
50	4	tan un_ion	tan	0.0888 0.00507	0.0580 0.00301		0.0355 0.00277	0.0322 0.000657	0.1453 0.00947
100	4	tan un_ion	tan	0.0855 0.00408	0.0520 0.00197	0.1650 0.00917	0.0533 0.00340	0.000676 -0.00133	0.1703 0.00950
200	4	tan un_ion	tan	0.4023 0.0134	0.2170 0.00837	0.5670 0.0194	0.1435 0.00461	0.1740 0.00607	0.6305 0.0207
3 0 0	4	tan un_ion	tan	0.7788 0.0223	0.6720 0.0181	0.8800 0.0315	0.0931 0.00617	0.6307 0.0125	0.9268 0.0321

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD6232 1... 5/7/2014

400	4 tan un_ion	tan	0.7940 0.0217	0.6610 0.0188	1.0250	0.1684	0.5260 0.0166	1.0620 0.0268
l								1

sps=FAM time=24 form=SDP

conc	N Obs	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
0	4	tan un_ion	tan	0.0760 0.00550	0.0500 0.00343		0.0239 0.00207	0.0379 0.00222	0.1141 0.00879
50	4	tan un_ion	tan	0.7173 0.0413	0.5040 0.0331		0.1524 0.00900	0.4747 0.0270	0.9598 0.0556
100	4	tan un_ion	tan	1.4698 0.0781	1.3520 0.0655	1.6180 0.0887	0.1187 0.0103	1.2809 0.0617	1.6586 0.0 9 44
200	4	tan un_ion	tan	3.1548 0.1313	2.5690 0.0894	3.5200 0.1628	0.4159 0.0354	2.4930 0.0750	3.8165 0.1876
300	4	tan un_ion	tan	4.2323 0.1268	3.3480 0.0763	5.0370 0.1971	0.7179 0.0531	3.0900 0.0423	5.3745 0.2112
400	4	tan un_ion	tan	4.1498 0.1362	3.6640 0.0991	5.1350 0.1641	0.6761 0.0321	3.0740 0.0850	5.2255 0.1873

sps=HGE time=6 form=SDP

conc	N Obs	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
0	4	tan un_ion	tan	0.0253 0.00210	0.0190 0.00149	0.0320 0.00269	0.00585 0.000543	0.0159 0.00124	0.0346 0.00297
50	4	tan un_íon	tan	0.0858 0.00553	0.0320 0.00208	0.1700 0.0101	0.0591 0.00332	-0.00823 0.000238	0.1797 0.0108
100	4	tan un_ion	tan	0.0905 0.00648	0.0560 0.00367	0.1110 0.00793	0.0239 0.00193	0.0525 0.00341	0.1285 0.00956
200	4	tan un_íon	tan	0.1605 0.0103		0. 1700 0.01 1 1	0.00940 0.000734	0,1455 0.00913	0.1755 0.0115
30 0	4	tan un_íon	tan	0.2145 0.0138	0.1880 0.0124	0.2550 0.0155	0.0323 0.00144	0,1631 0,0115	0.2659 0.0161
400	4	tan un_ion	tan	0.2078 0.0120	0.1750 0.0102	0.2350 0.0140	0.0251 0.00165	0.1678 0.00942	0.2477 0.0147

sps=HGE time=12 form=SDP

conc	N Obs	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	
0	4	tan un_ion	tan	0.0213 0.00188		0.0310 0.00260	0.00793 0.000632	0.00863 0.000874	0.0339 0.00289
50	4	tan	tan	0.0603	0.0270	0.0990	0.0302	0.0122	0.1083

AEH-11-PSEUDO-02

		un_lon		0.00274	0.000783	0.00496	0.00174	-0.00003	0.00551
100	4	tan un_ion	tan	0.1248 0.00513	0.0650 0.00229	0.2070 0.00929	0.0709 0.00328	0,0119 -0.00009	0.2376 0.0103
200	4	tan un_ion	tan	0.1908 0.00521	0.0860 0.00303	0.3890 0.0100	0,1355 0.00326	-0.0249 0.000019	0.4064 0.0104
300	4	tan un_ion	tan	0.2643 0.00827	0.1580 0.00630	0.4390 0.0104	0.1286 0.00182	0.0597 0.00538	0.4688 0.0112
400	4	tan un_ion	tan	0.2780 0.00716	0.0870 0.00199	0.4920 0.0104	0.1784 0.00393	-0.00591 0.000904	0.5619 0.0134

sps=HGE time=24 form=SDP

conc	N Obs	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
0	4	tan un_ion	tan	0.0580 0.00510	0.0560 0.00470		0.00283 0.000375	0.0535 0.00451	0.0625 0.00570
50	4	tan un_ion	tan	0.2073 0.0133	0.0640 0.00305	0.2900 0.0193	0.1026 0.00768	0.0440 0.00111	0.3705 0.0255
100	4	tan un_ion	tan	1.2170 0.0815	0.4110 0.0250	1.5900 0.1072	0.5425 0.0384	0.3537 0.0204	2.0803 0. 1 426
200	4	tan un_ion	tan	2.2200 0.0838	1.8260 0.0597	2.9250 0.1221	0.5057 0.0271	1.4153 0.0407	3.0247 0.1269
300	4	tan un_ion	tan	2.5000 0.0814	1.5160 0.0453	3.4620 0.1498	0.8161 0.0469	1.2015 0.00682	3.7985 0.1559
400	4	tan un_ion	tan	3.5250 0.1468	2.9010 0.1292	3.9550 0.1725	0.4447 0.0195	2.8174 0.1158	4.2326 0.1778

sps=HIC time=6 form=FDP

conc	N Obs	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
0	4	tan un_ion	tan	0.0163 0.00136	0.0130 0.00108	0.0210 0.00174	0.00340 0.000279	0.0108 0.000920	0.0217 0.00181
50	4	tan un_ion	tan	0.0418 0.00323	0.0310 0.00238	0.0630 0.00481	0.0145 0.00109	0.0186 0.00150	0.0649 0.00496
100	4	tan un_ion	tan	0.0515 0.00383	0.0360 0.00247	0.0620 0.00470	0.0110 0.000954	0.0340 0.00231	0.0690 0.00535
2 0 0	4	tan un_ion	tan	0.0960 0.00713	0.0840 0.00650	0.1090 0.00797	0.0104 0.000617	0.0794 0.00615	0,1126 0.00812
300	4	tan un_ion	tan	0,1845 0.0119	0.1390 0.00894	0.3050 0.0196	0.0806 0.00518	0.0562 0.00362	0.3128 0.0201
400	4	tan un_ion	tan	0.0868 0.00602	0.0820 0.00554	0.0940 0.00654	0.00550 0.000459	0.0780 0.00529	0.0955 0.00675

sps=HIC time=12 form=FDP

AEH-11-PSEUDO-02

conc	N Obs	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	
0	4	tan un_ion	tan	0.0210 0.00148	0.0120 0.000855		0.00898 0.000707	0.00671 0.000353	0.0353 0.00260
50	4	tan un_ion	tan	0.1230 0.00645	0.0760 0.00401	0.2060 0.0111	0.0608 0.00330	0.0262 0.00119	0.2198 0.0117
100	4	tan un_ion	tan	0.0725 0.00314	0.0220 0.000890	0.1290 0.00545	0.0438 0.00186	0.00275 0.000178	0.1423 0.00611
200	4	tan un_ion	tan	0.1833 0.00814	0.00800 0.000356	0.5080 0.0219	0.2243 0.00965	-0.1737 -0.00722	0.5402 0.0235
300	4	tan un_ion	tan	0.3670 0.0108	0.3240 0.00992	0.4660 0.0124		0.2598 0.00897	0.4742 0.0126
400	4	tan un_ion	tan	0.0783 0.00234	0.0640 0.00143	0.1170 0.00362	0.0259 0.000979	0.0370 0.000779	0.1195 0.00389

sps=HIC time=24 form=FDP

conc	N Obs	Variable	Labe	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	
0	4	tan un_ion	tan	0.0153 0.00106	0.0100 0.000717	ł	0.00538 0.000389	0.00669 0.000443	0.0238 0.00168
50	4	tan un_ion	tan	1.2595 0.0745	1.1740 0.0655	1.3520 0.0846	0.0819 0.00798	1.1292 0.0618	1.3898 0.0872
100	4	tan un_ioл	tan	3.5030 0.1637	3.1300 0.1358	3.7140 0.1857	0.2630 0.0234	3.0846 0.1264	3.9214 0.2010
200	4	tan un_ion	tan	7.8015 0.3748	6.7440 0.2727	8.3130 0.4472	0.7192 0.0749	6.6571 0.2556	8.9459 0.4941
300	4	tan un_ion	tan	10.5018 0.3621	9,0280 0.2969	11.5000 0.4283	1.1241 0.0682	8.7131 0.2536	12.2904 0.4707
400	4	tan un_ion	tan	11.6550 0.3967	11.3 04 0 0.3581	11.9060 0.4216	0.2598 0.0273	11.2416 0.3533	12.0684 0.4401

sps=MUC time=6 form=FDP

conc	N Obs	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	
0	4	tan un_ion	tan	0.0185 0.00131	0.0170 0.00122		0.00 17 3 0.000097	0.0157 0.00115	0.0213 0.00146
50	4	tan un_ion	tan	0.0558 0.00381				0.0275 0.00197	0,0840 0.00565
10 0	4	tan un_ion	tan	0.1055 0.00627	0.0610 0.00399	0.2250 0.0111	0.0799 0.00328	-0.0217 0.00106	0.2327 0.0115

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_1... 5/7/2014

200	4	tan un_ion	tan	0.1070 0.00670	0.1030 0.00600	0.1100 0.00739	0.00316 0.000578	0,1020 0.00578	0.1120 0.00762
300	4	tan un_ion	tan	0.1565 0.00969	0.1380 0.00883	0.1870 0.0113	0.0212 0.00111	0.1228 0.00792	0.1902 0.0115
400	4	tan un_ion	tan	0.0963 0.00556	0.0870 0.00525	0.1050 0.00574		0.0837 0.00522	0.1088 0.00590

sps=MUC time=12 form=FDP

conc	N Obs	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
0	4	tan un_ion	tan	0.0273 0.00203	0.0170 0.00127		0.0160 0.00115	0.00184 0.000197	0.0527 0.00386
50	4	tan un_ion	tan	0.1420 0.00764	0.1240 0.00682		0.0172 0.000766	0.1146 0.00642	0.1694 0.00886
100	4	tan un_ion	tan	0.5335 0.0194	0.1410 0.00815	1.5670 0.0454	0.6911 0.0175	-0.5662 -0.00834	1.6332 0.0472
200	4	tan un_ion	tan	0.3580 0.0146	0.2850 0.0126	0.4350 0.0167	0.0623 0.00177	0.2588 0.0118	0.4572 0.0175
300	4	tan un_ion	tan	0.4948 0.0209	0.3750 0.0145	0.6000 0.0269	0.0952 0.00566	0.3432 0.0118	0.6463 0.0299
400	4	tan un_ion	tan	0.1533 0.00469	0.1240 0.00399	0.2090 0.00584	0.0392 0.000804	0.0909 0.00341	0.2156 0.00597

sps=MUC time=24 form=FDP

conc	N Obs	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
0	4	tan u n_ion	tan	0.0120 0.000753	0.0110 0.000549		0.000816 0.000138	0.0107 0.000534	0.0133 0.000973
50	4	tan un_ion	tan	1.3568 0.0772	1.2660 0.0638	1. 4 950 0.0928	0.1098 0.0127	1.1820 0.0570	1.5315 0.0973
100	4	tan un_ion	tan	3.7053 0.2235	2.4770 0.1630		0.8235 0.0412	2.3948 0.1580	5.0157 0.2890
200	4	tan un_ion	tan	8.3040 0.4101	7.0830 0.3259	10.1650 0.5155	1.4709 0.0983	5.9635 0.2536	10.6445 0.5665
300	4	tan un_ion	tan	11.4523 0.4632	9.6960 0.3815	12.3730 0.5661	1.2 1 33 0.0924		13.3829 0.6102
400	4	tan un_ion	tan	10.6703 0.3533	10,2080 0.3461	11.2370 0.3706	0.4300 0.0116	9.9860 0.3348	11.3545 0.3718

sps=PPB time=6 form=SDP

}	anna an an an an an an an an an an an an		1		
Lower 9					1

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_I... 5/7/2014

.

AEH-11-PSEUDO-02

conc	N Obs	Variable	Label	Mean	Mi ni mum	Maximum	Std Dev	CL for Mean	CL for Mean
0	4	tan un_ion	tan	0.0958 0.00867	0.0860 0.00753		0.00877 0.000988	0.0818 0.00710	0.1097 0.0102
50	4	tan un_íon	tan	0.0983 0.00803	0.0880 0.00694	0.1 15 0 0.00981	0.0126 0.00123	0.0781 0.00607	0,1184 0.01000
100	4	tan un_ion	ta n	0.1225 0.009 4 8	0.1070 0.00792	0.1340 0.0109	0.0132 0.00132	0.1015 0.00737	0.1435 0.0116
200	4	tan un_ion	tan	0.1420 0.0105	0.1040 0.00686	0.1600 0.0124	0.0262 0.00258	0.1002 0.00637	0.1838 0.0146
300	4	tan un_ion	tan	0.1800 0.0139	0.1470 0.0108	0.2000 0.0177	0.0245 0.00287	0.1411 0.00933	0.2189 0.0185
400	4	tan un_ion	tan	0.1508 0.0112	0.1160 0.00755	0.1730 0.0130	0.0246 0.00253	0.1116 0.00721	0.1899 0.0152

sps=PPB time=12 form=SDP

conc	N Obs	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
0	4	tan un_ion	tan	0.1 048 0.00942	0.0930 0.00820	0.1170 0.0108	0.00981 0.00121	0.0891 0.00750	0.1204 0.0113
50	4	tan un_ion	tan	0.0920 0.00479	0.0900 0.00402	0.0960 0.00549	0.00283 0.000604	0.0875 0.00383	0.0965 0.00575
100	4	tan un_ion	tan	0.1023 0.00482	0.0870 0.00397	0.1220 0.00613	0.0146 0.000965	0.0790 0.00329	0.1255 0.00636
200	4	tan un_ion	tan	0.1005 0.00420	0.0850 0.00339	0. 1 110 0.00502	0.0110 0.000676	0.0829 0.00312	0.1181 0.00527
300	4	tan un_ion	tan	0.1078 0.00490	0.0930 0.00437	0.1200 0.00561	0.0112 0.000553	0.0899 0.00402	0.1256 0.00578
40 0	4	tan un_ion	tan	0.1210 0.00519	0.0870 0.00383	0.1590 0.00746	0.0297 0.00162	0.0738 0.00261	0.1682 0.00778

sps=PPB time=24 form=SDP

	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	
4	tan un_ion	tan	0.0823 0.00632	0.0540 0.00426		0.0278 0.00232	0.0380 0.00263	0.1265 0.0100
4	tan un_ion	tan	0.2878 0.0200	0.1880 0.0113	0.4010 0.0284	0.0957 0.00741	0.1355 0.00826	0.4400 0.0318
4	tan un_ion	tan	0.6630 0.0378			0.3482 0.0237	0.1090 0.000121	1.2170 0.0755
4	tan un_ion	tan	1.0550 0.0400			0.7868 0.0317	- 0.1969 - 0 .0105	2.3069 0.0904
	4	un_ion 4 tan un_ion 4 tan un_ion 4 tan	un_jon 4 tan tan un_jon 4 tan tan 4 tan tan un_jon 4 tan tan 4 tan tan	un_ion 0.00632 4 tan tan 0.2878 un_ion 0.0200 0.0200 4 tan tan 0.6630 un_ion 0.0378 0.0378 4 tan tan 1.0550	un_ion 0.00632 0.00426 4 tan 0.2878 0.1880 un_ion 0.0200 0.0113 4 tan 0.6630 0.4120 un_ion 0.0378 0.0153 4 tan 1.0550 0.4180	un_ion 0.00632 0.00426 0.00957 4 tan 0.2878 0.1880 0.4010 un_ion 0.0200 0.0113 0.0284 4 tan 0.6630 0.4120 1.1760 un_ion tan 0.0378 0.0153 0.0712 4 tan tan 1.0550 0.4180 2.0590	un_ion 0.00632 0.00426 0.00957 0.00232 4 tan un_ion tan 0.2878 0.1880 0.4010 0.0957 4 tan un_ion tan 0.2878 0.1880 0.4010 0.0957 4 tan un_ion tan 0.6630 0.4120 1.1760 0.3482 4 tan un_ion tan 1.0550 0.4180 2.0590 0.7868	un_ion 0.00632 0.00426 0.00957 0.00232 0.00263 4 tan un_ion tan 0.2878 0.1880 0.4010 0.0957 0.1355 4 tan un_ion tan 0.2878 0.1880 0.4010 0.0957 0.1355 4 tan un_ion tan 0.6630 0.4120 1.1760 0.3482 0.1090 4 tan un_ion tan 0.6630 0.4120 1.1760 0.3482 0.1090 4 tan tan 1.0550 0.4180 2.0590 0.7868 -0.1969

Page 24 of 31

AEH-11-PSEUDO-02

300	4 tan un_ion	tan	1.3043 0.0503	0.4930 0.0185	2.194 0 0.087 0	0.9275 0.0337	-0.1716 -0.00331	2.7801 0.1039
400	4 tan un_ion	tan	1.2853 0.0572	0.4110 0.0144	2.1180 0.1219	0.9599 0.0522	-0.2422 -0.0258	2.8127 0.1403

sps=WAS time=6 form=FDP

conc	N Obs	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
0	4	tan un_ion	tan	0.0743 0.00486	0.0650 0.00450	0.0820 0.00533	0.00810 0.000421	0,0614 0.00419	0,0871 0.00553
50	4	tan un_ion	tan	0.1608 0.00908	0.1270 0.00586	0.1940 0.0123	0.0285 0.00302	0.1153 0.00428	0.2062 0.0139
100	4	tan un_ion	tan	0.2158 0.0107	0.1270 0.00503	0.2930 0.0151	0.0734 0.00433	0.0990 0.00378	0.3325 0.0176
200	4	tan un_ion	tan	0.2775 0.0129	0.2320 0.00822	0.3290 0.0151	0.0408 0.00320	0.2125 0.00785	0. 3425 0.0180
300	4	tan un_ion	tan	0.3383 0.0144	0.3020 0.0129	0.3740 0.0161	0.0294 0.00140	0.2915 0.0122	0.3850 0.0167
400	4	tan un_ion	tan	0.2485 0.0130	0.2320 0.0114	0.2640 0.0162	0.0132 0.00223	0.2275 0.00941	0.2695 0.0165

sps=WAS time=12 form=FDP

conc	N Obs	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
0	4	tan un_ion	tan	0.0802 0.00578	0.0710 0.00446	0.0950 0.00744	0.0104 0.00129	0.0637 0.00372	0.0968 0.00783
50	4	tan un_ion	tan	0.3468 0.0186	0.2 34 0 0.00984	0.4440 0.0265		0.2025 0.00512	0.4910 0.0320
100	4	tan un_ion	tan	0.6490 0.0314	0.4030 0.0150	1.2000 0.0742	0.3739 0.0286	0.0540 -0.0141	1.2440 0.0769
200	4	tan un_ion	tan	1.1965 0.0459	0.5760 0.0203	1.7040 0.0718	0.5161 0.0 21 1	0.3753 0.0124	2.0177 0.0794
300	4	tan un_ion	tan	1.4033 0.0443	1.1690 0.0410	1.8480 0.0470	0.3117 0.00286	0.9073 0.0397	1.8992 0.0488
400	4	tan un_ion	tan	1.4840 0.0497	1.0730 0.0411	1.9250 0.0647	0.3540 0.0104	0.9207 0.0332	2.0473 0.0662

sps=WAS time=24 form=FDP

¢	conc	N Obs	Variable	Label	Mean		:	Lower 95% CL for Mean	
	0	4	tan	tan	0.0348		0.0156	í.	0.0596

١

Page 25 of 31

AEH-11-PSEUDO-02

-		un_ion		0.00228	0.000997	0.00363	0.00108	0.000556	0.00400
50	4	tan un_ion	tan	1.3185 0.0679	0.9800 0.0389	1.6700 0.1027	0.3837 0.0332	0.7079 0.0150	1.9291 0.1208
100	4	tan un_ion	tan	2.5570 0.1134	2.3080 0.0845	2.7440 0.1592	0.1866 0.0321	2.2600 0.0624	2.8540 0.1645
200		tan un_lon	tan	5.3930 0.1927	4.2880 0.1344	6.7410 0.2412	1.0189 0.0545	3.7718 0.1060	7.0142 0.2794
300	4	tan un_ion	tan	6.8125 0.1920	5.5930 0.1635	8.4600 0.2217	1.3156 0.0290	4.7191 0.1460	8.9059 0.2381
400	4	tan un_ion	tan	7.0935 0.2167	5.4350 0.1902	9.7190 0.2347	2.0377 0.0204	3.8510 0.1843	10.3360 0.2492

Performed by K. Weber SAS version 9.4 09:25 07MAY14

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

Statistical analysis of ammonia levels (TAN and un-ionized)

SAS v. 9.4 Analysis Completion Date: 07MAY2014 Analysis prepared by: KLW

The MEANS Procedure

sps=BLS time=0 form=SDP

Variable		Mean	Minimum		Lower 95% CL for Mean	Upper 95% CL for Mean
tan	tan	0.0780	0.0780	0.0780		
un_ion		0.00606	0.00606	0.00606		-

sps=BLS time=6 form=SDP

Variable			1	Maximum		Lower 95% CL for Mean	
tan	tan	0.1053				0.0849	0.1256
un_ion		0.00626	0.00253	0.00979	0.00250	0.00520	0.00731

sps=BLS time=12 form=SDP

Variable	Label			Maximum		Lower 95% CL for Mean	L for Mean
tan	tan	0.0655	0.0350	0.1390	0.0282	0.0536	0.0774
un_ion		0.00229	0.00 1 16	0.00504	0.000945	0.00189	0.00269

sps=BLS time=24 form=SDP

	Label			CL for Mean	
tan un_ion	tan	2.4675 0.1055	1	1.5859 0.0683	3.3491 0.1428

sps=BLS time=25 form=SDP

Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
tan	tan	0.0525	0.0525	0.0525			
un_ion		0.00397	0.00397	0.00397			•

sps=FAM time=0 form=SDP

a ta shi ta dhush sa ya hudu wa	Variable			Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
	tan	tan	0.1820	0.1820	0.1820	•		•

un_ion	0.00576	0.00576	0.00576			AEH-11-PSEUDO-02
--------	---------	---------	---------	--	--	------------------

sps=FAM time=6 form=SDP

Variable				Maximum		Lower 95% CL for Mean	
tan		0.4338		0.7980	0.2683	0.3205	0.5471
un_ion	-	0.0243	0.00566	0.0532	0.0142	0.0183	0.0302

sps=FAM time=12 form=SDP

Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
tan	tan	0.3693	0.0490	1.0250	0.3353	0.2277	0.5109
un_ion		0.0120	0.00197	0.0315	0.00858	0.00840	0.0156

sps=FAM time=24 form=SDP

gan a seta o total are	ран-талык каналан. 	1		99967 2017 3797 V200-0000 Million A	1849 yawan yang gan ya		6 /20/
Variable	Label	Mean		Maximum	Std Dev	Lower 95% CL for Mean	
tan	tan	2.3000	0.0500	5.1350	1.7151	1.5757	3.0242
un_ion		0.0865	0.00343	0.1971	0.0571	0.0624	0.1106

sps=FAM time=25 form=SDP

Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
tan	tan	0.0940	0.0940	0.0940			
un_ion		0.00397	0.00397	0.00397			

sps=HGE time=0 form=SDP

. Juli adul	ariable			Minimum	Maximum	 Lower 95% CL for Mean	
ta	an	tan	0.0560	0.0560	0.0560	•	
u	n_ion		0.00358	0.00358	0.00358	•	

sps=HGE time=6 form=SDP

Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
tan un_ion	tan	0.1307 0.00837	0.0190 0.00149	0.14000	0.0757 0.00442		0.1627 0.0102

sps=HGE time=12 form=SDP

]	104.0 P. 10.0 P. 10.0 P. 10.0				Lower 95%	Upper 95%
Variable	Label	Mean	Minimum	Maximum	Std Dev	CL for Mean	CL for Mean
Annu	er 2 mars and a second		\$2+9+	สี่สุดการเป็นสาวารณ์สาวารณ์การการการการส	********	terroristic construction and the second states and the second	and an an an an an an an an an an an an an

Page 28 of 31

,						
tan	tan	0.1565	0.0130	0.4920 0.1387	0.0980	0.2151
un ion		0.00506	0.000783	0.0104 0.00331	0.00367	0.00646
	l				0.00001	i orooo.o

AEH-11-PSEUDO-02

sps=HGE time=24 form=SDP

Variable		•		 Lower 95% CL for Mean	
tan un_ion	tan	1.6212 0.0686	3.9550 0.1725	1,0525 0.0454	2.1899 0.0919

sps=HGE time=25 form=SDP

Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
tan un_ion	tan	0.0570 0.00407	0.0570 0.00407	0.0570 0.00407	•	•	

sps=HIC time=0 form=FDP

Variable Label	Mean	Minimum	Maximum	Std Dev	Lower 95% Upper 95% CL for Mean CL for Mea	
tan tan un_ion	0.0400 0.00347	0.0400 0.00347	0.0400 0.00347			

sps=HIC time=1 form=FDP

; i	Label			Maximum		Lower 95% CL for Mean	
tan un_ion	tan	0.0615 0.00232	0.0220 0.00126	0.1040 0.00332	0.0338 0.000821	0.0261 0.00 14 6	0.0969

sps=HIC time=6 form=FDP

Variable	Label	Mean	Minimum	Maximum	 Lower 95% CL for Mean	
tan un_ion		0.0795 0.00557	0.00108	0.3050	0.0529 0.00390	0.1060 0.00725

sps=HIC time=12 form=FDP

Variable	Labei	Mean			Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
tan un_ion	tan	0.1408 0.00538	0.00800 0.000356	0.0000	0.1457 0.00511	0.0793 0.00323	0.2024 0.00754

sps=HIC time=24 form=FDP

		- Contract of the Contract of the	e standa nyan kinana sina	ment for several terrary gets and a	CONTRACT AND A CONTRACT OF A CONTRACT			() () () () () () () () () ()
	1	•	1	1	1	1	1	
1	1		\$	1		i	1	
÷ .	1		2	1	5	2	1	
			*	*		,	•	4

SAS Output

Page 29 of 31

Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
tan	tan	5.7893	0.0100	11.9060	4.5909	3.8507	7.7279
un_ion		0.2288		0.4472	0,10,11	0.1593	0.2984

AEH-11-PSEUDO-02

sps=HIC time=25 form=FDP

Variable	Label	Mean	Minimum	Maximum	Std Dev	CL for Mean	Upper 95% CL for Mean
tan un ion	tan	0.1000	0.1000		•		•
un_ion		0.00685	0.00685	0.0 0 685	•		

sps=MUC time=0 form=FDP

Variable	Label					Lower 95% CL for Mean	4
tan	tan	0.0800	0.0800	0.0800			•
un_ion		0.00548	0.00548	0.00548	•		-

sps=MUC time=1 form=FDP

Variable	Label			Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
tan -	tan	0.0477	0.0110	0.0830	0.0303	0.0158	0.0795
un_ion		0.00149	0.000520	U.U.U.L.	0.000713		0.00224

sps=MUC time=6 form=FDP

tan tan 0.0899 0.0170 0.2250 0.0539 0.0672	
un ion 0.00556 0.00122 0.0113 0.00296 0.00431	0.0072

sps=MUC time=12 form=FDP

Variable		1		Maximum		Lower 95% CL for Mean	Upper 95% CL for Mean
tan un_ion	tan	0.2848 0.0115	0.0170 0.00127	1.5670	0.3189 0.00994	0.00735	0.4195 0.0157

sps=MUC time=24 form=FDP

Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	
tan un_ion			0.000549		0.1815	3.9648	7.8687 0,3313

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_1... 5/7/2014

r -

sps=MUC time=25 form=FDP

Variable		1			Lower 95% CL for Mean	
tan	tan	0.0600	0.0 6 00	0.0600	•	
un_ion		0.00429	0.00429	0.00429	•	•

sps=PPB time=0 form=SDP

Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
tan	tan	0.1080	0.1080	0.1080			1. () () () () () () () () () (
un_ion		0.00506	0.00506	0.00506		•	

sps=PPB time=6 form=SDP

Variable			Minimum		Std Dev	Lower 95% CL for Mean	Upper 95%
tan un_ion	tan	0.1315 0.0103	0,0860 0,00686	0.2000 0.0177		0.1168 0.00916	0.1463 0.01 1 4

sps=PPB time=12 form=SDP

Variable	Label	Mean	Minimum	Maximum		Lower 95% CL for Mean	Upper 95%
tan	tan	0.1047	0.0850	0.1590	0.0164	0.0978	0.1116
un_ion		0.00555	0.00339	0.0108	0.00200	0.00471	0. 00 640

sps=PPB time=24 form=SDP

Variable	Label	Mean	Minimum		Std Dev	CL for Mean	Upper 95% CL for Mean
tan	tan	0.7796	0.0540	2.1940	0.7515	0.4622	1.0969
un_ion		0.0353	0.00426	0.1219	0.0321	0.0217	0.0488

sps=PPB time=25 form=SDP

Variable		r	1			Lower 95% CL for Mean	
tan	tan	0.0520	0.0520	0.0520			-
un_ion		0.00246	0.00246	0.00246	•		

sps=WAS time=0 form=FDP

second of the second second	Variable			Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
	tan	tan	0.0890	0.089 0	•		

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_1... 5/7/2014

un_ion	0.00515	0.00515	0.00515	-		
					the second second in success in the	

sps=WAS time=6 form=FDP

Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	1
tan un_ion	tan	0.2192 0.0108)	0.37 40		0.1799 0.00911	0.2584 0.0125

sps=WAS time=12 form=FDP

Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
tan un_ion	tan	0.8600 0.0326	0.0710 0.00446	1.9250 0.0742	0.00	0.0000	1.1206 0.0416

sps=WAS time=24 form=FDP

An opposite of the Association of the Association	Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	
And and realized	tan		3.8682	0.0150	9.7190	2.9382	2,6275	5.1089
	un_ion		0.1308	0.000997	0.2412	0.0839	0.0954	0.1663

sps=WAS time=25 form=FDP

Variable	Label	Mean	Minimum	Maximum	Std Dev	Lower 95% CL for Mean	Upper 95% CL for Mean
tan	tan	0.0250	0.0250	0.0250			
un_ion		0.000995	0.000995	0.000995	•	•	

Performed by K. Weber SAS version 9.4 09:25 07MAY14

FF #	10
Item N	0.6
Pg	_ of _31

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_L... 5/7/2014

```
DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
FOOTNOTE1 'Performed by K. Weber SAS version' & SYSVER & SYSTIME & SYSDATE:
options 1s=97 ps=57 formdlim='-' pageno = 1 nocenter nodate nosource2;
title1 h=2 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels fro
title2 h=2 'Statistical analysis of ammonia levels (TAN and un-ionized)';
title3 h=2 'SAS v. 9.4 Analysis Completion Date: 07MAY2014 Analysis prepared by: KLW';
Analysis prepared by: KLW 🎶
* SAS ver 9.4
* Analysis completion date: 07MAY14
                                                   *
                                                             AEH-11-PSEUDO-02
* Variable Names:
* sps = three letter code for mussel species
          BLS = Black sandshell (Ligumia recta)
*
          FAM = Fatmucket (Lampsilis siliquoidea
          WAS = Washboard (Megalonaias nervosa)
          HGE = Higgins eye (Lampsilis higginsii)
                                                            FF # 10
          PPB = Plain pocketbook (Lapsilis cardium)
                                                            Item No.
          HIC = Hickorynut (Obovaria olivaria)
                                                            Pa
          MUC = Mucket (Actinonaias ligamentina)
 time = sampling time
          0 = pre-exposure
          1 = dosing initiation
          6, 12, and 24 = 6, 12, and 24 h post dosing initiaiton, respectively
          25 = ammonia sample from holding period
* form = formulation (FDP [freeze dried powder] vs. SDP [spray dried powder])
* conc = concentration (in mg/L)
          0 = \text{control} (0 \text{ mg/L})
          50 = 50 mg/L active ingredient
          100 = 100 mg/L active ingredient
          200 = 200 mg/L active ingredient
          300 = 300 mg/L active ingredient
          400 = 300 \text{ mg/L} heat deative
* id = exposure chamber ID
          i.e., 3A5 = test system (1, 2 or 3), Block ID (A or B), and Position in Block (1 - 6)
* temp = temperautre (C) measured during TAN water sample collection
* pH = pH measured during TAN water sample collection
* tan = total ammonia nitrogen levels
                                  ****
data ammonia; set Pseudo02.ammonia;
un_ion = (1/(10**(0.09018+(2729.92/(273.2+temp))-pH)+1))*tan;
run;
proc sort data=ammonia; by sps time form conc id; run;
proc print data=ammonia; run;
data ammonia_exp; set ammonia;
   if time < 6 then delete;
   if time > 24 then delete;
   run;
```

```
* This analysis looks at ammonia levels during exposure only. Pre-exposure, exposure *
* initiation, and holding period samples have been removed from this analysis.
                                                        *
proc means data = ammonia_exp mean min max std clm fw=8;
by sps time form;
class conc;
var tan un_ion;
                                               AEH-11-PSEUDO-02
run;
* This analysis looks at ammonia levels at all sampling times.
                                                       *
proc means data = ammonia mean min max std clm fw=8;
by sps time form;
var tan un_ion;
                                        1mi
7 mAzzoiy
run;
```

FF # <u>10</u> Item No. <u>7</u> Pg 2 of 2

```
232 DM 'LOG; CLEAR; OUTPUT; CLEAR; '; * CLEAR LOG AND OUTPUT;
233
234 FOOTNOTE1 'Performed by K. Weber SAS version' & SYSVER & SYSTIME & SYSDATE;
WARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
235
236 options ls=97 ps=57 formdlim='-' pageno = 1 nocenter nodate nosource2;
                                                                        AEH-11-PSEUDO-02
237
238 title1 h=2 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile
238! mussels from seven different unionid species';
239 title2 h=2 'Statistical analysis of ammonia levels (TAN and un-ionized)';
240 title3 h=2 'SAS v. 9.4 Analysis Completion Date: 07MAY2014 Analysis prepared by: KLW';
Analysis prepared by: KLW 🕠
242 * SAS ver 9.4
243 * Analysis completion date: 07MAY14
     *****
                                                   **********
244
245
246
    246! ***********
247 * Variable Names:
247!
               ×
248 * sps = three letter code for mussel species
2481
               BLS = Black sandshell (Ligumia recta)
249 *
2491
250 *
               FAM = Fatmucket (Lampsilis siliquoidea
2501
251 *
               WAS = Washboard (Megalonaias nervosa)
2511
252 *
               HGE = Higgins eye (Lampsilis higginsii)
2521
253 *
               PPB = Plain pocketbook (Lapsilis cardium)
253!
               *
254 *
               HIC = Hickorynut (Obovaria olivaria)
                                                                   FF # 10
254!
               ÷
                                                                           Ţ,
                                                                   Item No.
255 *
               MUC = Mucket (Actinonaias ligamentina)
                                                                   Pg _ 1_ of _ 3_
255!
256 * time = sampling time
256!
257 *
               0 = pre-exposure
2571
258
               1 = dosing initiation
258!
259 *
               6, 12, and 24 = 6, 12, and 24 h post dosing initiaiton, respectively
259!
               25 = ammonia sample from holding period
260 *
260!
261 * form = formulation (FDP [freeze dried powder] vs. SDP [spray dried powder])
2611
262 * conc = concentration (in mg/L)
262!
263 *
               0 = \text{control} (0 \text{ mg/L})
2631
264 *
               50 = 50 \text{ mg/L} active ingredient
2641
265 *
               100 = 100 mg/L active ingredient
265!
               -1-
```

200 = 200 mg/L active ingredient 266 * 266! 267 * 300 = 300 mg/L active ingredient 267! * 268 * 400 = 300 mg/L heat deative 268! 4 AEH-11-PSEUDO-02 269 * id = exposure chamber ID 2691 270 * i.e., 3A5 = test system (1, 2 or 3), Block ID (A or B), and Position in Block (1 270! - 6) 271 * temp = temperautre (C) measured during TAN water sample collection 271! 272 * pH = pH measured during TAN water sample collection * 2721 273 * tan = total ammonia nitrogen levels 2731 * 274! ***********/ 275 276 data ammonia; set Pseudo02.ammonia; 277 un ion = (1/(10**(0.09018+(2729.92/(273.2+temp))-pH)+1))*tan;278 run; NOTE: There were 530 observations read from the data set PSEUD002.AMMONIA. NOTE: The data set WORK.AMMONIA has 530 observations and 9 variables. NOTE: DATA statement used (Total process time): real time 0.02 seconds cpu time 0.01 seconds 279 proc sort data=ammonia; by sps time form conc id; run; NOTE: There were 530 observations read from the data set WORK. AMMONIA. NOTE: The data set WORK.AMMONIA has 530 observations and 9 variables. NOTE: PROCEDURE SORT used (Total process time): real time 0.00 seconds 0.01 seconds opu time Page _ 2__ of _ 3___ 280 proc print data=ammonia; run; NOTE: Writing HTML Body file: sashtml4.htm NOTE: There were 530 observations read from the data set WORK.AMMONIA. NOTE: PROCEDURE PRINT used (Total process time): real time 0.53 seconds cpu time 0.42 seconds 281 282 data ammonia exp; set ammonia; 283 if time < 6 then delete; 284 if time > 24 then delete; 285 run: NOTE: There were 530 observations read from the data set WORK.AMMONIA.

NOTE: The data set WORK.AMMONIA_EXP has 504 observations and 9 variables.

NOTE: DATA statement used (Total process time): real time 0.00 seconds cpu time 0.00 seconds

AEH-11-PSEUDO-02

286 288 * This analysis looks at ammonia levels during exposure only. Pre-exposure, exposure * 289 * initiation, and holding period samples have been removed from this analysis. * 291 proc means data = ammonia_exp mean min max std clm fw=8; 292 by sps time form; 293 class conc; 294 var tan un_ion; 295 run; NOTE: There were 504 observations read from the data set WORK.AMMONIA EXP. NOTE: PROCEDURE MEANS used (Total process time): 0.30 seconds real time cpu time 0.26 seconds 296 298 * This analysis looks at ammonia levels at all sampling times. 300 proc means data = ammonia mean min max std clm fw=8; 301 by sps time form; 302 var tan un_ion; 303 run; NOTE: There were 530 observations read from the data set WORK.AMMONIA. NOTE: PROCEDURE MEANS used (Total process time): JWAR JOH real time 0.16 seconds w cpu time 0.14 seconds

FF# 10 Item No. Pg_3_of

Study Number: AEH-11-PSEUDO-02 Data Source: File Folders: 10f, 10g Water Quality Forms: 4 and 5

Action	Date	Initials
Created	1-May-14	KLW W
Revised	19-Nov-14	KLWWW
Reviewed	Vilvov 14	FW
Certified	1	

File Name: I:\AEH-11-PSEUDO-02\Data\(PSEUDO-02 Water Chem for SAS.xlsx)Holding Water Chem

Holding Period Water Chemistry

Scientific Name	Common Name	Abbreviation	Formulation Type	Test Article Lot Number	Exposure Date	Assessmen Date
Obovaria olivaria	Hickorynut	HIC	FDP	110510FD	12-Jul-11	20-Ju -11
Actinonalas ligamentina	Mucket	MUC	FDP	110510FD	14-Jul-11	22-Ju -11
Megalonalas nervosa	Washboard	WAS	FDP	110928FD	13-Dec-11	21-Dec-11
Lampsilis slliquoidea	Fatmucket	FAM	SDP	MBI-401 SDP 4655-12-Mix	27-Jan-12	4-Feb-12
Ligumia recta	B ack sandshell	BLS	SDP	TR4659-4-(7-8) 2nd shipment	17-Ap r-1 2	25-Apr-12
Lampsilis cardium	Pialn pocketbook	PPB	SDP	TR4669-4-(5)	16-May-12	24-May-12
LampsIIis higginsii	Higgins eye	HGE	SOP	TR4669-4-(5)	26-May-12	3-Jun-12

Data codes used within SAS

sps = Juvenile musse species (see 3 letter abbreviation codes above)

day = Day post-exposure during 7 day holding period

form = Product formulation

FDP = Freeze dried powder

SDP = Spray dried powder

id = Exposure chamber ID

i.e., 1A2 = Test system (1, 2, or 3), Block ID (A or B), and Position in Block (1-12)

do = Dissolved oxygen (in mg/L)
temp = Temperature (in ° C)

pH = pH

hard = Water hardness (in mg/L of CaCO₃)

alk ≃ Alkalinity (in mg/L of CaCO3)

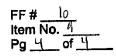
con = Conductivity (in μ S/cm temperature compensated to 25°C)

Data Explanation

Water chemistry data analyses were limited to simple descriptive statistics (Proc Means) using SAS Version 9.4.

Data Anomalies and Deviations NONE

File Folder Item Numbe Page_


sps	day	form	id	do	temp	ph	hard	alk	con
HIC	0	FDP	1A7	8.27	19.6	8.29	178	129	386
HIC	0	FDP	1B7	8.22	19.6	8,20			
HIC	1	FDP	1A8	8.21	19.7	8.24			
HIC	1	FDP	1B8	8.07	19 .6	8.24			
HIC	2	FDP	1A9	8.09	19.7	8.07	•		
HIC	2	FDP	1B9	7.95	19.6	8.27			
HIC	3	FDP	1A10	8.11	19.7	8.24		,	
HIC	3	FDP	1B10	7.72	19.6	8.27		÷	
HIC	4	FDP	1A11	7.88	19.7	8.23		,	
HIC	4	FDP	1B11	7.99	19.6	8.26			
HIC	5	FDP	1A12	7.86	19.9	8.26			
HIC	5	FDP	1B12	7.73	19.9	8.25			
HIC	6	FDP	1A1	7,92	19.7	8.16			
HIC	6	FDP	181	7.28	19.6	8.15		,	
HIC	7	FDP	1A2	7.55	19.5	8.15			
HIC	7	FDP	1B2	8.03	19.3	8.19		,	,
MUC	0	FDP	2A9	7.91	19.7	8.24	178	131	390
MUC	1	FDP	2A10	7.92	19,6	8.29		,	,
MUC	2	FDP	2A11	8.24	19.6	8.29		,	,
MUC	3	FDP	2A12	8,28	19.9	8.30		,	•
MUC	4	FDP	2A1	7.70	20.1	8.15			
MUC	5	FDP	2A2	7.90	19.8	8.23			
MUC	6	FDP	2A3	7.79	19.9	8.26			
MUC	7	FDP	2A4	7.55	20.1	8.20			
MUC	0	FDP	2B9	8.31	19.6	8.29			
MUC	1	FDP	2B10	8.27	19.8	8.31			
MUC	2	FDP	2B11	7.86	19.6	8.18			,
MUC	3	FDP	2B12	8.10	19.8	8.26			•
MUC	4	FDP	2B1	7.68	19.9	8.19			,
MUC	5	FDP	2B2	7.80	19.7	8.22			
MUC	6	FDP	2B3	7,83	19.8	8.23			
MUC	7	FDP	2B4	7.77	19.9	8.20			
WAS	0	FDP	2A1	. 8,06	20,1	8.06	178	121	402
WAS	0	FDP	2A2	8,01	20.0	8.09			
WAS	0	FDP	2A3	7.81	19.9	8.10			
WAS	0	FDP	2A4	7.94	19.8	8.06		,	,
WAS	0	FDP	2A5	7.76	19.7	8.05			
WAS	0	FDP	2A6	8.07	19.7	8.09			
WAS	0	FDP	2A7	7,80	19.6	8.06			
WAS	0	FDP	2A8	7.88	19.6	8.07			
WAS	0	FDP	2A9	8,38	19.6	8.17			
WAS	0	FDP	2A10	7.86	19.6	8.08			
WAS	0	FDP	2A11	8.33	19.5	8.16			
WAS	0	FDP	2A12	8.06	19.5	8.11			
WAS	0	FDP	2B1	8.54	19.8	8.14			,
WAS	0	FDP	2B2	8.35	19.7	8.12			•
				AEH-11-	PSEUDO-0	2	- ⁻)	-6	ч

Page _____ of _____

WAS	0	FDP	2B3	8.22	19.6	8.11			
WAS	0	FDP	2B4	8.05	19.7	8.09			
WAS	0	FDP	2B5	8.05	19.7	8.11			
WAS	0	FDP	2B6	8.11	19.8	8.10			
WAS	0	FDP	2B7	8.42	19.8	8.17			,
WAS	0	FDP	2B8	7.97	19.9	8.11			
WAS	0	FDP	2B9	8.34	19.7	8.12			
WAS	0	FDP	2B10	8.26	19.7	8.17			
WAS	0	FDP	2B11	8,30	19.9	8.13		· .	,
WAS	0	FDP	2B12	8.18	20.1	8.12		,	
WAS	1	FDP	2A5	8.03	20.6	8.11			
WAS	2	FDP	2A6	8.36	20.7	8.22			
WAS	3	FDP	2A7	8.41	20.7	8.16			
WAS	4	FDP	2A8	8.45	20.7	8.09			
WAS	5	FDP	2A9	8.14	20.7	8.21		,	
WAS	6	FDP	2A10	8.14	18,7	8.08		,	
WAS	7	FDP	2A11	8.66	19.3	8.27			
WAS	1.	FDP	2 B5	8.19	20.4	8.13			
WAS	2	FDP	2B6	8.23	20.3	8.09			
WAS	3	FDP	2B7	8.22	20.4	8.14			
WAS	4	FDP	2B8	8.53	20.5	8.14			
WAS	5	FDP	2B9	8.08	20.5	8,14			
WAS	6	FDP	2B10	8.78	18,9	8.20			
WAS	7	FDP	2B11	8.29	19.5	8.30			
FAM	0	SDP	1A8	7.64	20,0	7.87	175	123	383
FAM	1	SDP	1A9	8.36	20.2	7.89			
FAM	2	SDP	1A10	8.37	20.1	7.85			
FAM	3	SDP	1A11	8,19	20.5	7.98			
FAM	4	SDP	1A12	8.07	20.4	8.08			
FAM	5	SDP	1 A1	8.07	20.5	8.11			
FAM	6	SDP	1A2	7.96	20,6	8.14			
FAM	7	SDP	1A3	7.83	20.4	7.91			
FAM	0	SDP	188	7,45	20.0	7.88			
FAM	1	SDP	189	8.28	20.1	8.01	,	,	
FAM	2	SDP	1B10	8,72	20.0	7.97			
FAM	3	SDP	1B11	8,13	20.5	8.01			
FAM	4	SDP	1B12	8.25	20.5	8,13			
FAM	5	SDP	1B1	8.05	20,4	8.11			
FAM	6	SDP	1B2	7.96	20.4	8.15		•	
FAM	7	SDP	1B3	8.03	20.3	8.05			
BLS	0	SDP	2A10	8.55	19.9	8.19	176	121	378
BLS	1	SDP	2A11	8.35	19.9	8.23			
BLS	2	SDP	2A12	8.53	19.8	7.88	•	•	•
BLS	3	SDP	2A1	8.25	20.5	8,21	•		•
BLS	4	SDP	2A1 2A2	8,32	20.3	8.24			•
BLS	5	SDP	2A2 2A3	8.52	20.2	8.24	•		•
BLS	6	SDP	2A3 2A4	8.04	20.2	8.27		,	•
	5		271	0.04	20,2	0.27			•

Page <u>3</u> of <u>4</u>

BLS	7	SDP	2A5	8.34	20.1	8.21	,	4	
BLS	0	SDP	2B1	8.47	19.9	8.18			
BLS	1	SDP	2B2	8.38	20.0	8.26			,
BLS	2	SDP	2B3	8.45	19.9	7.90			
BLS	3	SDP	2B4	8.30	20.0	8.26			
BLS	4	SDP	2B5	8.61	19.9	8.28			
BLS	5	SDP	2B6	8.32	20.0	8.27			
BLS	6	SDP	2B7	8.59	20.1	8.30			
BLS	7	SDP	2B8	8.54	20.1	8.27			
PPB	0	SDP	1A10	8.34	20.3	7.92	174	126	364
PPB	1	SDP	1A11	8.21	20.6	8.11			
PPB	2	SDP	1A12	8.18	20.5	8.06			,
PPB	3	SDP	1A1	8.30	20.5	8.14			
РРВ	4	SDP	1A2	8.98	20.4	8.05			
PPB	5	SDP	1A3	8.19	20.4	8.28			
PPB	6	SDP	1A4	8.21	20.2	8.18			
РРВ	7	SDP	1A5	8.15	20.5	8.31		,	
PPB	0	SDP	1B10	8.46	20.3	8.02			
РРВ	1	SDP	1B11	7.93	20.6	8.03			,
РРВ	2	SDP	1B12	8.16	20.6	8.09		1	•
PPB	3	SDP	1B1	8,06	20.4	8.16			
PPB	4	SDP	1B12	8.65	20.1	8.08		,	•
PPB	5	SDP	1 B3	8.46	20.2	8.21			
PPB	6	SDP	1B4	8.23	20 .0	8.10			
РРВ	7	SDP	185	8.04	20.4	8.25	•		
HGE	0	SDP	1A 9	7.84	20.6	7,98	178	121	363
HGE	1	SDP	1A10	7.79	20.6	8.20	•		
HGE	2	SDP	1A12	8.35	20,2	8.18		,	
HGE	3	SDP	1A1	8.60	20.3	8.31		,	
HGE	4	SDP	1A2	8,33	20.5	8.17	,		•
HGE	5	SDP	1A3	7.76	20.5	8.16		,	•
HGE	6	SDP	1A4	8.04	20.6	8.21			
HGE	7	SDP	1A5	8.20	20.6	8.16			•
HGE	0	SDP	1B 9	7.97	20.2	8.10			
HGE	1	SDP	1B10	8.01	20.5	8.20	,	,	
HGE	2	SDP	1B12	8.20	20.3	8.22	,	,	
HGE	3	SDP	1B1	8.59	20,1	8.30	,		
HGE	4	SDP	1B2	8.57	20.3	8.26	•	,	
HGE	5	SDP	1B3	7.95	20.3	8.24		,	
HGE	6	SDP	1B4	8.22	20.5	8.24		,	
HGE	7	SDP	1B5	8,11	20.5	8.22			

Page _____ of ____

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

Statistical analysis of holding period water chemistry

SAS v. 9.4 Analysis Completion Date: 07MAY2014 Analysis prepared by: KLW $\mu\nu$

Obs	sps	day	form	id	do	temp	ph	hard	alk	con
1	HIC	0	FDP	1 A7	8.27	19.6	8.29	178	129	3 8 6
2	HIC	0	FDP	1B7	8.22	19.6	8.20			
3	HIC	1	FDP	1A8	8.21	19.7	8.24	gan () a		
4	HIC	1	FDP	1B8	8.07	19.6	8.24			
5	HIC	2	FDP	1A9	8.09	19.7	8.07			
6	HIC	2	FDP	1B9	7.95	19.6	8.27			•
7	HIC	3	FDP	1A10	8. 1 1	19.7	8.24		······································	
8	HIC	3	FDP	1B10	7.72	19.6	8.27			
9	HIC	4	FDP	1A11	7.88	19.7	8.23	•		
10	HIC	4	FDP	1B11	7.99	19.6	8.26	•	•	•
11	HIC	5	FDP	1A12	7.86	19.9	8.26		•	
12	H C	5	FDP	1B12	7.73	19.9	8.25	•		
13	HIC	6	FDP	1A1	7.92	19.7	8.16			
14	HIC	6	FDP	1B1	7.28	19.6	8.15		•	
15	HIC	7	FDP	1A2	7.55	19.5	8.15			
16	HIC	7	FDP	1B2	8.03	19.3	8.19	-		,
17	MUC	0	FDP	2A9	7.91	19.7	8.24	178	131	390
18	MUC	0	FDP	2B9	8.31	19.6	8.29			
19	MUC	1	FDP	2A10	7.92	19.6	8.29		,	
20	MUC	1	FDP	2B10	8.27	19.8	8.31			,
21	MUC	2	FDP	2A11	8.24	19.6	8.29			
22	MUC	2	FDP	2B11	7.86	19 <i>.</i> 6	8.18	,		,
23	MUC	3	FDP	2A12	8.28	19.9	8. 30		,	
24	MUC	3	FDP	2B12	8.10	19.8	8.26	•		
25	MUC	4	FDP	2A1	7.70	20.1	8.15	-	•	
26	MUC	4	FDP	2B1	7.68	19.9	8.19	•		
27	MUC	5	FDP	2A2	7.90	19.8	8.23	-		-
28	MUC	5	FDP	2B2	7.80	19.7	8.22	•	•	•
29	мис	6	FDP	2A3	7.79	19.9	8.26		•	•
30	мис	6	FDP	2B3	7.83	19.8	8.23		۰.	•
	MOC	0	ΓWF	200	7.03	19.0	0.23	•	•	

AEH-11-PSEUDO-02

FF #	2
Item No.	0
Pg	of <u>12</u>

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD6220 I... 5/7/2014

31	мис	7	FDP	2A4	7,55	20.1	8.20		*	
32	MUC	7	FDP	2 B4	7.77	19.9	8.20			
33	WAS	0	FDP	2A1	8.06	20.1	8.06	178	121	402
34	WAS	0	FDP	2A10	7.86	19.6	8.08			
35	WAS	0	FDP	2A11	8.3 3	19.5	8.16	-		
36	WAS	0	FDP	2A12	8.06	19.5	8.1 1	-		
37	WAS	0	FDP	2A2	8.01	20.0	8.09	•	•	
38	WAS	0	FDP	2A3	7.81	19.9	8.10	•	•	
39	WAS	0	FDP	2A4	7.94	19.8	8.06	•	•	
40	WAS	0	FDP	2A5	7.76	19.7	8.05	4	***** \do	
41	WAS	0	FDP	2A6	8.07	19.7	8.09	4		
42	WAS	0	FDP	2A7	7.80	19.6	8.06	•		
43	WAS	0	FDP	2A8	7.88	19.6	8.07	•	•	
44	WAS	0	FDP	2A9	8.38	19.6	8.17		•	1
45	WAS	0	FDP	2B1	8.54	19.8	8.14			
46	WAS	0	FDP	2B10	8.26	19.7	8.17			
47	WAS	0	FDP	2B11	8.30	19.9	8.13	•	· · · · · · · · ·	
48	WAS	0	FDP	2B12	8.18	20.1	8.12	•		•
49	WAS	0	FDP	2B2	8.35	19.7	8.12	• i		•
50	WAS	0	FDP	2B3	8.22	19.6	8.1 1	•		
51	WAS	0	FDP	2B4	8.05	19.7	8.09			
52	WAS	0	FDP	2B5	8.05	19.7	8.11		,	
53	WAS	0	FDP	2B6	8.11	19.8	8.10	n n ' uit ende av ede	4	•
54	WAS	0	FDP	2B7	8.42	19.8	8.17	•	,	, ,
55	WAS	0	FDP	2B8	7.97	19.9	8.11	•	- i	•
56	WAS	0	FDP	2B9	8.34	19.7	8.12	•		-
57	WAS	1	FDP	2A5	8.03	20.6	8.11	•		
58	WAS	1	FDP	2B5	8.19	20.4	8.13	-		
59	WAS	2	FDP	2A6	8.36	20.7	8.22		•	
60	WAS	2	FDP	2B6	8.23	20.3	8.09	, ,	•]	
61	WAS	3	FDP	2A7	8.41	20.7	8.16			•
62	WAS	3	FDP	2B7	8.22	20.4	8.14	-		
63	WAS	4	FDP	2A8	8.45	20.7	8.09	· · ·	• [
64	WAS	4	FDP	2B8	8.53	20.5	8.14	• [,	****
65	WAS	5	FDP	2A9	8.14	20.7	8.21	•		

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6220_1... 5/7/2014

Page 3 of 12

	WAS	5	FDP	2 B 9	8.08	20.5	8.14	{	Ì	
67	WAS	6		2A10	8.14	18.7	8.08		· · ·	
6 8	WAS		FDP	2B10		18.9	8.20		. .	
69	WAS		FDP	-	8.78		1	·	· · ·	ļ
				2A11	8.66	19.3	8.27	· · · · · · · · · · · · · · · · · · ·	ļ	
70	WAS	7		2B11	8.29	19.5	8.30		404	070
71	BLS	0	SDP	2A10	8.55	19.9	8.19	176	121	378
72	BLS	0	SDP	2B1	8.47	19.9	8.18			-
73	BLS	1	SDP	2A11	8.37	19.9	8.23	,	· ·	
74	BLS	1	SDP	2B2	8.38	20.0	8.26			ļ
75	BLS	2	SDP	2A12	8.53	19.8	7.88	• • • • • • • • • • • • • • • • • • • •		
76	BLS	2	SDP	2B3	8.45	19.9	7.90	· · · · ·	•	
77	BLS	3	SDP	2A1	8.25	20.5	8.21			· ••• - 1 × - 1 ••• •
78	BLS	3	SDP	2B4	8.30	2 0 .0	8.26	-		
79	BLS	4	SDP	2A2	8.32	20.2	8.24		•	
80	BLS	4	SDP	2B5	8.61	19.9	8.28	•	•	
81	BLS	5	SDP	2A3	8.51	20.2	8.24		•	
82	BLS	5	SDP	2B6	8.32	20.0	8.27		,	
83	BLS	6	SDP	2 A4	8.04	20.2	8.27	•	,	
84	BLS	6	SDP	2B7	8.59	20.1	8.30	•	1	
85	BLS	7	SDP	2A5	8.34	20.1	8.21			
86	BLS	7	SDP	2B8	8.54	20.1	8.27	•	, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
87	FAM	0	SDP	1A8	7.64	20.0	7.87	175	123	383
88	FAM	0	SDP	1B8	7.45	20.0	7.88	-		
89	FAM	1	SDP	1A9	8.36	20.2	7. 8 9	• •		
90	FAM	1	SDP	1B9	8.28	20.1	8.01		Weiner 2005 million	
91	FAM	2	SDP	1 A10	8.37	20.1	7.85			•
92	FAM	2	SDP	1B 1 0	8.72	20.0	7,97			
93	FAM	3	SDP	1A11	8.19	20.5	7.98	•		• • • • • • • • •
94	FAM	3	SDP	1B11	8.13	20.5	8.01			•
95	FAM	4	SDP	1A12	8.07	20.4	8.08			
96	FAM	4	SDP	1B12	8.25	20.5	8,13			
97	FAM	5	SDP	1A1	8.07	20,5	8.1 1			
98	FAM		SDP	1B1	8.05	20.4		647-7 117 746273	W 4 1848 419984	****
99	FAM	·····	SDP	1A2	7.96		8.14			• •
100	FAM	6	SDP	1B2	7.96	20.4				-

AEH-11-PSEUDO-02

 $file:///C:/Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD6220_I,... 5/7/2014$

	FAM	7	SDP	1A3	7.83	20,4	7.91		-	
102	FAM	7		1B3	8.03		8.05		<u>.</u>	:
103	HGE	0		1A9	7.84	20.6	7.98	178	121	363
104	HGE	0	SDP	1B9	7.97	20.2	8,10			
105	HGE	1	SDP	1A10	7.79	20.6	8.20		-	ļ
106	HGE	1	SDP	1B10	8.01	20.5	8.20			
107	HGE	2	SDP	1A12	8.35) 1	8.18			· • • • • • • •
108	HGE	2	SDP	1B12	8,20	20.3	8.22	·		
109	HGE	3	SDP	1A1	8,60	<u>.</u>	8.31			
110	HGE	3	SDP	1 B1	8.59	20.1	8.30			
111	HGE	4	SDP	1A2	8.33		8.17	11 - ¹ 14 - 160 - 17 - 17 - 18 - 18 - 18	NING - NITE 2201	
112	HGE	4	SDP	1B2	8.57	20.3	8.26		1-30° / Acres	a
113	HGE	5	SDP	1A3	7.76	20.5	8.16	*******	a	<u> </u>
114	HGE	5	SDP	1B3	7.95	20.3	8.24) - 20 20 20 40 W	
115	HGE	6	SDP	1A4	8.04	20.6	8.21			
116	HGE	6	SDP	1B4	8.22	20.5	8.24		. er æturtær	
117	HGE	7	SDP	1A5	8.20	20.6	8.16			
118	HGE	7	SDP	1B5	8.11	20.5	8.22	• • • • •		
119	PPB	0	SDP	1A10	8.34	20.3	7.92	174	126	364
120	PPB	0	SDP	1B10	8.46	20.3	8.02	الله منظر مريد . و		1.000 - 1.000 - 1 1
121	PPB	1	SDP	1A11	8.21	20.6	8.11			
122	PPB	1	SDP	1B11	7.93	20.6	8.03			
123	PPB	2	SDP	1A12	8.18	20.5	8,06			10 ***** do.do.da.da
124	PPB	2	SDP	1B12	8.16	20.6	8.09	•		
125	PPB	3	SDP	1A1	8.3 0	20.5	8.14			
126	PPB	3	SDP	1B1	8.0 6	20.4	8.16			
127	PPB	4	SDP	1A2	8.98	20.4	8.05		•	
128	PPB	4	SDP	1B12	8.65	20.1	8.08		• • •	
129	PPB	5	SDP	1A3	8.19	20.4	8.28			
130	PPB	5	SDP	1B3	8.46	20.2	8.21	•	•	•
131	PPB	6	SDP	1A4	8.21	20.2	8.18	•	•	ہیں۔ میں { !
132	PPB	6	SDP	1B4	8.23	20.0	8,10		•	
133	PPB	7	SDP	1A5	8.15	20.5	8.31	• • •	•	
134	PPB	7	SDP	1B5	8.04	20.4	8.25	.		

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6220_1... 5/7/2014

SAS Output

Performed by K. Weber SAS version 9.4 10:07 07MAY14 $\bigvee^{\mathcal{W}}$

Page 5 of 12

AEH-11-PSEUDO-02

 $file:///C:/Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD6220_1... 5/7/2014$

Analyzes dissolved oxygen, temperature and pH only

The MEANS Procedure

form=FDP

AEH-11-PSEUDO-02

sps	day	N Obs	Variable	Label	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean
HIC	0	2	do temp ph	do temp ph	8.2450 19.6000 8.2450	0.0354 0 0.0636	8.2200 19.6000 8.2000	8.2700 19.6000 8.2900	7.9273 7.6732	8.5627 8.8168
	1	2	do temp ph	do temp ph	8.1400 19.6500 8.2400	0.0990 0.0707 0	8.0700 19.6000 8.2400	8.2100 19.7000 8.2400	7.2506 19.0147	9.0294 20.2853
£ 2007,1 € 11 - 14	2	2	do temp ph	do temp ph	8.0200 19.6500 8.1700	0.0990 0.0707 0.1414	7.9500 19.6000 8.0700	8.0900 19.7000 8.2700	7.1306 19.0147 6.8994	8.9094 20.2853 9.4406
	3	2	do temp ph	do temp ph	7.9150 19.6500 8.2550	0.2758 0.0707 0.0212	7.7200 19.6000 8.2400	8.1100 19.7000 8.2700	5.4373 19.0147 8.0644	10.3927 20.2853 8.4456
	4	2	do temp ph	do temp ph	7.9350 19.6500 8.2450	0.0778 0.0707 0.0212	7.8800 19.6000 8.2300	7.9900 19.7000 8.2600	7.2362 19.0147 8.0544	8.6338 20.2853 8.4356
not (2011) 2012	5	2	do temp ph	do temp ph	7.7950 19.9000 8.2550	0.0919 0 0.00707	7.7300 19.9000 8.2500	7.8600 19.9000 8.2600	6.9691 8.1915	8.6209 8.3185
***********************	6	2	do temp ph	do temp ph	7.6000 19.6500 8.1550	0.4525 0.0707 0.00707	7.2800 19.6000 8.1500	7.9200 19.7000 8.1600	3.5340 19.0147 8.0915	11.6660 20.2853 8.2185
	7	2	do temp ph	do temp ph	7.7900 19.4000 8.1700	0.3394 0.1414 0.0283	7.5500 19.3000 8.1500	8.0300 19.5000 8.1900	4.7405 18.1294 7.9159	10.8395 20.6706 8.4241
MUC	0	2	do temp ph	do temp ph	8.1100 19.6500 8.2650	0.2828 0.0707 0.0354	7.9100 19.6000 8.2400	8.3100 19.7000 8.2900	5.5688 19.0147 7.9473	10.6512 20.2853 8.5827
	1	2	do temp ph	do temp ph	8.0950 19.7000 8.3000	0.2475 0.1414 0.0141	7.9200 19.6000 8.2900	8.2700 19.8000 8.3100	5.8714 18.4294 8.1729	10.3186 20.9706 8.4271
a national de la company	2	2	do temp ph	do temp ph	8.0500 19.6000 8.2350	0.2687 0 0.0778	7.8600 19.6000 8.1800	8,2400 19.6000 8.2900	5.6358 7.5362	10.4642 8.9338
	3	2	do temp ph	do temp ph	8.1900 19.8500 8.2800	0.1273 0.0707 0.0283	8.1000 19.8000 8.2600	8.2800 19.9000 8.3000	7.0464 19.2147 8.0259	9.3336 20.4853 8.5341
1: 3 < 6 = 7 = 9 = 9 = 9 = 9 = 9 = 9 = 9 = 9 = 9	, , , , , , , , , , , , , , , , , , ,		do	do	7.6900	0.0141	7.6800	7.7000	7.5629	7.8171

 $file:///C:/Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD6220_1... 5/7/2014$

	4	2	temp ph	temp ph	20.0000 8.1700	0.1414 0.0283	19.9000 8.1500	20.1000 8.1900	18. 7294 7.9159	21.2706 8.4241
	5	2	do temp ph	do temp ph	7.8500 19.7500 8.2250	0.0707 0.0707 0.00707	7.8000 19.7000 8.2200	7.9000 19.8000 8.2300	7.2147 19.1147 8.1615	8.4853 20.3853 8.2885
	6	2	do temp ph	do temp ph	7.8100 19.8500 8.2450	0.0283 0.0707 0.0212	7.7900 19.8000 8.2300	7.8300 19.9000 8.2600	7.5559 19.2147 8.0544	8.0641 20.4853 8.4356
	7	2	do temp ph	do temp ph	7.6600 20.0000 8.2000	0.1556 0.1414 0	7.5500 19.9000 8.2000	7.7700 20.1000 8.2000	6.2623 18.7294	9.0577 21.2706
WAS	0	24	do temp ph	do temp ph	8.1146 19.7500 8.1079	0.2171 0.1668 0.0360	7.7600 19.5000 8.0500	8.5400 20.1000 8.1700	8.0229 19.6796 8.0927	8.2063 19.8204 8.1231
	1	2	do temp ph	do temp ph	8.1100 20.5000 8.1200	0.1131 0.1414 0.0141	8.0300 20.4000 8.1100	8.1900 20.6000 8.1300	7.0935 19.2294 7.9929	9.1265 21.7706 8.2471
	2	2	do temp ph	do temp ph	8.2950 20.5000 8.1550	0.0919 0.2828 0.0919	8.2300 20.3000 8.0900	8.3600 20.7000 8.2200	7.4691 17.9588 7.3291	9.1209 23.0412 8.9809
ander ange er er orthogen mendamme kand en tr	3	2	do temp ph	do temp ph	8.3150 20.5500 8.1500	0.1344 0.2121 0.0141	8.2200 20.4000 8.1400	8.4100 20.7000 8.1600	7.1079 18.6441 8.0229	9.5221 22.4559 8.2771
and an other second second second	4	2	do temp ph	do temp ph	8.4900 20.6000 8.1150	0.0566 0.1414 0.0354	8.4500 20.5000 8.0900	8.5300 20.7000 8.1400	7.9818 19.3294 7.7973	8.9982 21.8706 8.4327
1000 WARL - 0	5	2	do temp ph	do temp ph	8.1100 20.6000 8.1750	0.0424 0.1414 0.0495	8.0800 20.5000 8.1400	8.1400 20.7000 8.2100	7.7288 19.3294 7.7303	8.4912 21.8706 8.6197
	6	2	do temp ph	do temp ph	8.4600 18.8000 8. 1 400	0.4525 0.1414 0.0849	8.1400 18.7000 8.0800	8.7800 18.9000 8.2000	4.3940 17.5294 7.3776	12.5260 20.0706 8.9024
	7	2	do temp ph	do temp ph	8.4750 19.4000 8.2850	0.2616 0.1414 0.0212	8.2900 19.3000 8.2700	8.6600 19.5000 8.3000	6.1244 18.1294 8.0944	10.8256 20.6706 8.4756

form=SDP

sps	day	N Obs	Variable	Label	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean
BLS	0	2	do temp ph	do temp ph	8.5100 19.9000 8.1850	0.0566 0 0.00707	8.4700 19.9000 8.1800	8.5500 19.9000 8.1900	8.0018 8.1215	9.0182 8.2485
	1		do temp	do temp	8.3750 19.9500	0.00707 0.0707	8.3700 19,9000	8.3800 20.0000	8.3115 19.3147	8.4385 20.5853

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6220_I... 5/7/2014

SAS Output

AEH-11-PSEUDO-02

			ph	ph	8.2450	0.0212	8.2 3 00	8.2600	8.0544	8.4356
	2	2	do temp ph	do temp ph	8.4900 19.8500 7.8900	0.0566 0.0707 0.0141	8.4500 19.8000 7.8800	8.5300 19.9000 7.9000	7.9818 19.2147 7.7629	8.998 20.485 8.017
	3	2	do temp ph	do temp ph	8.2750 20.2500 8.2350	0.0354 0.3536 0.0354	8.2500 20.0000 8.2100	8.3000 20.5000 8.2600	7.9573 17.0734 7.9173	8.592 23.426 8.552
	4	2	do temp ph	do temp ph	8.4650 20.0500 8.2600	0.2051 0.2121 0.0283	8.3200 19.9000 8.2400	8.6100 20.2000 8.2800	6.6226 18.1441 8.0059	10.307 21.955 8.514
	5	2	do temp ph	do temp ph	8.4150 20.1000 8.2550	0.1344 0.1414 0.0212	8.3200 20.0000 8.2400	8.5100 20.2000 8.2700	7.2079 18.8294 8.0644	9.622 21.370 8.445
rr 40, mar - 1 - An Allanov doudd - A	6	2	do temp ph	do temp ph	8.3150 20.1500 8.2850	0.3889 0.0707 0.0212	8.0400 20.1000 8.2700	8.5900 20.2000 8.3000	4.8208 19.5147 8.0944	11.809 20.785 8.475
5000 - 900 (10) - 90 (10) - 97 (10) - 97 (10) - 97 (10) - 98 (10)	7	2	do temp ph	do temp ph	8.4400 20.1000 8.2400	0.1414 0 0.0424	8.3400 20.1000 8.2100	8.5400 20.1000 8.2700	7.1694 7.8588	9.710 8.621
FAM	0	2	do temp ph	do temp ph	7.5450 20.0000 7.8750	0.1344 0 0.00707	7.4500 20.0000 7.8700	7.6400 20.0000 7.8800	6.3379 7.8115	8.752 7.938
	1	2	do temp ph	do temp ph	8.3200 20.1500 7.9500	0.0566 0.0707 0.0849	8.2800 20.1000 7.8900	8.3600 20.2000 8.0100	7.8118 19.5147 7.1876	8.8282 20.7853 8.7124
το του τουροιο του	2	2	do temp ph	do temp ph	8.5450 20.0500 7.9100	0.2475 0.0707 0.0849	8.3700 20.0000 7.8500	8.7200 20.1000 7.9700	6.3214 19.4147 7.1476	10.7686 20.6853 8.6724
	3	2	do temp ph	do temp ph	8.1600 20.5000 7.9950	0.0424 0 0.0212	8.1300 20.5000 7.9800	8,1900 20.5000 8.0100	7.7788 7.8044	8.5412 8.1850
	4	2	do temp ph	do temp ph	8.1600 20.4500 8.1050	0.1273 0.0707 0.0354	8.0700 20.4000 8.0800	8.2500 20.5000 8.1300	7.0164 19.8147 7.7873	9.3030 21.0853 8.4227
	5	2	do temp ph	do temp ph	8.0600 20.4500 8.1100	0.0141 0.0707 0	8.0500 20.4000 8.1100	8.0700 20.5000 8.1100	7.9329 19.8147	8.187 21.0853
	6	2	do temp ph	do temp ph	7.9600 20.5000 8.1450	0 0.1414 0.00707	7.9600 20.4000 8.1400	7.9600 20.6000 8.1500	19.2294 8.0815	21.7706 8.2085
	7	2	do temp ph	do temp ph	7.9300 20.3500 7.9800	0.1414 0.0707 0.0990	7.8300 20.3000 7.9100	8.0300 20.4000 8.0500	6.6594 19.7147 7.0906	9.2006 20.9853 8.8694
HGE	0	2	do temp	do temp	7.9050 20.4000	0.0919 0.2828	7.8400 20.2000	7,9700 20.6000	7.0791 17.8588	8.7309 22.9412

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6220_1... 5/7/2014

			ph	ph	8.0400	0.0849	7.9800	8.1000	7.2776	8.8024
	1	2	do temp ph	do temp ph	7.9000 20.5500 8.2000		7.7900 20.5000 8.2000	8.0100 20.6000 8.2000	6.5023 19.9147	9.2977 21.1853
	2	2	do temp ph	do temp ph	8.2750 20.2500 8.2000	0.1061 0.0707 0.0283	8.2000 20.2000 8.1800	8.3500 20.3000 8.2200	7.3220 19.6147 7.9459	9.2280 20.8853 8.4541
	3	2	do temp ph	do temp ph	8.5950 20.2000 8.3050	0.00707 0.1414 0.00707	8.5900 20.1000 8.3000	8.6000 20.3000 8.3100	8.5315 18.9294 8.2415	8.6585 21.4706 8.3685
■ unite (17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18	4	2	do temp ph	do temp ph	8.4500 20.4000 8.2150	0.1697 0.1414 0.0636	8.3300 20.3000 8.1700	8.5700 20.5000 8.2600	6.9253 19.1294 7.6432	9.9747 21.6706 8.7868
	5	2	do temp ph	do temp ph	7.8550 20.4000 8.2000	0.1 344 0.1414 0.0566	7.7600 20.3000 8.1600	7.9500 20.5000 8.2400	6.6479 19.1294 7.6918	9,0621 21.6706 8.7082
	6	2	do temp ph	do temp ph	8.1300 20.5500 8,2250	0.1273 0.0707 0.0212	8.0400 20.5000 8.2100	8.2200 20.6000 8.2400	6.9864 19.9147 8.0344	9.2736 21.1853 8.4156
r r 2 JAAr VOIn 15 100 NAMP I V → 4 Pri V	7	2	do temp ph	do temp ph	8.1550 20,5500 8.1900	0.0636 0.0707 0.0424	8,1100 20.5000 8.1600	8.2000 20.6000 8.2200	7.5832 19.9147 7.8088	8.7268 21.1853 8.5712
PPB	0	2	do temp ph	do temp ph	8.4000 20.3000 7.9700	0.0849 0 0.0707	8.3400 20.3000 7.9200	8.4600 20.3000 8.0200	7.6376 7.3347	9,1624 8.6053
V MANAN A Kan A ponumun - v- a w' - yana dago	1	2	do temp ph	do temp ph	8.0700 20.6000 8.0700	0.1980 0 0.0566	7.9300 20.6000 8.0300	8.2100 20.6000 8.1100	6.2911 7.5618	9.8489 8.5782
en en en en en en en en en en en en en e	2	2	do temp ph	do temp ph	8.1700 20.5500 8.0750	0.0141 0.0707 0.0212	8.1600 20.5000 8.0600	8.1800 20.6000 8.0900	8.0429 19.9147 7.8844	8.2971 21.1853 8.2656
	3	2	do temp ph	do temp ph	8.1800 20.4500 8.1500	0.1697 0.0707 0.0141	8.0600 20.4000 8.1400	8.3000 20.5000 8.1600	6.6553 19.8147 8.0229	9.7047 21.0853 8.2771
and because and a second second	4	2	do temp ph	do temp ph	8.8150 20.2500 8.0650	0.2333 0.2121 0.0212	8.6500 20.1000 8.0500	8,9800 20.4000 8.0800	6.7185 18.3441 7.8744	10.9115 22.1559 8.2556
	5	2	do temp ph	do temp ph	8.3250 20.3000 8.2450	0.1909 0.1414 0.0495	8.1900 20.2000 8.2100	8.4600 20.4000 8.2800	6.6097 19.0294 7.8003	10.0403 21.5706 8.6897
	6	2	do temp ph	do temp ph	8.2200 20.1000 8.1400	0.0141 0.1414 0.0566	8.2100 20.0000 8.1000	8.2300 20.2000 8.1800	8.0929 18.8294 7.6318	8.3471 21.3706 8.6482
	7	2	do temp	do temp	8.0950 20.4500	0.0778 0.0707	8.0400 20.4000	8.1500 2 0 .50 0 0	7.3962 19.8147	8.7938 21.0853

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6220_I... 5/7/2014

SAS	Outp	ut					AEH	-11-PSEUD		Page 10 of 12
	1		ph	ph	8.280	0.0424	8.2500	8.3100	7.8988	8.6612

Performed by K. Weber SAS version 9.4 10:07 07MAY14 $\bigvee\!\!\mathcal{W}$

 $file:///C:/Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD6220_1... 5/7/2014$

Analyzes dissolved oxygen, temperature and pH only

The MEANS Procedure

form=FDP

sps	N Obs	Variable	Label	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean
HIC	16	do temp ph	do temp ph	7.9300 19.6438 8.2169	0.2618 0.1413 0.0591	7.2800 19.3000 8.0700	8.2700 19.9000 8.2900	7,7905 19.5685 8.1854	8.0695 19.7190 8.2484
MUC	16	do temp ph	do temp ph	7.9319 19.8000 8.2400	0.2374 0.1633 0.0482	7.5500 19.6000 8.1500	8.3100 20.1000 8.3100	7.8054 19.7130 8.2143	8.0584 19.8870 8.2657
WAS	38	do temp ph	do temp ph	8.1911 19.8921 8.1282	0.2385 0.4812 0.0561	7.7600 18.7000 8.0500	8.7800 20.7000 8.3000	8.1126 19.7339 8.1097	8.2695 20.0503 8.1466

form=SDP

sps	N Obs	Variable	Label	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean
BLS	16	do temp ph	do temp ph	8.4106 20.0438 8.1994	0.1498 0.1750 0.1253	8.0400 19.8000 7.8800	8.6100 20.5000 8.3000	8.3308 19.9505 8.1326	8.4905 20.1370 8.2661
FAM	16	do temp ph	do temp ph	8.0850 20.3063 8.0088	0.2990 0.2081 0.1053	7.4500 20.0000 7.8500	8.7200 20.6000 8.1500	7.9257 20.1954 7.9526	8.2443 20.4171 8.0649
HGE	16	do temp ph	do temp ph	8.1581 20.4125 8.1969	0.2753 0.1668 0.0785	7.7600 20.1000 7.9800	8.6000 20.6000 8.3100	8.0114 20.3236 8.1550	8.3048 20.5014 8.2387
PPB	16	do temp ph	do temp ph	8.2844 20.3750 8.1244	0.2563 0.1807 0.1038	7.9300 20.0000 7.9200	8.9800 20.6000 8.3100	8. 147 8 20.2787 8.0691	8.4210 20.4713 8.1797

Performed by K. Weber SAS version 9.4 10:07 07MAY14 $\sqrt{N^3}$

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6220_I,... 5/7/2014

Holding Period Water Chemistry Means for all Species over all holding period days

The MEANS Procedure

Variable	Label	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	
do	do	8.1497	0.2853	7.2800	8.9800	8.1010	8.1984
temp	temp	20.0388	0.3945	18.7000	20.7000	19.9714	20,1062
ph	ph	8.1541	0.1055	7.8500	8.3100	8.1361	8.1721
hard		176.7	1.7043	174.0	178.0	175.1	178.3
alk		124.6	4.1576	121.0	131.0	120.7	128.4
con		380.9	13.9813	363.0	402.0	367.9	393.8

Performed by K. Weber SAS version 9.4 10:07 07MAY14

FF #				
ltem	No.	10		
Pg_	12	of_	12	

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6220_I... 5/7/2014

```
DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
FOOTNOTE1 'Performed by K. Weber SAS version' &SYSVER &SYSTIME &SYSDATE;
options ls=97 ps=57 formdlim='-' pageno = 1 nocenter nodate nosource2;
title1 h=2 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels fre
title2 h=2 'Statistical analysis of holding period water chemistry';
title3 h=2 'SAS v. 9.4 Analysis Completion Date: 07MAY2014 Analysis prepared by: KLW';
Analysis prepared by: KLW WW
* SAS ver 9.4
* Analysis completion date: 07MAY14
*******
                                                                AEH-11-PSEUDO-02
*****
* Variable Names:
* sps = three letter code for mussel species
          BLS = Black sandshell (Ligumia recta)
*
          FAM = Fatmucket (Lampsilis siliquoidea)
*
          WAS = Washboard (Megalonaias nervosa)
          HGE = Higgins eye (Lampsilis higginsii)
          PPB = Plain pocketbook (Lapsilis cardium)
          HIC = Hickorynut (Obovaria olivaria)
          MUC = Mucket (Actinonaias ligamentina)
* day = days post-exposure during holding period (0 through 7)
* form = formulation (FDP [freeze dried powder] vs. SDP [spray dried powder])
* id = chamber ID
          i.e., 3A5 = \text{test system} (1, 2 or 3), Block ID (A or B), and Position in Block (1 - 6)
* do = dissolved oxygen (mg/L)
* temp = temperautre (C)
* pH = pH
* hard = hardness (mg/L CaCO3)
* alk = alkalinity (mg/L CaCO3)
* cond = conductivity (uS/cm2) temperature compensate to 250
*****
                                *************
data hold water chem; set Pseudo02.hold water chem;
   hardy = input(hard, 3.);
       drop hard;
       rename hardy = hard;
   alky = input(alk, 3.);
                                                                FF# 10
       drop alk;
                                                                 Item No. 1
       rename alky = alk;
                                                                 Pa ( of \partial
   cony = input(con, 3.);
       drop con;
       rename cony = con;
proc sort data=hold water chem; by form sps day id; run;
proc print data=hold water chem; run;
title1 h=2 'Holding Period Water Chemistry Means by Species and Formulation for each holding period da
title1 h=2 'Analyzes dissolved oxygen, temperature and pH only';
proc means data = hold_water_chem mean std min max clm fw=8;
by form;
class sps day;
var do temp ph;
```

run;

title1 h=2 'Holding Period Water Chemistry Means by Species and Formulation for all holding period day
title1 h=2 'Analyzes dissolved oxygen, temperature and pH only';
proc means data = hold_water_chem mean std min max clm fw=8;
by form;
class sps;
var do temp ph;
run;
AEH-11-PSEUDO-02

title1 h=2 'Holding Period Water Chemistry Means for all Species over all holding period days'; proc means data = hold_water_chem mean std min max clm fw=8; var do temp ph hard alk con; run;

AWAN SOIN

FF # Item No. Pg

200 DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT; 201 202 FOOTNOTE1 'Performed by K. Weber SAS version' &SYSVER &SYSTIME &SYSDATE; WARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text. 203 204 options 1s=97 ps=57 formdlim='-' pageno = 1 nocenter nodate nosource2; 205 206 title1 h=2 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile 206! mussels from seven different unionid species; 207 title2 h=2 'Statistical analysis of holding period water chemistry'; 208 title3 h=2 'SAS v. 9.4 Analysis Completion Date: 07MAY2014 Analysis prepared by: KLW'; 210 * SAS ver 9.4 Analysis prepared by: KLW W AEH-11-PSEUDO-02 211 * Analysis completion date: 07MAY14 ************ 213 214! ********** 215 * Variable Names: 215! 216 * sps = three letter code for mussel species 2161 217 * BLS = Black sandshell (Ligumia recta) 217! 218 * FAM = Fatmucket (Lampsilis siliquoidea) 2181 219 * WAS = Washboard (Megalonaias nervosa) 2191 220 * HGE = Higgins eye (Lampsilis higginsii) 2201 221 * PPB = Plain pocketbook (Lapsilis cardium) 2211 222 * HIC = Hickorynut (Obovaria olivaria) 2221 223 * MUC = Mucket (Actinonaias ligamentina) 2231 224 * day = days post-exposure during holding period (0 through 7) 2241 225 * form = formulation (FDP [freeze dried powder] vs. SDP [spray dried powder]) 225! 226 * id = chamber ID 226! 227 i.e., 3A5 = test system (1, 2 or 3), Block ID (A or B), and Position in Block (1 227! - 6) 228 * do = dissolved oxygen (mg/L) 228! 229 * temp = temperautre (C) 229! 230 * pH = pH 2301 FF # 10 231 * hard = hardness (mg/L CaCO3) Item No. 12 2311 Pg (______ of _____ 232 * alk = alkalinity (mg/L CaCO3) 232! 233 * cond = conductivity (uS/cm2) temperature compensate to 25C 2331

234! **********/ 235 236 data hold_water_chem; set Pseudo02.hold water chem; 237 hardy = input(hard, 3.); 238 drop hard; 239 rename hardy = hard; 240 alky = input(alk, 3.); 241 drop alk; 242 rename alky = alk; AEH-11-PSEUDO-02 cony = input(con, 3.);243 244 drop con; 245 rename cony = con;246 NOTE: There were 134 observations read from the data set PSEUD002.HOLD_WATER_CHEM. NOTE: The data set WORK.HOLD_WATER_CHEM has 134 observations and 10 variables. NOTE: DATA statement used (Total process time): real time 0.02 seconds cpu time 0.01 seconds 247 proc sort data=hold_water_chem; by form sps day id; run; NOTE: There were 134 observations read from the data set WORK.HOLD WATER CHEM. NOTE: The data set WORK.HOLD_WATER_CHEM has 134 observations and 10 variables. NOTE: PROCEDURE SORT used (Total process time): real time 0.00 seconds cpu time 0.01 seconds 248 proc print data=hold water chem; run; NOTE: Writing HTML Body file: sashtml3.htm NOTE: There were 134 observations read from the data set WORK.HOLD_WATER_CHEM. NOTE: PROCEDURE PRINT used (Total process time): real time 2.73 seconds cpu time 0.67 seconds 249 250 title1 h=2 'Holding Period Water Chemistry Means by Species and Formulation for each holding 250! period day'; 251 title1 h=2 'Analyzes dissolved oxygen, temperature and pH only'; 252 proc means data = hold_water_chem mean std min max clm fw=8; 253 by form; 254 class sps day; Page 2 of 3 255 var do temp ph; 256 run; NOTE: There were 134 observations read from the data set WORK.HOLD WATER CHEM. NOTE: PROCEDURE MEANS used (Total process time): real time 0.16 seconds cpu time 0.12 seconds

257 258 title1 h=2 'Holding Period Water Chemistry Means by Species and Formulation for all holding 258! period days'; 259 title1 h=2 'Analyzes dissolved oxygen, temperature and pH only'; 260 proc means data = hold_water_chem mean std min max clm fw=8; 261 by form; 262 class sps; AEH-11-PSEUDO-02 263 var do temp ph; 264 run; NOTE: There were 134 observations read from the data set WORK.HOLD_WATER_CHEM. NOTE: PROCEDURE MEANS used (Total process time): real time 0.05 seconds cpu time 0.03 seconds 265 266 title1 h=2 'Holding Period Water Chemistry Means for all Species over all holding period 266! days'; 267 proc means data = hold_water_chem mean std min max clm fw=8; 268 var do temp ph hard alk con; 269 run; NOTE: There were 134 observations read from the data set WORK.HOLD_WATER_CHEM. NOTE: PROCEDURE MEANS used (Total process time): real time 0.05 seconds opu time 0.01 seconds

.

Ann Anna Park

FF# (0 Item No. 12 Pg 3 of 3

Study Numbe	r: AEH-11-PSEUDO-02	Action	Date	Initials
Data Source:	File Folders: 18a	Created	1-May-14	KLW (42
	System Condition Form 1	Revised	, 19-Nov-14	KLW WW
		Reviewed	19 NOVA	Ph
File Name:	I:\AEH-11-PSEUDO-02\Data\[PSEUDO-02 System Conditions for SAS.xisx]Flow Rates	Certified	4/2/14	34-

System Conditions - Flow Rates

Scientific Name	Common Name	Abbreviation	Formulation Type	Test Article Lot Number	Exposure Date	Assessmeni Date
Obovaria olivaria	Hickorynut	HIC	FDP	110510FD	12-Jul-11	20-Jul-11
Actinonaias ligamentino	Mucket	MUC	FDP	110510FD	14-Jul-11	22-Jul-11
Megalonalas nervosa	Washboard	WAS	FDP	110928FD	13-Dec-11	21-Dec-11
Lampsilis siliquoidea	Fatmucket	FAM	SDP	MBI-401 SDP 4655-12-Mix	27-Jan-12	4-Feb-12
Ligumia recta	Black sandshell	BLS	SDP	TR4669-4-(7-8) 2nd shipment	17-Apr-12	25-Apr-12
Lompsilis cardium	Plain pocketbook	PPB	SOP	TR4669-4-(5)	16-May-12	24-May-12
Lampsilis higginsii	Higgins eye	HGE	SDP	~~R4669-4-(5)	26-May-12	3-Jun-12

Data Codes used within SAS

sps = Juvenile mussel species (see 3 letter abbreviation codes above)

form = Product formulation

FDP = Freeze dried powder

SDP = Spray dried powder

day = Sampling date

-2 = Pre-exposure sampling

-1 = Exposure day sampling

0 to 7 = Day 0 to 7 after exposure

id = Exposure chamber ID

i.e., 1A2 = Test system (1, 2, or 3), Block ID (A or B), and Position in Block (1-12) fflow = Measured flow (if oflow was < 7 mL/min, then fflow is the fixed measured flow) oflow = Original flow if < 7 mL/min

Data Explanation

System condition data analyses were limited to simple descriptive statistics (Proc Means) using SAS Version 9.4.

Data Anomalies and Devlations NONE

File Forder	18
Item Number	
Page	of 20

sps	form	day	id	fflow	oflow
BLS	SDP	-2	A1	8.0	
BLS	SDP	-2	A10	8.4	
BLS	SDP	-2	A11	7.8	
BLS	SDP	-2	A12	8.2	
BLS	SDP	-2	A2	8.2	
BLS	SDP	-2	A3	8.6	
BLS	SDP	-2	A4	7.4	
BLS	SDP	-2	A5	8.4	•
BLS	SDP	-2	A6	8,6	•
BLS	SDP	-2	A7	7.8	
BLS	SDP	-2	A8	8.6	•
BLS	SDP	-2	A9	8.2	•
BLS	SDP	-2	B1	7.8	•
BLS	SDP	-2	B10	8.2	•
BL\$	SDP	-2	B11	9.0	•
BLS	SDP	-2	B12	8,9	•
BLS	SDP	-2	B2	8.2	•
BLS	SDP	-2	B3	9.2	•
BLS	SDP	-2	B4	8.7	
BLS	SDP	-2	B5	8.7	,
BLS	SDP	-2	B6	8.5	•
BLS	SDP	-2	B7	8.6	
BLS	SDP	-2	B8	8.1	
BLS BLS	SDP	⊷2 1	B9	8.4	
BLS	SDP SDP	-1 -1	A1 A10	9.2 9.3	
BLS	SDP SDP	-1 -1	A10 A11	9.5 9.1	
BLS	SDP	-1	A11 A12	9.5	•
BLS	SDP	-1	A12 A2	5.5 7.7	•
BLS	SDP	-1	A3	8.8	'
BLS	SDP	-1	A4	8.4	
BLS	SDP	-1	A5	9. 0	•
BLS	SDP	-1	A6	8.3	•
BLS	SDP	-1	A7	9.4	4.0
BLS	SDP	-1	A8	9,4	
BLS	SDP	-1	A9	9.4	
BLS	SDP	-1	B1	9.0	
BLS	SDP	-1	B10	9,2	
BLS	SDP	-1	B11	9.3	
BLS	SDP	-1	B12	9.4	
BLS	SDP	-1	B2	8.6	
BLS	SDP	-1	В3	9,2	5.8
BLS	SDP	-1	B4	9.4	
BLS	SDP	-1	B5	9.8	
BLS	SDP	-1	B6	9.0	
BLS	SDP	-1	B7	9.0	

Page _____ of ____

.

BLS	SDP	-1	B8	8.3	
BLS	SDP	-1	B 9	8.6	
BLS	SDP	0	A1	7.2	
BLS	SDP	0	A10	7.7	
BLS	SDP	0	A11	7.8	
BLS	SDP	0	A12	7.4	
BLS	SDP	0	A2	7.5	
BLS	SDP	0	A3	7.6	
BLS	SDP	0	A4	7.6	
BLS	SDP	0	A5	7.2	
BLS	SDP	0	A6	7.6	
BLS	SDP	0	A7	7.3	
BL S	SDP	0	- A8	7.4	
BLS	SDP	0	A9	7.8	
BLS	SDP	0	B1	7.0	
BLS	SDP	0	B10	7.6	
BLS	SDP	0	B 1 1	8.0	
BLS	SDP	0	B12	8.0	
BLS	SDP	0	B2	7.6	
BLS	SDP	0	B3	7.6	
BLS	SDP	0	B4	8.5	
BLS	SDP	0	B5	8.2	
BLS	SDP	0	B6	8.1	
BLS	SDP	0	B7	8.1	
BLS	SDP	0	B8	7.7	
BLS	SDP	0	B9	7.8	
BLS	SDP	1	A1	7.8	
BLS	SDP	1	A2	9.1	
BLS	SDP	1	A3	9.0	
BLS	SDP	1	A4	9.4	
BLS	SDP	1	B1	9.4	
BLS	SDP	1	B2	9.0	
BLS	SDP	1	83	9.1	
BLS	SDP	1	B4	8.6	
BLS	SDP	2	A1	9,5	
BLS	SDP	2	A2	8.9	
BLS	SDP	2	A3	9.0	
BLS	SDP	2	A4	9.2	
BLS	SDP	2	B1	9.1	
BLS	SDP	2	B2	9.2	
BLS	SDP	2	B3	9.1	
BLS	SDP	2	B4	9,4	
BLS	SDP	3	A1	8.4	
BLS	SDP	3	A2	9.4	
BLS	SDP	3	A3	8.9	
BLS	SDP	3	A4	9.3	
BLS	SDP	3	B1	8.6	

Page <u>3</u> of <u>20</u>

BLS	SDP	3	B2	8.6
BLS	SDP	3	В3	8.7
BLS	SDP	3	B4	9.6
BLS	SDP	4	A1	7.4
BLS	SDP	4	A2	8.2
BLS	SDP	4	A3	9.0
BLS	SDP	4	A4	9.1
BLS	SDP	4	B1	9.2
BLS	SDP	4	B2	8,8
BLS	SDP	4	B3	8.6
BLS	SDP	4	B4	8.4
BLS	SDP	5	A1	9.4
BLS	SDP	5	A2	8.3
BLS	SDP	5	A3	9.4
BLS	SDP	5	A4	9.2
BLS	S DP	5	B1	9.0
BLS	SDP	5	B2	9.4
BLS	SDP	5	B3	9.4
BLS	SDP	5	B4	9.5
BLS	SDP	6	A1	8.7
BLS	SDP	6	A2	8.3
BLS	SDP	6	A3	9.4
BLS	SDP	6	A4	9.8
BLS	SDP	6	B1	8.4
BLS	SDP	6	B2	9.0
BLS	SDP	6	B3	9.2
BLS	SDP	6	B4	9.8
BLS	SDP	7	A1	10.0
BLS	SDP	7	A2	9.0
BLS	SDP	7	A3	9,6
BLS	SDP	7	A4	8,2
BLS	SDP	7	B1	7.3
BLS	SDP	7	B2	9.4
BLS	SDP	7	83	9.3
BLS	SDP	7	B4	9.6
FAM	SDP	-2	A1	8.8
FAM	SDP	-2	A10	8.0
FAM	SDP	-2	A11	8.8
FAM	SDP	-2	A12	7.8
FAM	SDP	-2	A2	8.2
FAM	SDP	-2	A3	8.0
FAM	SDP	-2	A4	7.4
FAM	SDP	-2	A5	7.6
FAM	SDP	-2	A6	7.6
FAM	SDP	-2	A7	8.0
FAM	SDP	-2	A8	8.0
FAM	SDP	~2	A9	7.8

.

٠

Page <u>4</u> of <u>20</u>

FAM	SDP	-2	B1	8.0	
FAM	SDP	-2	B10	7.6	
FAM	SDP	-2	B11	8.4	
FAM	SDP	-2	B12	8.6	
FAM	SDP	-2	B2	7.4	
FAM	SDP	-2	B3	7.8	
FAM	SDP	-2	B4	8,4	
FAM	SDP	-2	B5	9.0	
FAM	SDP	-2	B6	7.8	
FAM	SDP	-2	B7	8.2	
FAM	SDP	-2	B8	7.8	•
FAM	SDP	-2	B9	8.6	
FAM	SDP	-1	A1	8.4	
FAM	SDP	-1	A10	8.6	
FAM	SDP	-1	A11	7.3	
FAM	SDP	-1	A12	8.1	•
FAM	SDP	-1	A2	8.2	
FAM	SDP	-1	A3	8.4	
FAM	SDP	-1	A4	7.2	
FAM	SDP	-1	A5	8.0	•
FAM	SDP	-1	A6	7.5	
FAM	SDP	-1	A7	8.8	
FAM	SDP	-1	A8	8.1	
FAM	SDP	-1	A9	8.5	
FAM	SDP	-1	B1	8.5	•
FAM	SDP	-1	B10	7.9	•
FAM	SDP	-1	B11	8.2	
FAM	SDP	-1	B12	8.0	
FAM	SDP	-1	B2	8.0	,
FAM	SDP	-1	B3	8.1	
FAM	SDP	-1	B4	9.4	•
FAM	SDP	-1	B5	8.2	•
FAM	SDP	-1	B6	8.4	6.1
FAM	SDP	-1	B7	8.0	•
FAM	SDP SDP	-1	88 DO	8.0	•
FAM FAM	SDP	-1	B9	8.2	•
		0	A1	8.4	•
FAM	SDP	0	A10	8.4	
FAM FAM	SDP	0	A11	9.0	6.0
FAM	SDP	0 0	A12	8.4	•
	SDP		A2	9.2	•
FAM FAM	SDP	0	A3	8.6	•
FAM	SDP SDP	0 0	A4	8.0	•
FAM	SDP	0	A5	8.0	
FAIVI	SDP	0	A6	7.4 8 c	•
FAM	SDP		A7	8.6	•
CHIV!	SDP	0	A8	8.4	•

.

AEH-11-PSEUDO-02

Page <u>5</u> of <u>20</u>

FAM	SDP	0	A9	8.8	
FAM	SDP	0	B1	8.2	
FAM	SDP	Ο	B10	8.2	
FAM	SDP	0	B11	8.3	
FAM	SDP	0	B12	9.0	
FAM	SDP	0	B2	8.3	
FAM	SDP	0	В3	8.4	
FAM	SDP	0	B4	9.6	
FAM	SDP	0	B5	8.3	
FAM	SDP	0	86	8.5	
FAM	SDP	0	B7	8.3	•
FAM	SDP	0	B8	7.1	
FAM	SDP	0	В9	7.7	
FAM	SDP	1	A1	8.5	
FAM	SDP	1	A2	8.6	
FAM	SDP	1	A3	9.0	
FAM	SDP	1	A4	7,8	
FAM	SDP	1	B1	9.3	
FAM	SDP	1	B2	8.2	
FAM	SD P	1	B3	8.4	
FAM	SDP	1	B4	9.6	
FAM	SDP	1	B5	7,5	5.0
FAM	SDP	2	A1	7.7	
FAM	SDP	2	A2	8.0	
FAM	SDP	2	A3	7.7	
FAM	SDP	2	A4	8.1	
FAM	SDP	2	B1	7.8	
FAM	SDP	2	B2	8.7	•
FAM	SDP	2	B3	8.5	
FAM	SDP	2	B4	9.4	6.8
FAM	SDP	3	A1	7.2	
FAM	SDP	3	A2	9.5	6,5
FAM	SDP	3	A3	7.5	•
FAM	SDP	3	A 4	10.6	6.4
FAM	SDP	3	B1	7.2	
FAM	SDP	3	B2	9.0	6,6
FAM	SDP	3	B3	7.3	
FAM	SDP	3	B4	7.3	
FAM	SDP	4	A1	8.2	
FAM	SDP	4	A2	8.7	
FAM	SDP	4	A3	8.8	
FAM	SDP	4	A4	7.3	
FAM	SDP	4	B1	8.8	
FAM	SDP	4	82	8 .2	
FAM	SDP	4	B3	9 .8	3.5
FAM	SDP	4	B4	9.0	
FAM	SDP	5	A1	8.5	6.8

Page 6 of 20

.

FAM	SDP	5	A2	8.0		
FAM	SDP	5	A3	7,8	,	
FAM	SDP	5	A4	7.7		
FAM	SDP	5	B1	8,2	6.6	
FAM	SDP	5	B2	7.5	1	A
FAM	SDP	5	B3	8.6		
FAM	SDP	5	B4	9,3		
FAM	SDP	6	A1	8.8		
FAM	SDP	6	A2	9.4		
FAM	SDP	6	A3	8.6		
FAM	SDP	6	A4	9.8		
FAM	SDP	6	B1	8.6		
FAM	SDP	6	82	8.8		
FAM	SDP	6	B3	8.6		
FAM	SDP	6	B4	8.7		
FAM	SDP	7	A1	8.0		
FAM	SDP	7	A2	8.6		
FAM	SDP	7	A3	8.2		
FAM	SDP	7	A4	8,4		
FAM	SDP	7	B1	8.6		
FAM	SDP	7	B2	7.8		
FAM	SDP	7	B3	9.4		
FAM	SDP	7	B4	8,6		
HGE	SDP	-2	A1	7.8		
HGE	SDP	-2	A10	8.6	6.7	
HGE	SDP	-2	A11	7.9		
HGE	SDP	-2	A12	8.8		
HGE	SDP	-2	A2	7.9		
HGE	SDP	-2	A3	7.9		
HGE	SDP	-2	A4	9.0	6.8	
HGE	SDP	-2	A5	7,3		
HGE	SDP	-2	A6	7.9	· .	
HGE	SDP	-2	A7	7.8		
HGE	SDP	-2	A8	7.3	6.4	
HGE	SDP	-2	A9	7.4		
HGE	SDP	-2	B1	7,6		
HGE	SDP	-2	B10	7.8		
HGE	SDP	-2	B11	7.4	•	
HGE	SDP	-2	B12	7.2		
HGE	SDP	-2	B2	7.4		
HGE	SDP	-2	B3	8.4		
HGE	SDP	-2	B 4	8.2		
HGE	SDP	-2	B5	8.2		•
HGE	SDP	-2	B6	7.3		P -
HGE	SDP	-2	B7	8.1	•	Pa
HGE	SDP	-2	B8	8.0		
HGE	SDP	-2	B9	8.1	•	

Page <u>7</u> of <u>20</u>

HGE	SDP	-1	A1	9,2	
HGE	SDP	-1	A10	9.0	
HGE	SDP	-1	A11	7.7	
HGE	SDP	-1	A12	8.9	
HGE	SDP	-1	A2	9.0	•
HGE	SDP	-1	A3	8.8	,
HGE	SDP	-1	A4	9,4	•
HGE	SDP	-1 -1			•
HGE	SDP		A5	8,8	•
HGE	SDP	-1 -1	A6	8.6	•
	SDP		A7	9.0	
HGE		-1	A8	9.0	6.8
HGE	SDP	-1	A9	8.6	•
HGE	SDP	-1	B1	7.0	•
HGE	SDP	-1	B10	9.0	•
HGE	SDP	-1	B11	8.4	•
HGE	SDP	-1	B12	9.8	5.8
HGE	SDP	-1	B2	9.1	5.5
HGE	SDP	-1	B3	9.0	
HGE	SDP	-1	B4	9.0	•
HGE	SDP	-1	B5	9.2	
HGE	SDP	-1	86	9.1	
HGE	SDP	-1	B7	8.9	6.2
HGE	SDP	-1	B8	9,4	5.7
HGE	SDP	-1	B9	9.0	6.2
HGE	SDP	0	A1	8.3	
HGE	SDP	0	A10	9.0	•
HGE	SDP	0	A11	7.3	
HGE	SDP	0	A12	9.4	
HGE	SDP	0	A2	9.8	
HGE	SDP	0	A3	8.5	
HGE	SDP	0	A 4	9,5	
HGE	SDP	0	A5	8.6	
HGE	SDP	0	A6	8.2	
HGE	SDP	0	A7	8.8	
HGE	SDP	0	A8	8.0	
HGE	SDP	0	A9	9.3	•
HGE	SDP	ů O	B1	9.1	6.6
HGE	SDP	0	B10	8.8	010
HGE	SDP	Õ	B11	8.2	•
HGE	SDP	0	B12	8.8	,
HGE	SDP	0	B12	10.4	с 1
HGE	SDP	0	B2 B3	.10.4 8.8	5,1
HGE		0	вз В4		•
	SDP			9,4	, ,
HGE	SDP	0	B5	9.0	6.9
HGE	SDP	0	B6	9.0	•
HGE	SDP	0	B7	8.3	
HGE	SDP	0	B8	9.1	•

Page 8 of 20

.

HGE	SDP	0	B9	9.0
HGE	SDP	1	- A1	8.6
HGE	SDP	1	A2	9.0
HGE	SDP	1	A3	8.1
HGE	SDP	1	A4	9.0
HGE	SDP	1	B1	9.5
HGE	SDP	1	B2	8.9
HGE	SDP	1	B3	
				8.0
HGE	SDP	1	B4	8.8
HGE	SDP	2	A1	7.8
HGE	SDP	2	A2	8.8
HGE	SDP	2	A3	10.0
HGE	SDP	2	A4	9.0
HGE	SDP	2	B1	9.1
HGE	SDP	2	B2	8.6
HGE	SDP	2	B3	9.2
HGE	SDP	2	84	9.3
HGE	SDP	3	A1	8.4
HGE	SDP	3	A2	9.0
HGE	SDP	3	A3	8.6
HGE	SDP	3	A4	9.7
HGE	SDP	3	B1	9.0
HGE	SDP	3	B2	9.6
HGE	SDP	3	B3	8.5
HGE	SDP	3	B4	9.0
HGE	SDP	4	A1	9.6
HGE	SDP	4	A2	8.3
HGE	SDP	-4	A3	8.3
HGE	SDP	4	A4	8.5 8.5
		4		
HGE	SDP		B1	8.1
HGE	SDP	4	B2	8.8
HGE	SDP	4	B3	9.0
HGE	SDP	4	B4	8.8
HGE	SDP	5	. A1	7.3
HGE	SDP	5 ·	A2	8.5
HGE	SDP	5	A3	8.8
HGE	SDP	5	A4	8.2
HGE	SDP	5	B1	7.5
HGE	SDP	5	B2	8.7
HGE	SDP	5	B3	8.0
HGE	SDP	5	B4	9.5
HGE	SDP	6	A1	8.0
HGE	SDP	6	A2	9.3
HGE	SDP	6	A3	8.0
HGE	SDP	6	A4	9 .9
HGE	SDP	6	B1	8.8
HGE	SDP	6	B2	9,4
		-		

AEH-11-PSEUDO-02

Page ______ of _____

HGE	SDP	6	B3	8.0	
HGE	SDP	6	B4	8.4	
HGE	SDP	7	A1	8.1	
HGE	SDP	7	A2	8.9	
HGE	SDP	7	A3	8.8	
HGE	SDP	7	A4	8.4	
HGE	SDP	7	B1	9.6	
HGE	SDP	7	B2	8.1	
HGE	SDP	7	B3	8.4	
HGE	SDP	7	B4	8.8	
HIC	FDP	-2	A1	8.8	
HIC	FDP	-2	A10	8.9	
HIC	FDP	-2	A 1 1	9.0	
HIC	FDP	-2	A12	8.9	
HIC	FDP	-2	A2	8.8	
HIC	FDP	-2	A3	8.2	
HIC	FDP	-2	A4	7,5	
HIC	FDP	-2	A5	9.4	
HIC	FDP	-2	A6	7.5	
HIC	FDP	-2	A7	8.6	
HIC	FDP	-2	A8	7.6	
HIC	FDP	-2	A9	9.8	
HIC	FDP	-2	B1	9.2	
HIC	FDP	-2	B10	9.8	
HIC	FDP	-2	B11	9.4	
HIC	FDP	-2	B12	8.4	
HIC	FDP	-2	B2	7.8	
HIC	FDP	-2	B3	8,9	
HIC	FDP	-2	B4	8.7	
HIC	FDP	-2	B5	8,4	
HIC	FDP	-2	B6	8.6	
HIC	FDP	-2	Б7	9.4	
HIC	FDP	-2	B8	8.8	
HIC	FDP	-2	B9	8.0	
HIC	FDP	-1	A1	8.8	
HIC	FDP	-1	A2	8.2	
HIC	FDP	-1	A3	8.6	
HIC	FDP	-1	A4	9.3	
HIC	FDP	-1	B1	9.2	
ніс	FDP	-1	B2	8.1	
HIC	FDP	-1	B3	8.6	
HIC	FDP	-1	B3	8.9	
HIC	FDF	-1 0	A1	8.9 9.0	
HIC	FDP	0	A1 A10	9.0 9.0	
HIC	FDP	0	A10 A11	9.0 9.2	
HIC	FDP	0	A11 A12	9.2 8.8	
HIC	FDP	0	A2	8.2	

.

Page 0 of 30

•

, 5.0 ,

HIC	FDP	0	A3	7.8
HIC	FDP	0	A4	9.1
HIC	FDP	0	A5	9.4
HIC	FDP	0	A6	9.0
HIC	FDP	0 0	A7	8,9
HIC	FDP	0	A8	
				8.1
HIC	FDP	0	A9	9.4
HIC	FDP	0	B1	9.2
HIC	FDP	0	B10	9.8
HIC	FDP	0	B11	9.0
HIC	FDP	0	B12	8.7
HIC	FDP	0	B2	8.2
HIC	FDP	0	B3	9.3
HIC	FDP	0	B4	9.1
HIC	FDP	0	85	8.2
HIC	FDP	0	B6	8.6
HIC	FDP	0	B7	9.8
HIC	FDP	0	B8	9.0
ніс	FDP	0	B9	8.6
HIC	FDP	1	A1	9.3
HIC	FDP	ĩ	A2	9.1
HIC	FDP	1	A3	9.0
HIC	FDP	1	A4	8.2
HIC		1	A4 B1	
	FDP			8.6
HIC	FDP	1	B2	8.4
HIC	FDP	1	B3	9.7
HIC	FDP	1	B4	9.6
HIC	FDP	2	A1	9.4
HIC	FDP	2	A2	8.8
HIC	FDP	2	A3	9.0
HIC	FDP	2	A4	8,8
HIC	FDP	2	B1	8.3
HIC	FDP	2	B2	9.6
HIC	FDP	2	B3	8.6
HIC	FDP	2	B4	8.6
HIC	FDP	3	A1	8.6
HIC	FDP	3	A2	8.4
HIC	FDP	3	A3	7.8
HIC	FDP	3	A4	8.4
HIC	FDP	3	B1	8.3
HIC	FDP	3	B2	8,6
HIC	FDP	3	B2 B3	8.0 9.0
HIC		3		
	FDP		B4	8.6
HIC	FDP	4	A1	9.0
HIC	FDP	4	A2	8.7
HIC	FDP	4	A3	8.4
HIC	FDP	4	A4	8.7

Page ______ of _____

•

HIC	FDP	4	B1	8.3	
HIC	FDP	4	B2	8.3	
HIC	FDP	4	B3	9.4	
ніс	FDP	4	B4	9.3	
HIC	FDP	5	A1	8.8	
HIC	FDP	5	A2	9.3	
HIC	FDP	5	A3	8.7	
HIC	FDP	5	A4	8.8	
HIC	FDP	5	81	8.3	
HIC	FDP	5	B2	9.7	
HIC	FDP	5	B3	9.2	
HIC	FDP	5	В3 В4	3.2 8.4	
HIC	FDP	5 6	В4 А1		
				8.3	
HIC	FDP	6	A2	8.1	
HIC	FDP	6	A3	7.5	
HIC	FDP	6	A4	7.9	
HIC	FDP	6	B1	8.1	
HIC	FDP	6	B2	8.0	
HIC	FDP	6	B3	8.7	
HIC	FDP	6	B4	8.6	
HIC	FDP	7	A1	8.6	
HIC	FDP	7	A2	8.6	
HIC	FDP	7	A3	8.2	
HIC	FDP	7	· A4	8.6	
HIC	FDP	7	B1	8.0	
HIC	FDP	7	B2	8.3	
HIC	FDP	7	B3	9.1	
HIC	FDP	7	B4	8.9	
MUC	FDP	-2	A1	8.6	
MUC	FDP	-2	A10	9.2	
MUC	FDP	-2	A11	8.6	
MUC	FDP	-2	A12	8.9	
MUC	FDP	-2	A2	7.6	
MUC	FDP	-2	A3	9.2	
MUC	FDP	-2	A4	8.0	
MUC	FDP	-2	A5	8.4	
MUC	FDP	-2	A6	8.3	
MUC	FDP	-2	A7	8.9	
MUC	FDP	-2	A8	8.7	
MUC	FDP	-2	A9	8.7	
MUC	FDP	-2	B1	9.8	
MUC	FDP	-2	B10	8.6	
MUC	FDP	-2	B11	9.0	
MUC	FDP	-2	B12	9.9	
MUC	FDP	-2	B2	9.2	
MUC	FDP	-2	B3	9.6	
MUC	FDP	-2	B4	10.0	

Page 2 of 20

MUC	FDP	-2	B5	10,4	
MUC	FDP	-2	B6	10.0	
MUC	FDP	-2	B7	9.9	
MUC	FDP	-2	B8	9.9	
MUC	FDP	-2	B9	9.6	
MUC	FDP	-1	A1	9.2	
MUC	FDP	-1			
			A2	8.5	
MUC	FDP	-1	A3	9.4	
MUC	FDP	-1	A4	8.9	
MUC	FDP	-1	B1	9.6	
MUC	FDP	-1	B2	9.2	
MUC	FDP	-1	B3	9.2	
MUC	FDP	-1	B4	10.3	
MUC	FDP	0	A1	8.6	
MUC	FDP	0	A10	9.5	
MUC	FDP	0	A11	9.5	
MUC	FDP	0	A12	10,0	
мис	FDP	0	A2	8.8	
MUC	FDP	Õ	A3	9.5	
MUC	FDP	0	A4	9.4	
MUC	FDP	0		8.8	
			A5		
MUC	FDP	0	A6	8.7	
MUC	FDP	0	A7	9.8	
MUC	FDP	0	A8	8.6	
MUC	FDP	0	A9	9.2	
MUC	FDP	0	B 1	9.7	
MUC	FDP	0	B10	8.4	
MUC	FDP	0	B11	9.6	
MUC	FDP	0	B12	9.3	
MUC	FDP	0	B2	9.4	
MUC	FDP	0	B3	9.8	
MUC	FDP	0	B4	10.2	
MUC	FDP	0	B5	10.6	
MUC	FDP	0	B6	10.5	
MUC	FDP	0	B7	8.8	
MUC	FDP	ō	B8	10.2	
MUC	FDP	0	B9	9.4	
MUC	FDP	1	A1	9.4 8.6	
MUC	FDP	1	A2	8.3	
MUC	FDP	1	A3	9.4	
MUC	FDP	1	A4	9.6	
MUC	FDP	1	B1	9.4	
MUC	FDP	1	B2	9.2	
MUC	FDP	1	B3	9.6	
MUC	FDP	1	B4	10.0	
MUC	FDP	2	A1	8.6	
MUC	FDP	2	A2	8.8	

Page 13 of 20

MUC	FDP	2	A3	9.6	
MUC	FDP	2	A4	9.0	
MUC	FDP	2	B1	10.4	
MUC	FDP	2	B2	10.3	
MUC	FDP	2	B3	9,4	
MUC	FDP	2	B4	10.0	
MUC	FDP	3	A1	9.1	
MUC	FDP	3	A2	9.6	
MUC	FDP	3	A3	9.4	
MUC	FDP	3	A4	10.2	
MUC	FDP	3	B1	7.6	
MUC	FDP	3	B1 B2		
				8.6	
MUC	FDP	3	B3	9.6	
MUC	FDP	3	B4	9.7	
MUC	FDP	4	A1	7.2	
MUC	FDP	4	A2	8.6	
MUC	FDP	4	A3	9.2	
MUC	FDP	4	A4	9.1	
MUC	FDP	4	B1	9.1	
MUC	FDP	4	B2	9.2	
MUC	FDP	4	B3	9.1	
MUC	FDP	4	B4	9.6	
MUC	FDP	5	A1	8.0	
MUC	FDP	5	A2	9.2	
MUC	FDP	5	A3	8.9	
MUC	FDP	5	A4	8.8	
MUC	FDP	5	B1	9.2	
MUC	FDP	5	B 2	10.2	
MUC	FDP	5	B3	9.9	
MUC	FDP	5	B4	9.6	
MUC	FDP	6	A1	8.5	
MUC	FDP	6	A2	9,4	
MUC	FDP	6	A3	8.3	
MUC	FDP	6	A 4	9.8	
MUC	FDP	6	B1	9.2	
MUC	FDP	6	B2	8.8	
MUC	FDP	6	B3	8.2	
MUC	FDP	6	B4	9,2	
MUC	FDP	7	A1	6.0	
MUC	FDP	7	A2	8.1	
MUC	FDP	7	A3	9,2	
MUC	FDP	7	A4	8.8	
MUC	FDP	7	B1	9.0	
MUC	FDP	7	B2	8:9	
MUC	FDP	7	B3	9.2	
MUC	FDP	7	B3 B4	9.5	
PPB	SDP	-2	A1	7.8	
	501	£.	1.14	1.0	

Page <u>14</u> of <u>20</u>

РРВ	SDP	-2	A10	8.4
PPB	SDP	-2	A11	8.2
РРВ	SDP	-2	A12	7.6
PPB	SDP	-2	A2	7,9
РРВ	SDP	-2	A3	7.6
РРВ	SDP	-2	A4	8.3
ррв	SDP	-2	A5	7.4
PPB	SDP	-2	A6	7.8
PPB	SDP	-2	A7	8.2
PPB	SDP	-2	A8	8.0
PPB	SDP	-2	A9	7.4
РРВ	SDP	-2	АЈ В1	8.3
PPB	SDP	-2 -2	B1 B10	
PP8	SDP			8.1
		-2	B11	8.7
PPB	SDP	-2	B12	8.3
PPB	SDP	-2	B2	8.0
PPB	SDP	-2	B3	8.0
PPB	SDP	-2	84	8.6
РРВ	SDP	-2	B5	7.2
PPB	SDP	-2	B6	8.1
PPB	SDP	-2	B7	7.9
PPB	SDP	-2	B8	8.0
PPB	SDP	-2	B9	8.3
PPB	SDP	-1	A1	8.1
PPB	SDP	-1	A10	8.4
РРВ	SDP	-1	A11	8.4
PPB	SDP	-1	A12	8.0
PPB	SDP	-1	A2	8.0
PPB	SDP	-1	A3	7.6
PPB	SDP	-1	A4	8.0
PPB	SDP	-1	A5	7.4
PPB	SDP	-1	A6	7.9
ррв	SDP	-1	A7	7.8
PPB	SDP	-1	A8	7.2
PPB	SDP	-1	A9	8.2
PPB	SDP	-1	B1	8.2
РРВ	SDP	-1	B10	7.9
PPB	SDP	-1	B11	8.4
РРВ	SDP	-1	B12	8.5
PPB	SDP	-1	B2	7.9
PPB	SDP	-1	В3	7.8
PPB	SDP	-1	B4	8.5
ррв	SDP	~1	B5	7.9
ррв	SDP	-1	B6	7.7
PPB	SDP	-1	B7	8.4
PPB	SDP	-1	B8	7.8
РРВ	SDP	-1	B9	8.1
	201			

Page <u>15</u> of <u>20</u>

SDP	0	A1	8.0	
SDP	0		8.0	
SDP	0		8.5	
SDP	0	A12	8.0	
SDP	0	A2	8.6	
SDP	0	A3	7.0	
SDP	0	A4		
SDP	0	A5	7.4	
SDP	0	A6	7.8	
SDP	0	A7	8.0	
SDP	0	A8	7.5	
SDP	0	A9	8 .8	
SDP	0	B1	7.8	
SDP	0	B10	7.6	
SDP	0	B11	7.9	
SDP	0	B12	7.4	
SDP	0	B2	7.4	
SDP	0	B3	7.3	
SDP	0	B4	7.7	
SDP	0	B5	7.8	
SDP	0	B6	7.2	
SDP	0	B7	7.8	
SDP	0	B8	7.0	
SDP	0	B9	7.5	
SDP	1	A1	8.2	
SDP	1	A2	8.6	
SDP	1	A3	8.1	
SDP	1	A4	8,4	
SDP		B1	8,0	
SDP	1	B2	7.8	
SDP		B3	8.0	
SDP		B4	8.4	
SDP			8.4	
SDP			7.7	
SDP			8.4	
SDP		B 1		
SDP		B2	8.4	
SDP				
SDP				
SDP	3	ВЗ	8.3	
	SDP SDP SDP SDP SDP SDP SDP SDP SDP SDP	SDP0SDP1SDP1SDP1SDP1SDP1SDP1SDP1SDP2SDP2SDP2SDP2SDP2SDP2SDP3 </td <td>SDP 0 A10 SDP 0 A11 SDP 0 A2 SDP 0 A3 SDP 0 A4 SDP 0 A4 SDP 0 A5 SDP 0 A6 SDP 0 A7 SDP 0 B1 SDP 0 B2 SDP 0 B3 SDP 0 B7 SDP 0 B7 SDP 0 B7 SDP 1 A1 SDP 1 A2 SDP 1 B1 SDP 1 B1<td>SDP 0 A10 8.0 SDP 0 A11 8.5 SDP 0 A2 8.6 SDP 0 A3 7.0 SDP 0 A3 7.0 SDP 0 A4 8.2 SDP 0 A5 7.4 SDP 0 A6 7.8 SDP 0 A7 8.0 SDP 0 A9 8.8 SDP 0 B1 7.8 SDP 0 B1 7.8 SDP 0 B1 7.4 SDP 0 B11 7.9 SDP 0 B12 7.4 SDP 0 B3 7.3 SDP 0 B4 7.7 SDP 0 B7 7.8 SDP 0 B7 7.8 SDP 0 B7 7.8 SDP <t< td=""></t<></td></td>	SDP 0 A10 SDP 0 A11 SDP 0 A2 SDP 0 A3 SDP 0 A4 SDP 0 A4 SDP 0 A5 SDP 0 A6 SDP 0 A7 SDP 0 B1 SDP 0 B2 SDP 0 B3 SDP 0 B7 SDP 0 B7 SDP 0 B7 SDP 1 A1 SDP 1 A2 SDP 1 B1 SDP 1 B1 <td>SDP 0 A10 8.0 SDP 0 A11 8.5 SDP 0 A2 8.6 SDP 0 A3 7.0 SDP 0 A3 7.0 SDP 0 A4 8.2 SDP 0 A5 7.4 SDP 0 A6 7.8 SDP 0 A7 8.0 SDP 0 A9 8.8 SDP 0 B1 7.8 SDP 0 B1 7.8 SDP 0 B1 7.4 SDP 0 B11 7.9 SDP 0 B12 7.4 SDP 0 B3 7.3 SDP 0 B4 7.7 SDP 0 B7 7.8 SDP 0 B7 7.8 SDP 0 B7 7.8 SDP <t< td=""></t<></td>	SDP 0 A10 8.0 SDP 0 A11 8.5 SDP 0 A2 8.6 SDP 0 A3 7.0 SDP 0 A3 7.0 SDP 0 A4 8.2 SDP 0 A5 7.4 SDP 0 A6 7.8 SDP 0 A7 8.0 SDP 0 A9 8.8 SDP 0 B1 7.8 SDP 0 B1 7.8 SDP 0 B1 7.4 SDP 0 B11 7.9 SDP 0 B12 7.4 SDP 0 B3 7.3 SDP 0 B4 7.7 SDP 0 B7 7.8 SDP 0 B7 7.8 SDP 0 B7 7.8 SDP <t< td=""></t<>

Page 16 of 20

.

ррв	SDP	3	В4	7.6	
РРВ	SDP	4	A1	7.8	
PPB	SDP	4	A2	7.4	
PPB	SDP	4	A3	7.8	
PPB	SDP	4	A4	7.8	
PPB	SDP	4	B1	8.4	
РРВ	SDP	4	B2	7.4	
PPB	SDP	4	B3	7.7	
PPB	SDP	4	B4	8.1	
ррв	SDP	5	A1	7.1	
РРВ	SDP	5	A2	8.0	
РРВ	SDP	5	A3	7.9	
PPB	SDP	5	A4	7.3	
PPB	SDP	5	B1	8.2	
РРВ	SDP	5	B2	7.4	
PPB	SDP	5	B3	8.3	
РРВ	SDP	5	B4	8.2	
PPB	SDP	6	A1	9.5	
PPB	SDP	6	A2	7.4	
РРВ	SDP	6	A3	8.4	
PPB	SDP	6	A4	7.8	
ррв	SDP	6	B1	8.3	
PPB	SDP	6	B2	8.0	
PPB	SDP	6	B3	8.3	
РРВ	SDP	6	B4	7.5	
ЪЪВ	SDP	7	A1	7.6	
РРВ	SDP	7	A2	8.3	
PPB	SDP	7	A3	7.6	
PPB	SDP	7	A4	7.8	
PPB	SDP	7	81	8.2	
PPB	SDP	7	B2	7.3	
PPB	SDP	7	B3	7.7	
PPB	SDP	7	B4	8.2	
WAS	FDP	-2	A1	9.2	
WAS	FDP	-2	A10	8.6	
WAS	FDP	-2	A11	8,2	
WAS	FDP	-2	A12	8.8	
WAS	FDP	-2	A2	8.4	
WAS	FDP	-2	A3	8.2	
WAS	FDP	-2	A 4	8.8	
WAS	FDP	-2	A5	9.2	
WAS	FDP	-2	A6	8.2	
WAS	FDP	-2	A7	8.7	
WAS	FDP	-2	A8	8.6	
WAS	FDP	-2	A9	8.4	
WAS	FDP	-2	B1	8.4	
WAS	FDP	-2	B10	8.7	

AEH-11-PSEUDO-02

Page 17 of 20

.

WAS	FDP	-2	B11	8.7	
WAS	FDP	-2	B12	8.6	
WAS	FDP	-2	B2	8.5	
WAS	FDP	-2	B3	8.8	
WAS	FDP	-2	B4	8.2	
WAS	FDP	-2	B5	8.2	
WAS	FDP	-2	B6	8.0	
WAS	FDP	-2	B7	8.2	
WAS	FDP	-2	B8	7.6	
WAS	FDP	-2	В9	7.9	
WAS	FDP	-1	A1	8.3	6.6
WAS	FDP	-1	A10	8.5	
WAS	FDP	-1	A11	7.2	3.8
WAS	FDP	-1	A12	8,9	
WAS	FDP	-1	A2	8.0	
WAS	FDP	-1	A3	9.1	6.1
WAS	FDP	-1	A4	8.0	
WAS	FDP	-1	A5	7.9	
WAS	FDP	-1	A6	8.0	
WAS	FDP	-1	A7	8.3	
WAS	FDP	-1	A8	8.9	
WAS	FDP	-1	A9	8.4	
WAS	FDP	-1	B1	8.5	
WAS	FDP	-1	B10	9.2	
WAS	FDP	-1	B11	8.2	
WAS	FDP	-1	B12	8.2	
WAS	FDP	-1	B2	8.9	0.5
WAS	FDP	-1	B3	8.4	
WAS	FDP	-1	B 4	9.0	6.3
WAS	FDP	-1	B5	8.1	
WAS	FDP	-1	B6	7.9	
WAS	FDP	-1	B7	8.4	
WAS	FDP	-1	B8	8.5	6,8
WAS	FDP	-1	B9	9.0	6.4
WAS	FDP	0	A1	8.4	
WAS	FDP	0	A10	8.6	
WAS	FDP	0	A11	9.0	
WAS	FDP	0	A12	9.0	
WAS	FDP	0	A2	9.4	
WAS	FDP	0	A3	9.4	
WAS	FDP	0	A4	9.0	
WAS	FDP	0	A5	9.0	
WAS	FDP	0	A6	8.4	
WAS	FDP	0	A7	8.4	
WAS	FDP	0	A8	9.0	
WAS	FDP	0	A9	8.6	
WAS	FDP	0	B1	8.6	

Page <u>|</u>8_ of <u>2</u>0____

WAS	FDP	0	B10	9.0
WAS	FDP	0	B11	8.8
WAS	FDP	0	812	9,2
WAS	FDP	0	В2	8.6
WAS	FDP	0	B3	8.8
WAS	FDP	0	B4	8.6
WAS	FDP	0	B5	8.1
WAS	FDP	0	B6	8.0
WAS	FDP	0	B7	8.4
WAS	FDP	Ő	B8	8.6
WAS	FDP	0	B9	9.2
WAS	FDP	1	A1	9.0
WAS	FDP	1	A2	8.4
WAS	FDP	1	A3	9.4
WAS	FDP	1	A3 A4	8.8
WAS	FDP	1	A4 B1	
WAS		1		8.6
	FDP FDP		B2	8.4
WAS WAS		1	B3	8.8
	FDP	1	B4	8.6
WAS	FDP	2	A1	9.2
WAS	FDP	2	A2	8.6
WAS	FDP	2	A3	8.2
WAS	FDP	2	A4	8.7
WAS	FDP	2	B1	8.8
WAS	FDP	2	B2	7.9
WAS	FDP	2	B3	8.6
WAS	FDP	2	B4	9.6
WAS	FDP	3	A1	8.9
WAS	FDP	3	A2	8.2
WAS	FDP	3	A3	7.3
WAS	FDP	3	A4	9,3
WAS	FDP	3	B1	9.1
WAS	FDP	3	B2	9.5
WAS	FDP	3	B3	9.7
WAS	FDP	3	84	9.4
WAS	FDP	4	A1	9.6
WAS	FDP	4	A2	8.6
WAS	FDP	4	A3	9.4
WAS	FDP	4	A4	9.0
WAS	FDP	4	B1	8.6
WAS	FDP	4	B2	8.4
WAS	FDP	4	ВЗ	8.2
WAS	FDP	4	B4	8.6
WAS	FDP	5	A1	8.9
WAS	FDP	5	A2	8.4
WAS	FDP	5	A3	8.4
WAS	FDP	5	A4	9.2

Page <u>19</u> of <u>20</u>

WAS	FDP	5	B1	8.6	
WAS	FDP	5	B2	7.4	
WAS	FDP	5	B3	8.0	
WAS	FDP	5	B4	9.2	
WAS	FDP	6	A1	8.6	
WAS	FDP	6	A2	7.6	
WAS	FDP	6	A3	9.1	
WAS	FDP	6	A4	8.8	
WAS	FDP	6	B1	8.9	
WAS	FDP	6	B2	8.8	
WAS	FDP	6	B3	9.2	
WAS	FDP	6	B4	8.2	
WAS	FDP	7	A1	10.0	
WAS	FDP	7	A2	8.6	
WAS	FDP	7	A3	9.1	
WAS	FDP	7	A4	9.0	
WAS	FDP	7	B1	9.8	
WAS	FDP	7	B2	8.2	
WAS	FDP	7	B3	7.9	
WAS	FDP	7	B4	7.5	

• • • •

FF #		6	
ltem	No.	T	
Pg_	20	of	20

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

Statistical Analysis of Holding Chamber Flow Rates

SAS v. 9.4 Analysis Completion Date: 07MAY2014 Analysis prepared by: KLW ψ^{W}

Obs	sps	form	day	id	fflow	oflow
1	BLS	SDP	-2	A1	8.0	
2	BLS	SDP	-2	A10	8.4	
3	BLS	SDP	-2	A11	7.8	•
4	BLS	SDP	-2	A12	8.2	
5	BLS	SDP	-2	A2	8.2	
6	BLS	SDP	-2	A3	8.6	. 17: 16: 11:0000-11:12:12:000
7	BLS	SDP	-2	A4	7.4	-Madaada Gaaraa Karaya ya 🧯
8	BLS	SDP	-2	A5	8.4	S.C.M.S. of M.Burn, Park. au
9	BLS	SDP	-2	A6	8.6	
10	BLS	SDP	-2	A 7	7.8	
11	BLS	SDP	-2	A8	8.6	
12	BLS	SDP	-2	A9	8.2	
13	BLS	SDP	-2	B1	7.8	
14	BLS	SDP	-2	B10	8.2	
15	BLS	SDP	-2	B11	9.0	,
16	BLS	SDP	-2	B12	8.9	
17	BLS	SDP	-2	B2	8.2	•
18	BLS	SDP	-2	В3	9.2	•
19	BLS	SDP	-2	B4	8.7	
20	BLS	SDP	-2	B 5	8.7	•
21	BLS	SDP	-2	B6	8.5	•
22	BLS	SDP	-2	B7	8.6	,
23	BLS	SDP	-2	B8	8.1	•
24	BLS	SDP	-2	В9	8.4	-
25	BLS	SDP	-1	A1	9.2	
26	BLS	SDP	-1	A10	9.3	
27	BLS	SDP	-1	A11	9.1	
28	BLS	SDP	-1	A12	9.5	
29	BLS	SDP	-1	A2	7.7	
30	BLS	SDP	-1	A3	8.8	
				5		

FF # <u>18</u> Item No. 18 Pg ____ of 32

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_1... 5/7/2014

482

31	BLS	SDP	-1	A4	8.4	
32	BLS	SDP	-1	A5	9.0	
33	BLS	SDP	-1	A6	8.3	
34	BLS	SDP	-1	A7	9.4	4.0
35	BLS	SDP	-1	A8	9.4	
36	BLS	SDP	-1	A9	9.4	
37	BLS	SDP	-1	B 1	9.0	
38	BLS	SDP	-1	B10	9.2	
39	BLS	SDP	-1	B11	9.3	
40	BLS	SDP	-1	B12	9.4	nii diana akuv vu
41	BLS	SDP	-1	B2	8.6	
42	BLS	SDP	-1	B3	9.2	5.8
43	BLS	SDP	-1	B4	9.4	-lo v / Vanda v norman
44	BLS	SDP	-1	B5	9.8	•
45	BLS	SDP	-1	B 6	9.0	
46	BLS	SDP	-1	B7	9.0	•
47	BLS	SDP	-1	B 8	8.3	•
48	BLS	SDP	-1	B 9	8.6	•
49	BLS	SDP	0	A1	7.2	et a divert fit a services.
50	BLS	SDP	0	A10	7.7	100 804742007 02 8
51	BLS	SDP	0	A11	7.8	
52	BLS	SDP	0	A12	7.4	-
53	BLS	SDP	0	A2	7.5	
54	BLS	SDP	0	A3	7.6	
55	BLS	SDP	0	A4	7.6	•
56	BLS	SDP	0	A5	7.2	•
57	BLS	SDP	0	A6	7.6	
58	BLS	SDP	0	A7	7.3	
59	BLS	SDP	0	A8	7.4	
60	BLS	SDP	0	A9	7.8	
61	BLS	SDP	0	B1	7.0	
62	BLS	SDP	0	B10	7.6	4
63	BLS	SDP	0	B11	8.0	•
64	BLS	SDP	0	B12	8.0	•
65	BLS	SDP	0	B2	7.6	•

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_I... 5/7/2014

	BLS	SDP	0	В3	7.6	
67	BLS	SDP	0	B4	8.5	
68	BLS	SDP	0	B5	8.2	•
69	BLS	SDP	0	B6	8.1	
70	BLS	SDP	0	B7	8.1	•
71	BLS	SDP	0	B8	7.7	
72	BLS	SDP	0	B9	7.8	
73	BLS	SDP	1	A1	7.8	
74	BLS	SDP	1	A2	9.1	
75	BLS	SDP	1	A3	9.0	
76	BLS	SDP	1	A 4	9.4	9 (2000), 107, 1 (20.4), 2000
77	BLS	SDP	1	B1	9.4	
78	BLS	SDP	1	B2	9.0	
79	BLS	SDP	1	B3	9.1	,
80	BLS	SDP	1	B4	8.6	
81	BLS	SDP	2	A1	9.5	•
82	BLS	SDP	2	A2	8.9	•
83	BLS	SDP	2	A3	9.0	•
84	BLS	SDP	2	A4	9.2	
85	BLS	SDP	2	B1	9.1	•
86	BLS	SDP	2	B2	9.2	•
87	BLS	SDP	2	В3	9.1	
88	BLS	SDP	2	B4	9,4	•
89	BLS	SDP	3	A1	8.4	
90	BLS	SDP	3	A2	9,4	•
91	BLS	SDP	3	A3	8.9	
92	BLS	SDP	3	A4	9.3	,
93	BLS	SDP	3	B1	8.6	•
94	BLS	SDP	3	B2	8.6	
95	BLS	SDP	3	B3	8.7	
96	BLS	SDP	3	B4	9.6	
97	BLS	SDP	4	A 1	7.4	
9 8	BLS	SDP	4	A2	8.2	
99	BLS	SDP	4	A3	9.0	•
100	BLS	SDP	4	A4	9.1	

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_1... 5/7/2014

	BLS	SDP	4	B 1	9.2	
102	BLS	SDP	4	B2	8.8	
103	BLS	SDP	4	B3	8.6	
104	BLS	SDP	4	B4	8.4	
105	BLS	SDP	5	A1	9.4	
106	BLS	SDP	5	A2	8.3	
107	BLS	SDP	5	A3	9.4	•••••••••••••••••••••••••••••••••••••••
108	BLS	SDP	5	A4	9.2	······································
109	BLS	SDP	5	B1	9.0	•
110	BLS	SDP	5	B2	9.4	
111	BLS	SDP	5	B 3	9,4	
112	BLS	SDP	5	B4	9.5	n 6945
113	BLS	SDP	6	A1	8.7	
114	BLS	SDP	6	A2	8.3	
115	BLS	SDP	6	A 3	9.4	
116	BLS	SDP	6	A4	9.8	
117	BLS	SDP	6	В1	8.4	• •
118	BLS	SDP	6	B2	9.D	•
119	BLS	SDP	6	В3	9.2	•
120	BLS	SDP	6	B4	9,8	•
121	BLS	SDP	7	A1	10.0	
122	BLS	SDP	7	A2	9.0	
123	BLS	SDP	7	A3	9.6	
124	BLS	SDP	7	A4	8.2	
125	BLS	SDP	7	B1	7.3	
126	BLS	SDP	7	B2	9.4	•
127	BLS	SDP	7	В3	9.3	
128	BLS	SDP	7	B4	9.6	
1 29	FAM	SDP	-2	A1	8.8	
130	FAM	SDP	-2	A10	8.0	
131	FAM	SDP	-2	A11	8.8	•
132	FAM	SDP	-2	A12	7.8	•
133	FAM	SDP	and a landada."	A2		
134	FAM	SDP	-2	A3	8.0	
135	FAM	SDP	-2	A4	7.4	

AEH-11-PSEUDO-02

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_I... 5/7/2014

na natangan sa sa sa sa sa sa sa sa sa sa sa sa sa	FAM	SDP	-2	A5	7.6	
137	FAM	SDP	-2	A6	7.6	
138	FAM	SDP	-2	A7	8.0	1
139	FAM	SDP	-2	A8	8.0	
140	FAM	SDP	-2	A9	7.8	
141	FAM	SDP	-2	B1	8.0	
142	FAM	SDP	-2	B10	7.6	
143	FAM	SDP	-2	B11	8.4	
144	FAM	SDP	-2	B12	8.6	
145	FAM	SDP	-2	B2	7.4	
146	FAM	SDP	-2	B 3	7.8	
147	FAM	SDP	-2	B4	8.4	,
148	FAM	SDP	-2	B5	9.0	a destant de seusenne
149	FAM	SDP	-2	B 6	7.8	• • • • • • • • • • • • • • • • • • •
150	FAM	SDP	-2	B 7	8.2	
151	FAM	SDP	-2	B8	7.8	,
152	FAM	SDP	-2	B9	8.6	•
153	FAM	SDP	-1	A1	8.4	•
154	FAM	SDP	-1	A10	8.6	,
155	FAM	SDP	-1	A 1 1	7.3	,
156	FAM	SDP	-1	A12	8.1	
157	FAM	SDP	-1	A2	8.2	
158	FAM	SDP	-1	A3	8.4	
159	FAM	SDP	-1	A4	7.2	-
160	FAM	SDP	-1	A5	8.0	
161	FAM	SDP	-1	A6	7.5	
162	FAM	SDP	-1	A7	8.8	
163	FAM	SDP	-1	A8	8.1	
164	FAM	SDP	-1	A9	8.5	
165	FAM	SDP	-1	B 1	8.5	•
166	FAM	SDP	-1	B10	7.9	•
167	FAM	SDP	-1	B11	8.2	
168	FAM	SDP	-1	B12	8.0	
169	FAM	SDP	-1	B2	8.0	er -s. ditait i see and to see
170	FAM	SDP	-1	B3	8.1	

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_I... 5/7/2014

	FAM	SDP	-1	B4	9.4	
172	FAM	SDP	-1	B5	8.2	
173	FAM	SDP	-1	B6	8.4	6.1
174	FAM	SDP	-1	B7	8.0	-
175	FAM	SDP	-1	B8	8.0	
176	FAM	SDP	-1	B9	8.2	
177	FAM	SDP	0	A1	8.4	
178	FAM	SDP	0	A10	8.4	
179	FAM	SDP	0	A11	9.0	6.0
180	FAM	SDP	0	A12	8.4	
181	FAM	SDP	0	A2	9.2	
182	FAM	SDP	0	A3	8 .6	
183	FAM	SDP	0	A 4	8.0	
184	FAM	SDP	0	A 5	8.0	
185	FAM	SDP	0	A6	7.4	•
186	FAM	SDP	0	A7	8.6	•
187	FAM	SDP	0	A8	8.4	•
188	FAM	SDP	0	A 9	8.B	
189	FAM	SDP	0	B1	8.2	
190	FAM	SDP	0	B10	8.2	•
191	FAM	SDP	0	B11	8.3	•
192	FAM	SDP	0	B12	9.0	- 39-16 in r
193	FAM	SDP	0	B2	8,3	
194	FAM	SDP	0	B3	8.4	•
195	FAM	SDP	0	B4	9.6	-
196	FAM	SDP	0	B5	8.3	-
197	FAM	SDP	0	B6	8.5	-330-24-4
198	FAM	SDP	0	B7	8.3	•
199	FAM	SDP	0	B8	7.1	
200	FAM	SDP	0	B9	7.7	
201	FAM	SDP	1	A1	8.5	•
202	FAM	SDP	1	A2	8.6	
203	FAM	SDP	1	A3	9.0	1.3.79-768-16-1-4-4 1
204	FAM	SDP	1	A4	7.8	
205	FAM	SDP	1	B1	9.3	

file:///C;/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_I... 5/7/2014

and and	FAM	SDP	1	B2	8.2	
207	FAM	SDP	1	·	8.4	+
208	FAM	SDP	1	B4	9.6	•
209	FAM	SDP	1	B5	7.5	5.0
210	FAM	SDP	2	A1	7.7	
211	FAM	SDP	2	A2	8.0	
212	FAM	SDP	2	A3	7.7	
213	FAM	SDP	2	A4	8,1	
214	FAM	SDP	2	B1	7.8	
215	FAM	SDP	2	B2	8.7	
216	FAM	SDP	2	B3	8,5	4
217	FAM	SDP	2	B 4	9.4	6.8
218	FAM	SDP	3	A1	7.2	0.00.000000000000000000000000000000000
219	FAM	SDP	3	A2	9.5	6.5
220	FAM	SDP	3	A3	7.5	•
221	FAM	SDP	3	A4	10.6	6.4
222	FAM	SDP	3	B1	7.2	•
223	FAM	SDP	3	B2	9.0	6.6
224	FAM	SDP	3	B3	7.3	•
225	FAM	SDP	3	B4	7.3	•
226	FAM	SDP	4	A1	8.2	
227	FAM	SDP	4	A2	8,7	
228	FAM	SDP	4	A3	8.8	·
229	FAM	SDP	4	A4	7.3	
230	FAM	SDP	4	B1	8.8	
231	FAM	SDP	4	В2	8.2	
232	FAM	SDP	4	В3	9.8	3.5
2 3 3	FAM	SDP	4	B4	9.0	
234	FAM	SDP	5	A1	8.5	6.8
235	FAM	SDP	5	A2	8.0	
236	FAM	SDP	5	A3	7.8	
237	FAM	SDP	5	A4	7.7	
238	FAM	SDP	5	B1	8.2	6.6
239	FAM	SDP	5	B2	7.5	
240	FAM	SDP	5	B3	8.6	

.

AEH-11-PSEUDO-02

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD2368_1... 5/7/2014

4	FAM	000		B4		1
242		SDP			9.3	
mgene arven		SDP	ar ar a daraman a	A1	8.8	
243		SDP	6		9.4	
244		SDP	6		8.6	
245		SDP	6	A4	9.8	
246		SDP	6	B1	8.6	
247	FAM	SDP	6	B2	8.8	
248	FAM	SDP	6	B3	8.6	· · · ·
249	FAM	SDP	6	B4	8.7	arve datablette bendennen
250	FAM	SDP	7		8.0	
251	FAM	SDP	7	A2	8.6	
252	FAM	SDP	7	A3	8.2	
253	FAM	SDP	7	A4	8.4	
254	FAM	SDP	7	B1	8.6	
255	FAM	SDP	7	B2	7.8	•
256	FAM	SDP	7	В3	9.4	
257	FAM	SDP	7	B4	8.6	
258	HGE	SDP	-2	A1	7.8	
259	HGE	SDP	-2	A10	8.6	6.7
260	HGE	SDP	-2	A11	7. 9	Poloniany property
2 61	HGE	SDP	-2	A12	8.8	en a constanta da anan
262	HGE	SDP	-2	A2	7.9	1998 1997 1997 1997 1997 1997 1997 1997
263	HGE	SDP	-2	A3	7.9	*******
264	HGE	SDP	-2	A4	9.0	6.8
265	HGE	SDP	-2	A5	7.3	•
266	HGE	SDP	-2	A6	7.9	
267	HGE	SDP	-2	A7	7.8	
268	HGE	SDP	-2	A8	7.3	6.4
269	HGE	SDP	-2	A9	7.4	
270	HGE	SDP		B1	7.6	
271	HGE	SDP	-2	B10	7.8	w
272	HGE	SDP		B1 1	7.4	
	HGE	SDP		B12	7.2	
274	HGE	SDP	-2		7.4	
	HGE	SDP	~ ~ ~ * *******	B3	8.4	• • ,,,
			<u>-</u>	50	0.4	•

AEH-11-PSEUDO-02

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_1... 5/7/2014

SAS Output

	HGE	SDP	-2	B4	8.2	
277	HGE	SDP	-2	B5	8.2	••••••
278	HGE	SDP	-2	B6	7.3	
279	HGE	SDP	-2	, B7	8.1	
280	HGE	SDP	-2	B8	8.0	
281	HGE	SDP	-2	B9	8.1	
282	HGE	SDP	-1	A1	9.2	
283	HGE	SDP	-1	A10	9.0	
284	HGE	SDP	-1	A11	7.7	
285	HGE	SDP	-1	A12	8.9	,
286	HGE	SDP	-1	A2	9.0	
287	HGE	SDP	-1	A3	8.8	1.11.11.11.11.11.11.11.11.11.11.11.11.1
288	HGE	SDP	-1	A4	9.4	Ye. 3 A. of the Asses
289	HGE	SDP	-1	A5	8.8	
290	HGE	SDP	-1	A6	8 .6	
291	HGE	SDP	-1	A7	9.0	
292	HGE	SDP	-1	A8	9.0	6,8
293	HGE	SDP	-1	A9	8.6	•
294	HGE	SDP	-1	B1	7.0	•
295	HGE	SDP	-1	B10	9.0	•
296	HGE	SDP	-1	B 1 1	8.4	1
2 97	HGE	SDP	-1	B12	9.8	5.8
298	HGE	SDP	-1	B2	9.1	5.5
299	HGE	SDP	-1	B3	9.0	
300	HGE	SDP	-1	B4	9.0	•
3 01	HGE	SDP	-1	B5	9.2	-
302	HGE	SDP	-1	B6	9.1	
303	HGE	SDP	-1	B7	8.9	6.2
304	HGE	SDP	-1	B8	9.4	5.7
305	HGE	SDP	-1	В9	9.0	6.2
306	HGE	SDP	0	A1	8.3	
307	HGE	SDP	0	A10	9.0	•
308	HGE	SDP	0	A11	7.3	•
309	HGE	SDP	0	A12	9.4	
310	HGE	SDP	0	A2	9.8	

file:///C:/Users/kiweber/AppData/Local/Temp/I/SAS%20Temporary%20Files/_TD2368_1... 5/7/2014

	HGE	SDP	0	A3	8.5	
312	HGE	SDP	0	A4	9,5	
313	HGE	SDP	0	A5	8.6	
314	HGE	SDP	0	A6	8.2	
315	HGE	SDP	0	A7	8.8	
316	HGE	SDP	0	A8	8.0	
317	HGE	SDP	0	A9	9.3	
318	HGE	SDP	0	B 1	9.1	6.6
319	HGE	SDP	0	B10	8.8	·····
320	HGE	SDP	0	B11	8.2	
321	HGE	SDP	0	B12	8.8	
322	HGE	SDP	0	B2	10.4	5.1
323	HGE	SDP	0	B3	8.8	
324	HGE	SDP	0	B4	9,4	
325	HGE	SDP	0	B5	9 .0	6.9
326	HGE	SDP	0	B6	9.0	
327	HGE	SDP	0	B7	8.3	
328	HGE	SDP	0	B8	9.1	•
329	HGE	SDP	0	B9	9.0	
330	HGE	SDP	1	A1	8.6	
331	HGE	SDP	1	A2	9.0	
332	HGE	SDP	1	A3	8.1	•
333	HGE	SDP	1	A4	9.0	
334	HGE	SDP	1	B1	9.5	
335	HGE	SDP	1	B2	8.9	
336	HGE	SDP	1	B3	8.0	9.) andre 2. angeween an angew
337	HGE	SDP	1	B4	8.8	errentristik, k. 19. Ang
338	HGE	SDP	2	A1	7.8	
339	HGE	SDP	2	A2	8.8	-
340	HGE	SDP	2	A3	10.0	•
341	HGE	SDP	2	A4	9.0	•
342	HGE	SDP	2	B1	9.1	•
343	HGE	SDP	2	B2	8.6	an 145 8 J J J
344	HGE	SDP	2	B3	9.2	107.00 (J. J. 100) (J. C. 1
345	HGE	SDP	2	B4	9.3	

 $file:///C:/Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD2368_1... 5/7/2014$

	HGE	SDP	3	A1	8.4	
347	HGE	SDP	3	A2	9.0	•
348	HGE	SDP	3	A3	8.6	
349	HGE	SDP	3	A4	9.7	
350	HGE	SDP	3	B 1	9.0	
351	HGE	SDP	3	B2	9.6	
352	HGE	SDP	3	B3	8.5	
353	HGE	SDP	3	B 4	9.0	
354	HGE	SDP	4	A1	9.6	·····
355	HGE	SDP	4	A2	8.3	
356	HGE	SDP	4	A3	8.3	
357	HGE	SDP	4	A4	8.5	
358	HGE	SDP	4	B1	8.1	
359	HGE	SDP	4	B2	8.8	• • • • • • • • • • • • • • • • • • •
360	HGE	SDP	4	B3	9.0	
361	HGE	SDP	4	B4	8.8	•
362	HGE	SDP	5	A1	7.3	•
363	HGE	SDP	5	A2	8.5	•
364	HGE	SDP	5	A3	8.8	•
365	HGE	SDP	5	A4	8.2	•
366	HGE	SDP	5	B1	7.5	•
367	HGE	SDP	5	B2	8.7	•
368	HGE	SDP	5	В3	8.0	•
369	HGE	SDP	5	B4	9.5	•
370	HGE	SDP	6	A1	8.0	
371	HGE	SDP	6	A2	9.3	n, odd 2000, 100 haf o oro
372	HGE	SDP	6	A3	8.0	
373	HGE	SDP	6	A4	9.9	•
374	HGE	SDP	6	B1	8.8	
375	HGE	SDP	6	B2	9.4	
376	HGE	SDP	6	В3	8.0	
377	HGE	SDP	6	B 4	8.4	•
378	HGE	SDP	7	A1	8.1	and State and State of A
379	HGE	SDP	7	A2	8,9	
380	HGE	SDP	7	A3	8.8	

AEH-11-PSEUDO-02

	HGE	SDP	7	A4	8,4	
382	HGE	SDP	7		9.6	
383	HGE	SDP	7	B2	8.1	
384	HGE	SDP	7	B3	8.4	**** * ***(Jak, ()******
385	HGE	SDP	7	B4	8.8	
386	HIC	FDP	-2	A1	8.8	
387	ніс	FDP	-2	A10	8.9	
388	ніс	FDP	-2		9.0	
389	ніс	FDP		A12	8.9	
390	ніс	FDP	-2	A2	8.8	
391	HIC	FDP	-2		8.2	
392	HIC	FDP	-2		7.5	n 1960 a da no ma ntonione
393	ніс	FDP	-2	A5	9,4	
394	ніс	FDP	-2	A6	7.5	
395	ніс	FDP	-2	A7	8.6	
396	ніс	FDP	-2	A8	7.6	
397	HIC	FDP	-2	A9	9.8	
398	HIC	FDP	-2		9,2	
399	HIC	FDP	-2		9.8	
400	HIC	FDP	-2	B11	9,4	
401	HIC	FDP	-2	B12	8.4	
402	HIC	FDP	-2	B2	7.8	
403	HIC	FDP	-2	В3	8.9	**** *****************
404	HIC	FDP	-2	B4	8.7	* 1827 (* 1728)
405	ніс	FDP	-2	В5	8.4	o o recourt or co ano.
40 6	ніс	FDP	-2	B6	8.6	
407	ніс	FDP	-2	B7	9.4	
408	ніс	FDP	-2	B8	8.8	•
409	HIC	FDP	-2	B9	8.0	****
410	HIC	FDP	-1	A 1	8.8	
411	HIC	FDP	-1	A2	8.2	
	HIC		-1	A3	8.6	
		FDP	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A4	9.3	
414	HIC	FDP	-1	B 1	9.2	
415	HIC	FDP	-1	B2	8.1	

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_1... 5/7/2014

1	ніс	FDP	-1	B3	8.6	
417	HIC	FDP	-1		8.9	
418	HIC	FDP	. 0	A1	9.0	·····
419	ніс	FDP	0	A10	9.0	·······
420	ніс	FDP	0	A11	9.2	5.0
421	ніс	FDP	0		8.8	0.0
422	HIC	FDP	0	A12 A2	8.2	•
423	HIC	FDP		A2	7.8	•
423	مر به مدینه در در در در د		0	A3 A4		n - main straten stada
	HIC	FDP	 	* *	9.1	4 888.0.00000000000000000000000000000000
425	HIC	FDP		A5	9.4	
426		FDP	0	A6	9.0	
427	HIC	FDP	0	A7	8.9	
428	HIC	FDP		. A8	8.1	•
429	HIC	FDP	0	A9	9.4	
430	HIC	FDP	0	B1	9.2	•
431	HIC	FDP	0	B10	9.8	· · •
432	HIC	FDP	0	······	9.0	•
433	HIC	FDP	0	B12	8.7	
434	HIC	FDP	0	B2	8.2	
435	HIC	FDP	0	B3	9.3	•
436	HIC	FDP	0	B4	9.1	i
437	HIC	FDP	0	B5	8.2	
438	HIC	FDP	0	B6	8.6	
439	HIC	FDP	0	B7	9.8	-
440	HIC	FDP	0	B8	9.0	
441	HIC	FDP	0	B9	8.6	
442	HIC	FDP	1	A1	9.3	
443	HIC	FDP	1	A2	9.1	
444	HIC	FDP	1	A3	9.0	
445	HIC	FDP	1	A4	8.2	
446	HIC	FDP	1	B1	8.6	-
447	HIC	FDP	1	B2	8,4	
448	HIC	FDP	1	B3	9.7	••••••••••••••••••••••••••••••••••••••
449	HIC	FDP	1	B4	9.6	•
450	HIC	FDP	2	A1	9.4	

AEH-11-PSEUDO-02

 $file:///C:/Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD2368_1... 5/7/2014$

1	НІС	FDP	2	A2	8.8	1
452	ніс	FDP	2	+	9.0	
453	HIC	FDP		A4	8.8	,
454	HIC	FDP	2	B1	8.3	
455	ніс	FDP	2	+	9.6	** ** ***
456	ніс	FDP	2	B3	8.6)
457	ніс	FDP	2	÷	8.6	
458	HIC	FDP	3	A1	8.6	
459	ніс	FDP	3	÷	8.4	
460	HIC	FDP	3	A3	7.8	
461	HIC	FDP	3	A4	8.4	Marina - Marina 43
462	HIC	FDP	3	B1	8.3	enter dir son a
463	HIC	FDP	3	B2	8,6	10004-09-754-2602-28-4
464	ніс	FDP	3	B3	9.0	vvi niztan grag
465	ніс	FDP	3	B4	8.6	
466	HIC	FDP	4	A1	9.0	
467	HIC	FDP	4	A2	8.7	
468	HIC	FDP	4	A3	8.4	
469	HIC	FDP	4	A4	8.7	
470	HIC	FDP	4	B1	8.3	
471	HIC	FDP	4	B2	8.3	•••••••••••••••••••••••••••••••••••••••
472	ніс	FDP	4	B3	9.4	
473	HIC	FDP	4	B4	9.3	
474	HIC	FDP	5	A1	8.8	
475	ніс	FDP	5	A2	9.3	
476	HIC	FDP	5	A3	8.7	
477	HIC	FDP	5	A4	8.8	- 1.5 K-106 - 20 Garant
478	HIC	FDP	5	B1	8.3	
479	HIC	FDP	5	B2	9.7	**************************************
480	HIC	FDP	5	B3	9.2	
481	HIC	FDP	5	B4	8,4	
482	HIC	FDP	6	A1	8.3	
483	HIC	FDP	6	A2	8.1	1. 21 m. mileton de suno
484	HIC	FDP	6	A3	7.5	
485	HIC	FDP	6	A4	7.9	

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_1... 5/7/2014

-	ніс	FDP	6	B1	8.1	
487	HIC	FDP	6	B2	8.0	
488	HIC	FDP	6	В3	8.7	
489	HIC	FDP	6	B4	8.6	4. 8. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
490	HIC	FDP	7	A1	8.6	
491	HIC	FDP	7	A2	8.6	1
49 2	HIC	FDP	7	A3	8.2	
493	HIC	FDP	7	A4	8.6	
494	HIC	FDP	7	B 1	8.0	
495	HIC	FDP	7	B2	8.3	
496	HIC	FDP	7	B3	9.1	
497	HIC	FDP	7	B4	8.9	
498	мис	FDP	-2	A1	8.6	
499	MUC	FDP	-2	A10	9.2	
500	мис	FDP	-2	A11	8.6	
501	MUC	FDP	-2	A12	8.9	-
502	MUC	FDP	-2	A2	7.6	
503	MUC	FDP	-2	A3	9.2	•
504	MUC	FDP	-2	A4	8.0	•
505	MUC	FDP	-2	A5	8.4	-
506	MUC	FDP	-2	A6	8,3	•
507	MUC	FDP	-2	A7	8.9	
508	MUC	FDP	-2	A8	8.7	
509	MUC	FDP	-2	A9	8.7	
510	MUC	FDP	-2	B1	9.8	•
511	MUC	FDP	-2	B10	8.6	•
512	MUC	FDP	-2	B11	9.0	
513	MUC	FDP	-2	B12	9.9	
514	MUC	FDP	-2	B2	9.2	· · · · · · · · · · · · · · · · · · ·
515	MUC	FDP	-2	В3	9.6	•
516	MUC	FDP	-2	B4	10.0	•
517	MUC	FDP	-2	B5	10.4	•
518	MUC	FDP	-2	B6	10.0	•
519	MUC	FDP	-2	B7	9.9	• 0. 962030 fa 00
520	MUC	FDP	-2	B8	9.9	*****

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_1... 5/7/2014

	мос	FDP	-2	В9	9.6	-
522	MUC	FDP	-1	A1	9.2	
523	мис	FDP	-1	A2	8.5	
524	мис	FDP	-1	A3	9.4	2
525	MUC	FDP	-1	A4	8.9	
526	мис	FDP	-1	B1	9.6	
527	MUC	FDP	-1	B2	9.2	
528	MUC	FDP	-1	B3	9.2	
529	MUC	FDP	-1	B4	10.3	,
530	MUC	FDP	0	A1	8.6	nordinal? 45.003 Nov. 203
531	MUC	FDP	0	A10	9.5	
532	MUC	FDP	0	A11	9.5	•
533	MUC	FDP	0	A12	10,0	,
534	MUC	FDP	0	A2	8.8	•
535	MUC	FDP	0	A3	9.5	
536	MUC	FDP	0	A4	9.4	
537	MUC	FDP	0	A 5	8.8	
538	MUC	FDP	0	A6	8.7	L
539	MUC	FDP	0	A7	9.8	
540	MUC	FDP	0	A8	8.6	
541	MUC	FDP	0	A9	9.2	-
542	MUC	FDP	0	B1	9.7	•
543	MUC	FDP	0	B10	8.4	
544	MUC	FDP	0	B 1 1	9.6	
545	MUC	FDP	0	B12	9.3	•
546	MUC	FDP	0	B2	9.4	
547	MUC	FDP	0	B3	9.8	
548	MUC	FDP	0	B4	10.2	
549	MUC	FDP	0	В5	10.6	
550	MUC	FDP	0	B6	10,5	
551	MUC	FDP	0	B7	8.8	
552	MUC	FDP	0	B8	10.2	•
553	MUC	FDP	0	В9	9.4	
554	MUC	FDP	1	A1	8.6	
565	мис	FDP			8.3	•

AEH-11-PSEUDO-02

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_1... 5/7/2014

SAS Output

Page 17 of 32

	MUC	FDP	1	A3	9.4	
557	MUC	FDP	1	A4	9.6	
558	MUC	FDP	1	B1	9.4	
559	MUC	FDP	1	B2	9.2	
560	мис	FDP	1	B3	9.6	
561	MUC	FDP	1	B 4	10.0	
562	MUC	FDP	2	A1	8.6	
563	MUC	FDP	2	A2	8.8	
564	MUC	FDP	2	A3	9.6	- 1999 - 10- 1864 - 1644 - 1644 - 1644 - 1644 - 1644 - 1644 - 1644 - 1644 - 1644 - 1644 - 1644 - 1644 - 1644 -
565	мис	FDP	2	A4	9.0	
566	MUC	FDP	2	B1	10.4	•
567	MUC	FDP	2	B2	10.3	
568	MUC	FDP	2	B 3	9.4	
569	MUC	FDP	2	B4	10.0	
570	MUC	FDP	3	A1	9.1	•
571	MUC	FDP	3	A2	9.6	•
572	MUC	FDP	3	A3	9.4	•
573	мис	FDP	3	A4	10.2	•
574	MUC	FDP	3	B1	7.6	
575	MUC	FDP	3	B2	8.6	
576	MUC	FDP	3	В3	9.6	•
577	MUC	FDP	3	B4	9.7	••••••
578	MUC	FDP	4	A1	7.2	•
579	MUC	FDP	4	A2	8.6	-
580	MUC	FDP	4	A3	9.2	-
581	MUC	FDP	4	A4	9.1	
582	MUC	FDP	4	B1	9.1	
583	MUC	FDP	4	B2	9.2	
584	MUC	FDP	4	B3	9.1	•
585	MUC	FDP	4	B4	9.6	•
586	MUC	FDP	5	A1	8,0	•
587	MUC	FDP	5	A2	9.2	•
588	MUC	FDP	5	A3	8.9	• • • • • • • •
58 9	MUC	FDP	5	A4	8.8	
590	MUC	FDP	5	B1	9.2	

file:///C:/Uscrs/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_1... 5/7/2014

	мис	FDP	5	B2	10.2	
592	MUC		5		9.9	
593	MUC	FDP		B4	9.6	
594	MUC	FDP	6	A1	8.5	
595	мис	FDP	6	A2	9.4	
596	MUC	FDP	6	A3	8.3	
597	MUC	FDP	6	A4	9.8	9 189 ₉ Janu Juni I.
598	мис	FDP	6	B1	9.2	
59 9	MUC	FDP	6	B2	8.8	
600	мис	FDP	6	В3	8.2	
601	MUC	FDP	6	B4	9.2	•••••••••••
602	MUC	FDP	7	A1	6.0	•
603	MUC	FDP	7	A2	8.1	
604	MUC	FDP	7	A3	9.2	• • • • • • • •
605	MUC	FDP	7	A4	8.8	•
606	MUC	FDP	7	B1	9.0	•
607	MUC	FDP	7	B2	8.9	•
608	MUC	FDP	7	B3	9.2	•
609	MUC	FDP	7	B4	9.5	•
610	PPB	SDP	-2	A1	7.8	
61 1	PPB	SDP	-2	A10	8.4	
612	PPB	SDP	-2	A11	8.2	•
613	PPB	SDP	-2	A12	7.6	•
614	PPB	SDP	-2	A2	7.9	
615	PPB	SDP	-2	A3	7.6	
616	PPB	SDP	-2	A4	8.3	
617	PPB	SDP	-2	A5	7.4	•
618	PPB	SDP	-2	A6	7.8	
619	PPB	SDP	-2	A7	8.2	
620	PPB	SDP	-2	A8	8.0	
621	PPB	SDP	-2	A9	7.4	
622	PPB	SDP	-2	B 1	8.3	
623	PPB	SDP	-2	B10	8.1	
624	PPB	SDP	-2	B11	8.7	
625	PPB	SDP	-2	B12	8.3	

file:///C:/Users/klweber/AppData/Local/Tcmp/1/SAS%20Temporary%20Files/_TD2368_I... 5/7/2014

.

	DDD	leon	i n	00	8.0	
007	PPB	SDP	-2	B2	+	
627	PPB	SDP	-2	B3	8.0	
628	PPB	SDP	-2	B4	8,6	
629	PPB	SDP	-2	B5	7.2	
630	PPB	SDP	-2	B6	8.1	
631	PPB	SDP	-2	B7	7.9	
632	PPB	SDP	-2	B 8	8.0	
633	PPB	SDP	-2	B9	8.3	
634	PPB	SDP	-1	A1	8,1	
635	PPB	SDP	-1	A10	8.4	
636	PPB	SDP	-1	A11	8.4	
637	PPB	SDP	-1	A12	8.0	
638	PPB	SDP	-1	A2	8.0	
639	РРВ	SDP	-1	A3	7.6	
640	PPB	SDP	-1	A 4	8.0	
641	PPB	SDP	-1	A5	7.4	
642	PPB	SDP	-1	A6	7.9	
643	PPB	SDP	-1	A7	7.8	
644	PPB	SDP	-1	A8	7.2	
645	PPB	SDP	-1	A9	8.2	
646	PPB	SDP	-1	B1	8.2	000 107 00 70 1717 3 7725 1
647	PPB	SDP	-1	B10	7.9	
648	РРВ	SDP	-1	B11	8.4	
649	РРВ	SDP	-1	B12	8.5	
650	PPB	SDP	-1	B2	7.9	97 5 70224 to 44 5 704
651	PPB	SDP	-1	В3	7.8	00.212 (20.20 6, -07 20)
652	PPB	SDP	-1	B4	8.5	e tang dipang sertang
653	PPB	SDP	-1	B5	7.9	
654	PPB	SDP	-1	B6	7.7	
655	РРВ	SDP	-1	B7	8.4	
656	PPB	SDP	.1	B8	7.8	•
657	PPB	SDP	-1	B9	8,1	
	PPB	SDP	6×044	A1	8.0	
	PPB	SDP		A10		
saunud		SDP	 	A11	serveren ar ar	•

 $filc:///C:/Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD2368_I... 5/7/2014$

SAS Output

	PPB	SDP	0	A12	8.0	
662	PPB	SDP	0	A2	8.6	• • • • • • • • • • • •
663	PPB	SDP	0	A3	7.0	
664	PPB	SDP	0	A4	8.2	
6 6 5	PPB	SDP	0	A5	7.4	
666	PPB	SDP	0	A6	7.8	
667	PPB	SDP	0	A7	8.0	
668	PPB	SDP	0	A8	7.5	
669	PPB	SDP	0	A9	8,8	······
670	PPB	SDP	0	B1	7.8	•••••••••••••••••••••••••••••••••••••••
671	PPB	SDP	0	B10	7.6	
672	PPB	SDP	0	B11	7.9	24 1020101080400
673	PPB	SDP	0	B12	7.4	(7 - Collina da Aspede
674	РРВ	SDP	0	B2	7.4	
675	PPB	SDP	0	B 3	7.3	
676	PPB	SDP	0	B 4	7.7	••••••
677	PPB	SDP	0	B5	7.8	, ,
678	PPB	SDP	0	B6	7.2	•
679	PPB	SDP	0	B7	7.8	
680	PPB	SDP	0	B8	7.0	•
681	PPB	SDP	0	B9	7.5	
682	PPB	SDP	1	A1	8.2	
683	PPB	SDP	1	A2	8.6	
684	PPB	SDP	1	A3	8,1	•
685	PPB	SDP	1	A4	8.4	
686	PPB	SDP	1	B1	8.0	
687	PPB	SDP	1	B2	7.8	
688	PPB	SDP	1	B3	8.0	
689	PPB	SDP	1	B4	8.4	4
690	PPB	SDP	2	A 1	8.4	•
691	PPB	SDP	2	A2	7.7	
692	PPB	SDP	2	A3	8.4	
693	PPB	SDP	2	A4	7.6	
694	PPB	SDP	2	B1	7.4	1
695	PPB	SDP	2	B2	8.4	

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_I... 5/7/2014

1	1	1	t	;	j.	
	PPB	SDP	2	B3	7.7	
697	PPB	SDP	2	В4	8,3	•
6 9 8	PPB	SDP	3	A1	9.4	
699	PPB	SDP	3	A2	8.2	-
7 0 0	PPB	SDP	3	A3	8.4	
701	PPB	SDP	3	A4	8.0	
702	PPB	SDP	3	B 1	8.6	
703	PPB	SDP	3	B2	8.0	
704	PPB	SDP	3	B 3	8.3	
705	РРВ	SDP	3	B 4	7.6	
706	PPB	SDP	4	A1	7.8	
707	PPB	SDP	4	A2	7.4	*
708	РРВ	SDP	4	A3	7.8	
709	PPB	SDP	4	A4	7.8	an an an an an an an an an an an an an a
710	PPB	SDP	4	B1	8.4	
711	PPB	SDP	4	B2	7,4	•
712	PPB	SDP	4	B3	7.7	
713	PPB	SDP	4	B4	8.1	•
714	РРВ	SDP	5	A1	7.1	
715	PPB	SDP	5	A2	8,0	•
716	PPB	SDP	5	A3	7.9	•
717	PPB	SDP	5	A4	7.3	
718	PPB	SDP	5	B1	8,2	(14)
719	PPB	SDP	5	B2	7.4	
720	PPB	SDP	5	B3	8.3	
721	PPB	SDP	5	B4	8.2	
722	PPB	SDP	6	A1	9.5	
723	РРВ	SDP	6	A2	7.4	
724	PPB	SDP	6	A3	8.4	2003 N. T. J
725	PPB	SDP	6	A4	7.8	
726	PPB	SDP	6	B 1	8.3	•
727	PPB	SDP	6	B2	8.0	
728	PPB	SDP	6	B3	8.3	
729	PPB	SDP	6	B4	7.5	1799 201.00 U.S.
730	PPB	SDP	7	A1	7.6	
n w maaarin maalo			; ******) (CLD IN MARINE IN (CLD IN MARINE IN	ca mana a p	·····

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_I... 5/7/2014

14 194 00 1400 - 1	PPB	SDP	7	A2	8.3	and the set of
732	PPB	SDP	7	A3	7.6	
733	PPB	SDP	7	A4	7.8	
734	PPB	SDP	7	B1	8.2	
735	PPB	SDP	7	B2	7.3	
736	PPB	SDP	7	В3	7.7	
737	PPB	SDP	7	B4	8.2	
738	WAS	FDP	-2	A'1	9.2	
739	WAS	FDP	-2	A10	8.6	
740	WAS	FDP	-2	A11	8.2	
741	WAS	FDP	-2	A12	8.8	19 19 - 10 - 10 - 1 0 - 10 - 10 - 10 - 10 - 1
742	WAS	FDP	-2	A2	8.4	
743	WAS	FDP	-2	A3	8.2	1890a-s-s- s-
744	WAS	FDP	-2	A4	8.8	
745	WAS	FDP	-2	A5	9.2	
746	WAS	FDP	-2	A6	8.2	Ann dender offer ber ert
747	WAS	FDP	-2	A 7	8.7	
748	WAS	FDP	-2	A8	8.6	
749	WAS	FDP	-2	A9	8.4	,
750	WAS	FDP	-2	B1	8.4	•
751	WAS	FDP	-2	B10	8.7	•
752	WAS	FDP	-2	B11	8.7	
753	WAS	FDP	-2	B12	8.6	
754	WAS	FDP	-2	B2	8.5	•
755	WAS	FDP	-2	B3	8.8	•
756	WAS	FDP	-2	В4	8.2	•
757	WAS	FDP	-2	В5	8.2	
758	WAS	FDP	-2	B6	8.0	
759	WAS	FDP	-2	B7	8.2	
760	WAS	FDP	-2	B8	7.6	n. (2600 at all an ada
761	WAS	FDP	-2	B9	7.9	•
762	WAS	FDP	-1	A1	8.3	6.6
763	WAS	FDP	-1	A10	8.5	
764	WAS	FDP	-1	A11	7.2	3.8
765	WAS	FDP	-1	A12	8.9	

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_I... 5/7/2014

,

	WAS	FDP	-1	A2	8.0	
767	WAS	FDP	-1	A3	9.1	6.1
768	WAS	FDP	-1	A4	8.0	
769	WAS	FDP	-1	A5	7.9	•
770	WAS	FDP	-1	A6	8.0	
771	WAS	FDP	-1	A7	8.3	
772	WAS	FDP	-1	A8	8.9	
773	WAS	FDP	-1	A9	8.4	
774	WAS	FDP	-1	B 1 [°]	8.5	
775	WAS	FDP	-1	B10	9.2	
776	WAS	FDP	-1	B11	8.2	
777	WAS	FDP	-1	B12	8.2	
778	WAS	FDP	-1	B2	8.9	0.5
779	WAS	FDP	-1	B 3	8.4	
78 0	WAS	FDP	-1	B4	9.0	6.3
781	WAS	FDP	-1	B 5	8.1	•
782	WAS	FDP	-1	B6	7.9	•
783	WAS	FDP	-1	B7	8,4	•
784	WAS	FDP	-1	B8	8.5	6.8
785	WAS	FDP	-1	B9	9,0	6.4
786	WAS	FDP	0	A1	8.4	•
787	WAS	FDP	0	A10	8.6	
788	WAS	FDP	0	A11	9.0	1 1010. J. 1. 1. Hada •
789	WAS	FDP	0	A12	9.0	•
790	WAS	FDP	0	A2	9,4	•••••••••••••••••••••••••••••••••••••••
791	WAS	FDP	0	A3	9.4	-
792	WAS	FDP	0	A4	9.0	
793	WAS	FDP	0	A5	9.0	•
794	WAS	FDP	0	A6	8.4	
795	WAS	FDP	0	A7	8.4	
796	WAS	FDP	0	A8	9.0	•
797	WAS	FDP	0	A9	8.6	•
798	WAS	FDP	0	B1	8.6	
79 9	WAS	FDP	0	B10	9.0	20.000 2.00 08.0 0
8 0 0	WAS	FDP	0	B11	8.8	

 $file:///C:/Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD2368_1...=5/7/2014$

	WAS	FDP	0	B12	9.2	18/14
802	WAS	FDP	0	B2	8.6	
803	WAS	FDP	0	В3	8.8	Arman
804	WAS	FDP	0	B 4	8.6	
805	WAS	FDP	0	B5	8.1	чана алу на су са ал с
806	WAS	FDP	0	B6	8.0	
807	WAS	FDP	0	B7	8.4	
808	WAS	FDP	0	B8	8.6	
809	WAS	FDP	0	B 9	9.2	
810	WAS	FDP	1	A 1	9.0	. / ****
811	WAS	FDP	1	A2	8.4	5.08.09
812	WAS	FDP	1	A3	9.4	ANA 12 12000.00
813	WAS	FDP	1	A4	8.8	
814	WAS	FDP	1	B1	8.6	
815	WAS	FDP	1	B2	8.4	
816	WAS	FDP	1	B3	8.8	
817	WAS	FDP	1	B4	8.6	
818	WAS	FDP	2	A1	9.2	
819	WAS	FDP	2	A2	8.6	,
820	WAS	FDP	2	A3	8.2	
821	WAS	FDP	2	A4	8.7	,
822	WAS	FDP	2	B1	8.8	•
823	WAS	FDP	2	B2 ,	7.9	ni 7 12 1. Oldon
824	WAS	FDP	2	В3	8.6	
825	WAS	FDP	2	B4	9.6	
826	WAS	FDP	3	A1	8.9	
827	WAS	FDP	3	A2	8.2	
828	WAS	FDP	3	A3	7.3	
829	WAS	FDP	3	A4	9.3	•
830	WAS	FDP	3	B1	9.1	•
831	WAS	FDP	3	B2	9.5	
832	WAS		3		9.7	
833	WAS	FDP	3	B4	9.4	•
834	WAS	FDP	4	A1	9.6	**************************************
835	WAS	FDP	4	A2	8.6	ч. ни слоченияна •

.

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_I... 5/7/2014

	WAS	FDP	4	A3	9,4	
837	WAS	FDP	4	A4	9.0	
838	WAS	FDP	4	B1	8.6	
839	WAS	FDP	4	B2	8.4	
840	WAS	FDP	4	В3	8.2	•••••••••••••••••••••••••••••••••••••••
841	WAS	FDP	4	B4	8.6	
842	WAS	FDP	5	A 1	8.9	
843	WAS	FDP	5	A2	8.4	
844	WAS	FDP	5	A3	8.4	
845	WAS	FDP	5	A4	9.2	
846	WAS	FDP	5	B 1	8,6	
847	WAS	FDP	5	B2	7.4	•
848	WAS	FDP	5	B3	8.0	
849	WAS	FDP	5	B4	9.2	
850	WAS	FDP	6	A1	8 .6	
851	WAS	FDP	6	A2	7.6	•
852	WAS	FDP	6	A3	9.1	0.0
853	WAS	FDP	6	A4	8.8	•
854	WAS	FDP	6	B1	8.9	
855	WAS	FDP	6	B2	8.8	
856	WAS	FDP	6	B3	9.2	
857	WAS	FDP	6	В4	8.2	
858	WAS	FDP	7	A1	10.0	4.0
859	WAS	FDP	7	A2	8.6	•
860	WAS	FDP	7	A3	9.1	
861	WAS	FDP	7	A4	9.0	
862	WAS	FDP	7	B1	9.8	4.8
863	WAS	FDP	7	B2	8.2	•
864	WAS	FDP	7	B3	7.9	
865	WAS	FDP	7	B4	7.5	

Performed by K. Weber SAS version 9.4 09:43 07MAY14

 $file:///C:/Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD2368_I... 5/7/2014$

Flow Rate Means by Species and Formulation

AEH-11-PSEUDO-02

The MEANS Procedure

sps=BLS form=SDP

			Analy	/sis Variabl	le : fflow fflo	w	
day	N Obs	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean
-2	24	8.3542	0.4212	7.4000	9.2000	8.1763	8.5320
-1	24	9.0125	0.4839	7.7000	9.8000	8.8082	9.2168
0	24	7.6792	0.3514	7.0000	8.5000	7.5308	7.8275
1	8	8.9250	0.5203	7.8000	9.4000	8.4900	9.360 0
2	8	9.1750	0.1982	8.9000	9.5000	9.0 0 93	9.3407
3	8	8.9375	0.4406	8.4000	9.6000	8.5692	9.3058
4	8	8.5875	0.5915	7.4000	9.2000	8.0930	9.0820
5	8	9.2000	0.3964	8.3000	9.5000	8.8686	9.5314
6	8	9.0750	0.5825	8.3000	9.8000	8.5880	9.5620
7	8	9.0500	0.8848	7.3000	10.0000	8.3103	9.7897

sps=FAM form=SDP

			Analy	/sis Variab	le : fflow fflo	w	
day	N Obs	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean
-2	24	8.0667	0.4517	7.4000	9.0000	7.8759	8.2574
-1	24	8.1667	0.4594	7.2000	9.4000	7.9727	8.3606
0	24	8.3792	0.5381	7.1000	9.6000	8.1519	8.6064
1	9	8.5444	0.6784	7.5000	9.6000	8.0230	9.0659
2	8	8.2375	0,5951	7.7000	9.4000	7.7400	8.7350
3	8	8.2000	1.3202	7.2000	10.6000	7.0963	9,3037
4	8	8.6000	0.7270	7,3000	9.8000	7.9922	9.2078
5	8	8.2000	0.5855	7.5000	9.3000	7.7105	8.6895
6	8	8.9125	0.4454	8.6000	9.8000	8.5401	9.2849
7	8	8.4500	0.4870	7.8000	9.4000	8.0429	8.8571

sps=HGE form=SDP

;	 w		· b · · · · b · ; b · · · · · · · · · ·		14 - 14 Annal III		
			Analysis	Variable	: fflow fflow		
1000	 }	· · · · · · · · · · · · · · · · · · ·			fan daalde die gesteen oorse gegenen oper versprong oor yn yn	utra - Arramatia - Mriti - ua ratium, mu gunnamenyaginungen	2 44 5 4 4 6 4 6 4 6 4 6 4 6 6 6 6 6 6 6

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_1... 5/7/2014

SAS Output

Page 27 of 32

AEH-11-PSEUDO-02

day	N Obs	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean
-2	24	7.8875	0.4875	7.2000	9.0000	7.6816	8.0934
-1	24	8.8708	0.5568	7.0000	9.8000	8.6357	9.1059
0	24	8.8583	0.6433	7.3000	10.4000	8,5867	9.1300
1	8	8.7375	0.4955	8.0000	9.5000	8,3232	9.1518
2	8	8.9750	0.6296	7.8000	10.0000	8.4486	9.5014
3	8	8.9750	0.4803	8.4000	9. 70 00	8.5734	9.3766
4	8	8.6750	0.4833	8.1000	9.6000	8.2710	9.0790
5	8	8.3125	0.7200	7.3000	9.5000	7.7106	8.9144
6	8	8.7250	0.7421	8.0000	9.9000	8.1046	9.3454
7	8	8.6375	0.4984	8.1000	9.6000	8.2208	9.0542

sps=HIC form=FDP

			Analy	/sis Variab	le : fflow fflo	w	
day	N Obs	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean
-2	24	8.6833	0.6664	7.5000	9.8000	8.4019	8.9647
-1	8	8.7125	0.4291	8.1000	9.3000	8.3538	9.0712
0	24	8.8917	0.5166	7.8000	9.8000	8.6735	9.1098
1	8	8.9875	0.5489	8.2000	9.7000	8.5286	9.4464
2	8	8.8875	0.4324	8.3000	9.6000	8.5260	9.2490
3	8	8.4625	0.3420	7.8000	9.0000	8.1766	8.7484
4	8	8.7625	0.4340	8.3000	9.4000	8.3996	9.1254
5	8	8.9000	0.4721	8.3000	9.700 0	8.5053	9.2947
6	8	8.1500	0.3854	7.50 0 0	8.700 0	7.8278	8.4722
7	8	8.5375	0.3623	8.0000	9.1000	8.2346	8.8404

sps=MUC form=FDP

day	N Obs	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean
-2	24	9.1250	0.7219	7.6000	10.400 0	8.8202	9.4298
-1	8	9.2875	0.5249	8.5000	10.3000	8.8487	9.7263
0	24	9.4292	0.6132	8.4000	10.6000	9.1702	9.6881
1	8	9.2625	0.5579	8.3000	10.0000	8.7961	9.7289

 $file:///C:/Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD2368_1... 5/7/2014$

2	8	9.5125	0.6833	8.6000	10.4000	8.9412	10.0838
3	8	9.2250	0.8049	7.6000	10.2000	8.5521	9.8979
4	8	8.8875	0.7338	7.2000	9.6000	8.2741	9.5009
5	8	9.2250	0.6902	8.0000	10.2000	8.6479	9,8021
6	8	8.9250	0.5676	8.2000	9,8000	8.4505	9,3995
7	8	8.5875	1.1231	6.0000	9.5000	7.6486	9.5264

sps=PPB form=SDP

			Analy	/sis Variabl	e : fflow fflo	w	
day	N Obs	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean
-2	24	8.0042	0.3759	7.2000	8.7000	7.8454	8.1629
-1	24	8.0042	0.3394	7.2000	8.5000	7.8608	8.1475
0	24	7.7583	0.4671	7.0000	8.8000	7.5611	7.9556
1	8	8.1875	0.2642	7.8000	8.6000	7.9666	8.4084
2	8	7.9875	0.4257	7.4000	8.4000	7.6316	8.3434
3	8	8.3125	0.5330	7.6000	9.4000	7.8669	8.7581
4	8	7.8000	0.3338	7.4000	8.4000	7.5209	8.0791
5	8	7.8000	0.4660	7.1000	8.3000	7.4104	8.1896
6	8	8.1500	0.6612	7.40 0 0	9.500 0	7.5972	8.7028
7	8	7.8375	0.3583	7.30 0 0	8.300 0	7.5379	8.1371

sps=WAS form=FDP

			Analy	/sis Variabi	le : fflow fflo	w	
day	N Obs	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean
-2	24	8.4625	0.3820	7.6000	9.2000	8.3012	8.6238
-1	24	8.4083	0.4772	7.2000	9.2000	8,2068	8.6099
0	24	8.7542	0.3753	· 8.0000	9.4000	8.5957	8.9126
1	8	8.7500	0.3338	8.4000	9.4000	8.4709	9.0291
2	8	8.7000	0.5318	7.9000	9,6000	8.2554	9.1446
3	8	8.9250	0.8013	7,3000	9.7000	8.2551	9.5949
4	8	8.8000	0.4899	8.2000	9.6000	8.3904	9.2096
5	8	8.5125	0.6128	7.4000	9.2000	8.0002	9.0248
6	8	8.6500	0.5237	7,6000	9.2000	8.2122	9.0878
7	8	8.7625	0.8831	7.5000	10.0000	8.0242	9.5008

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_1... 5/7/2014

SAS Output

Page 29 of 32

Performed by K. Weber SAS version 9.4 09:43 07MAY14

AEH-11-PSEUDO-02

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_I... 5/7/2014

Flow Rate Means by Species and Formulation

The MEANS Procedure

sps=BLS form=SDP

	Analysis Variable : fflow fflow									
	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean				
Contraction of the second	8.6305	0.7083	7.0000	10.0000	8.5066	8.7544				

sps=FAM form=SDP

Analysis Variable : fflow fflow							
Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean		
8.3132	0.6263	1.1000	10.600 0	012011	8.4223		

sps=HGE form=SDP

 Analysis Variable : fflow fflow							
 Mean	Std Dev			CL for Mean			
 8.6180	0.6748		10.4000		8.7360		

sps=HIC form=FDP

Analysis Variable : fflow fflow						
Mean	Std Dev	Minimum	Maximum		Upper 95%	
8.7232	0.5363	7.5000	9.8000	8.6228	8.8236	

sps=MUC form=FDP

 Analysis Variable : fflow fflow							
Mean	Std Dev	1	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean		
9.1839	0.7189	6.0000	10.6000	9.0493	9.3185		

sps=PPB form=SDP

A DUDING A	Analysis Variable : fflow fflow							
and the second state of the second	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean		
Annual -	· • • • • • • • • • • • • • • • • • • •	**************************************	·····		A A MARINA MATCHINE REAL AND ADDRESS AND ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRES	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_1... 5/7/2014

Page 31 of 32

7.9609 0.4367 7.0000 9.5000 7.8845 8.0373

sps=WAS form=FDP

	Analysis Variable : fflow fflow							
Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	Upper 95% CL for Mean			
8.6234	0.5199	7.2000	10.0000	8.5325	8.7144			

Performed by K. Weber SAS version 9.4 09:43 07MAY14

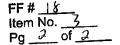
AEH-11-PSEUDO-02

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_1... 5/7/2014

Flow Rate Means by Species and Formulation

The MEANS Procedure

Analysis Va	riable : oflow
Minimum	Maximum
0	6.9000000


Performed by K. Weber SAS version 9.4 09:43 07MAY14

FF # \8	ī
Item No.	2
Pg	of <u>32</u>

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD2368_I... 5/7/2014

```
DM 'LOG; CLEAR; OUTPUT; CLEAR; '; * CLEAR LOG AND OUTPUT;
FOOTNOTE1 'Performed by K. Weber SAS version' &SYSVER &SYSTIME &SYSDATE;
                                                      AEH-11-PSEUDO-02
options 1s=97 ps=57 formdlim='-' pageno = 1 nocenter nodate nosource2;
title1 h=2 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels fro
title2 h=2 'Statistical Analysis of Holding Chamber Flow Rates';
title3 h=2 'SAS v. 9.4 Analysis Completion Date: 07MAY2014 Analysis prepared by: KLW';
* SAS ver 9.4
             Analysis prepared by: KLW
* Analysis completion date: 07MAY14
* Variable Names:
* sps = three letter code for mussel species
        BLS = Black sandshell (Ligumia recta)
        FAM = Fatmucket (Lampsilis siliquoidea)
        WAS = Washboard (Megalonaias nervosa)
        HGE = Higgins eye (Lampsilis higginsii)
        PPB = Plain pocketbook (Lapsilis cardium)
        HIC = Hickorynut (Obovaria olivaria)
* '
        MUC = Mucket (Actinonaias ligamentina)
* form = formulation (FDP [freeze dried powder] vs. SDP [spray dried powder])
* day = sampling day
        -2 = Pre-exposure
        -1 = During exposure
        0 -7 = Day 0 to Day 7 duing the holding period
* id = chamber ID (Block A or B; Chamber 1 through 12)
* fflow = measured flow (if oflow was < 7 mL/min, then fflow is the fixed measured flow)
* oflow = original flow if < 7 mL/min
data flow; set Pseudo02.flow;
  origfl = oflow + 0;
  drop oflow;
  rename origfl = oflow;
proc sort data=flow; by sps form day; run;
proc print data=flow; run;
* This analysis calculates mean flow rates for each species during each sampling period
title1 h=2 'Flow Rate Means by Species and Formulation';
proc means data = flow mean std min max clm fw=8;
by sps form;
                                                    FF # \8
class day;
                                                    Item No.
var fflow;
run;
* This analysis calculates mean flow rates for each species over all sampling periods
```

title1 h=2 'Flow Rate Means by Species and Formulation';

288 DM 'LOG; CLEAR; OUTPUT; CLEAR; '; * CLEAR LOG AND OUTPUT; 289 290 FOOTNOTE1 'Performed by K. Weber SAS version' &SYSVER &SYSTIME &SYSDATE; WARNING: The FOOTNOTE statement is ambiguous due to invalid options or unguoted text. 291 292 options ls=97 ps=57 formdlim='-' pageno = 1 nocenter nodate nosource2; AEH-11-PSEUDO-02 293 294 title1 h=2 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile 294! mussels from seven different unionid species'; 295 title2 h=2 'Statistical Analysis of Holding Chamber Flow Rates'; 296 title3 h=2 'SAS v. 9.4 Analysis Completion Date: 07MAY2014 Analysis prepared by: KLW'; 297 * SAS ver 9.4 Analysis prepared by: KLW 298 299 * Analysis completion date: 07MAY14 301 302! ********** 303 * Variable Names: 3031 * 304 * sps = three letter code for mussel species 3041 305 * BLS = Black sandshell (Ligumia recta) 3051 306 * FAM = Fatmucket (Lampsilis siliquoidea) 306! WAS = Washboard (Megalonaias nervosa) 307 * 3071 308 * HGE = Higgins eye (Lampsilis higginsii) 3081 309 * PPB = Plain pocketbook (Lapsilis cardium) 3091 310 * HIC = Hickorynut (Obovaria olivaria) 3101 311 * MUC = Mucket (Actinonaias ligamentina) 3111 312 * form = formulation (FDP [freeze dried powder] vs. SDP [spray dried powder]) 312! 313 * day = sampling day 313! * 314 * -2 = Pre-exposure314! * FF # 18 315 * -1 = During exposure Item No. _4 3151 Pg ____ of _ 316 * 0 -7 = Day 0 to Day 7 duing the holding period 316! 317 * id = chamber ID (Block A or B; Chamber 1 through 12) 317! 318 * fflow = measured flow (if oflow was < 7 mL/min, then fflow is the fixed measured flow) 318! 319 * oflow = original flow if < 7 mL/min 3191 × 320 *********** ***** 320! **********/ 321 322 data flow; set Pseudo02.flow;

323 origfl = oflow + 0; 324 drop oflow; 325 rename origf1 = oflow; AEH-11-PSEUDO-02 326 NOTE: Character values have been converted to numeric values at the places given by: (Line):(Column). 323:14 NOTE: Missing values were generated as a result of performing an operation on missing values. Each place is given by: (Number of times) at (Line):(Column). 830 at 323:20 NOTE: There were 865 observations read from the data set PSEUD002.FLOW. NOTE: The data set WORK.FLOW has 865 observations and 6 variables. NOTE: DATA statement used (Total process time): real time 0.02 seconds 0.01 seconds cpu time 327 proc sort data=flow; by sps form day; run; NOTE: There were 865 observations read from the data set WORK.FLOW. NOTE: The data set WORK.FLOW has 865 observations and 6 variables. NOTE: PROCEDURE SORT used (Total process time): real time 0.00 seconds opu time 0.00 seconds 328 proc print data=flow; run; NOTE: Writing HTML Body file: sashtml5.htm NOTE: There were 865 observations read from the data set WORK.FLOW. NOTE: PROCEDURE PRINT used (Total process time): real time 1.84 seconds opu time 0.95 seconds 329 330! * 331 * This analysis calculates mean flow rates for each species during each sampling period 3311 * 3321 / 333 title1 h=2 'Flow Rate Means by Species and Formulation'; 334 proc means data = flow mean std min max clm fw=8; 335 by sps form; Page 2 of 3 336 class day; 337 var fflow; 338 run; NOTE: There were 865 observations read from the data set WORK.FLOW, NOTE: PROCEDURE MEANS used (Total process time): 0.07 seconds real time cpu time 0.03 seconds

339 340! * 341 * This analysis calculates mean flow rates for each species over all sampling periods 341! * 3421 / 343 title1 h=2 'Flow Rate Means by Species and Formulation'; AEH-11-PSEUDO-02 344 proc means data = flow mean std min max clm fw=8; 345 by sps form; 346 var fflow; 347 run; NOTE: There were 865 observations read from the data set WORK.FLOW. NOTE: PROCEDURE MEANS used (Total process time): real time 0.04 seconds cpu tíme 0.03 seconds 348 349! * 350 * This analysis determines the range flow rates for the original flows < 7 mL/min for all 350! * 351 * species and all sampling durations 351! * 352! / 353 proc means data = flow min max; 354 var oflow; 355 run; NOTE: There were 865 observations read from the data set WORK.FLOW. NOTE: PROCEDURE MEANS used (Total process time): real time 0.03 seconds cpu time 0.00 seconds

FF# 15 1 Item No. $Pg 3_{of}$

Study Number	r: AEH-11-PSEUDO-02	Action	Date	Initials
Data Source;	File Folders: 18c	Created	1-May-14	KLW M
	System Condition Form 3	Revised	19-Nov-14	KLW WW
		Reviewed	MINNI	lin
File Name:	I:\AEH-11-PSEUDO-02\Data\[PSEUDO-02 System Conditions for SAS.xlsx]Light Intensity	Certified		

System Conditions - Light Intensity

Scientific Name	Common Name	Abbreviation	Formulation Type	Test Article Lot Number	Exposure Date	Assessment Date
Obovaria olivaria	Hickorynut	HIC	FDP	110510FD	12-Jul-11	20-Ju -11
Actinonaías ligamentina	Mucket	мис	FDP	110510FD	14-Ju -11	22-Ju -11
Megalonaias nervosa	Washboard	WAS	FDP	110928FD	13-Dec-11	21-Dec-11
Lampsilis siliquoidea	Fatmucket	FAM	SDP	MBI-401 SDP 4655-12-Mix	27-Jan-12	4-Feb-12
Ligumia recta	Black sandsheil	BLS	SOP	TR4669-4-(7-8) 2nd shipment	17-Apr-12	25-Apr-12
Lampsills cardium	P ain pocketbook	PPB	SDP	TR4669-4-(5)	16-May-12	24-May-12
Lampsilis higginsii	Higgins eye	HGE	SDP	TR4669-4-(5)	25-May-12	3-Jun-12

Light Intensity Data Codes used within SAS

sps = Juvenile mussel species (see 3 letter abbreviation codes above)

time = Sample time

0 = Pre-exposure

1 = First sampling time during exposure

2 = Second sampling time during exposure

3 = First sampling time during holding period

4 = Second sampling time during holding period

form = Product formulation

FDP = Freeze dried powder

SDP = Spray dried powder

id = Exposure chamber ID

i.e., $1A2 \approx$ Test system (1, 2, or 3), Block ID (A or B), and Position in Block (1-12)

lux = Light Intensity (in lumen/m²)

Data Explanation

System condition data analyses were limited to simple descriptive statistics (Proc Means) using SAS Version 9.4.

Data Anomalies and Deviations NONE

File Folde	r <u>.18</u>
Item Number	
Page	_of_ <u>3_</u>

sps	time	form	id	lux
WAS	0	FDP	А	124
WAS	0	FDP	В	183
WAS	1	FDP	А	85
WAS	1	FDP	В	9 9
WAS	2	FDP	А	2 07
WAS	2	FDP	В	195
WAS	3	FDP	А	204
WAS	3	FDP	В	192
WAS	4	FDP	А	207
WAS	4	FDP	В	189
HIC	0	FDP	А	107
HIC	0	FDP	В	102
HIC	1	FDP	А	111
HIC	1	FDP	В	108
MUC	1	FDP	A	150
MUC	1	FDP	В	179
MUC	2	FDP	A	140
MUC	2	FDP	В	172
HIC	3	FDP	А	111
HIC	3	FDP	В	405
HIC	4	FDP	А	121
HIC	4	FDP	В	11 4
MUC	3	FDP	A	138
MUC	3	FDP	В	164
MUC	4	FDP	A	150
MUC	4	FDP	В	187
FAM	1	SDP	А	133
FAM	1	SDP	В	161
FAM	2	SDP	А	130
FAM	2	SDP	В	177
FAM	3	SDP	A	136
FAM	3	SDP	В	163
FAM	4	SDP	А	141
FAM	4	SDP	В	145
BLS	1	SDP	A	175
BLS	1	SDP	В	228
BL5	2	SDP	A	173
BLS	2	SDP	В	247
BLS	3	SDP	A	165
BLS	3	SDP	В	247
BLS	1	SDP	A	164
BLS	4	SDP	В	242
РРВ	1	SDP	A	183
PPB	1	SDP	В.	145
PPB	2	SDP	A	189
ррв	2	SDP	В	168

Page ____ of ____

ррв	3	SDP	А	228
РРВ	3	SDP	В	312
РРВ	4	SDP	А	159
ррв	4	SDP	В	116
HGE	1	SDP	А	165
HGE	1	SDP	В	15 2
HGE	2	SDP	А	183
HGE	2	SDP	В	153
HGE	3	SDP	А	144
HGE	3	SDP	В	102
HGE	4	SDP	А	166
HGE	4	SDP	В	132

FF #	<u>}</u>
Item No	. 5
Pg <u>3</u>	of <u>3</u>

,

AEH-11-PSEUDO-02

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species Statistical Analysis of Light Intensity

SAS v. 9.4 Analysis Completion Date: 07MAY2014 Analysis prepared by: KLW

Obs	sps	time	form	id	lux
1	HIC	0	FDP	A	107
2	ніс	0	FDP	В	102
3	ніс	1	FDP	Α	111
4	HIC	1	FDP	в	108
5	ніс	3	FDP	Α	111
6	HIC	3	FDP	В	405
7	HIC	4	FDP	Α	121
8	ніс	4	FDP	В	114
9	MUC	1	FDP	A	150
10	MUC	1	FDP	В	179
11	MUC	2	FDP	Α	140
12	MUC	2	FDP	В	172
13	MUC	3	FDP	Α	138
14	MUC	3	FDP	В	164
15	MUC	4	FDP	A	150
16	MUC	4	FDP	в	187
17	WAS	0	FDP	A	124
18	WAS	0	FDP	В	183
19	WAS	1	FDP	Α	85
20	WAS	1	FDP	В	99
21	WAS	2	FDP	Α	207
22	WAS	2	FDP	В	195
23	WAS	3	FDP	А	204
24	WAS	3	FDP	В	192
25	WAS	4	FDP	А	207
26	WAS	4	FDP	В	189
27	BLS	1	SDP	Α	175
28	BLS	1	SDP	В	228
29	BLS	2	SDP	Α	173
30	BLS	2	SDP	В	247

FF #_ <u>18</u>	
Item No. 6	
$Pg _ 1 of _ 3$	

31	BLS	3	SDP	Α	1 65
32	BLS	3	SDP	В	247
33	BLS	4	SDP	Α	164
34	BLS	4	SDP	В	242
35	FAM	1	SDP	Α	133
36	FAM	1	SDP	В	161
37	FAM	2	SDP	Α	130
38	FAM	2	SDP	В	177
39	FAM	3	SDP	А	136
40	FAM	3	SDP	В	163
41	FAM	4	SDP	A	141
42	FAM	4	SDP	В	145
43	HGE	1	SDP	Α	165
44	HGE	1	SDP	В	152
45	HGE	2	SDP	А	183
46	HGE	2	SDP	В	153
47	HGE	3	SDP	Α	144
48	HGE	3	SDP	в	102
49	HGE	4	SDP	A	166
50	HGE	4	SDP	В	132
51	PPB	1	SDP	А	183
52	РРВ	1	SDP	в	145
53	PPB	2	SDP	Α	189
54	PPB	2	SDP	В	168
55	PPB	3	SDP	Α	228
56	PPB	3	SDP	В	312
57	PPB	4	SDP	Α	159
58	РРВ	4	SDP	В	116

Performed by K. Weber SAS version 9.4 09:25 07MAY14

Page $\underline{\partial}$ of $\underline{3}$

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_I... 5/7/2014

Light Intensity Means by Species and Formulation

ı.

The MEANS Procedure

AEH-11-PSEUDO-02

form=FDP

Analysis Variable : lux lux							
sps	N Obs	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean	
HIC	8	147.4	104.2	102.0	405.0	60.2259	234.5
MUC	8	16 0 .0	18.2600	138.0	187.0	144.7	175.3
WAS	10	168.5	47.0136	85.0000	207.0	134.9	202.1

form=SDP

	Analysis Variable : lux lux							
sps	N Obs	Mean	Std Dev	Minimum	Maximum	Lower 95% CL for Mean		
BLS	8	205.1	38.9705	164.0	247.0	172.5	237.7	
FAM	8	148.3	16.8417	130.0	177.0	134.2	162.3	
HGE	8	149.6	24.6283	102.0	183.0	129.0	170.2	
PPB	8	1 8 7.5	6 0.088 0	1 16 .0	312.0	137.3	237.7	

Performed by K. Weber SAS version 9.4 09:25 07MAY14

FF #	18		
Item			
Pg_	3	of_	3

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD6232_I... 5/7/2014

DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT; FOOTNOTE1 'Performed by K. Weber SAS version' &SYSVER &SYSTIME &SYSDATE; AEH-11-PSEUDO-02 options ls=97 ps=57 formdlim='-' pageno = 1 nocenter nodate nosource2; title1 h=2 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels fro title2 h=2 'Statistical Analysis of Light Intensity'; title3 h=2 'SAS v. 9.4 Analysis Completion Date: 07MAY2014 Analysis prepared by: KLW'; * SAS ver 9.4 Analysis prepared by: KLW * Analysis completion date: 07MAY14 🛛 🗤 * Variable Names: * sps = three letter code for mussel species * BLS = Black sandshell (Ligumia recta) * FAM = Fatmucket (Lampsilis siliquoidea) WAS = Washboard (Megalonaias nervosa) HGE = Higgins eye (Lampsilis higginsii) PPB = Plain pocketbook (Lapsilis cardium) HIC = Hickorynut (Obovaria olivaria) MUC = Mucket (Actinonaias ligamentina) * time = light intensity sampling time 0 = Pre-exposure 1 = Time 1 during exposure 2 = Time 2 during exposure 3 = Time 1 during the holding period $4 \approx$ Time 2 during the holding period * form = formulation (FDP [freeze dried powder] vs. SDP [spray dried powder]) * id = block ID where light was measured (A or B) * lux = lumen/m2data light; set Pseudo02.light; proc sort data=light; by form sps time id; run; proc print data=light; run; title1 h=2 'Light Intensity Means by Species and Formulation'; proc means data = light mean std min max clm fw=8; by form; class sps; var lux; run;

FF # _	18	
Item N	o . 7	
Pg	of	1

```
DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;
1
                                                               AEH-11-PSEUDO-02
2
     FOOTNOTE1 'Performed by K. Weber SAS version' &SYSVER &SYSTIME &SYSDATE;
3
WARNING: The FOOTNOTE statement is ambiguous due to invalid options or unquoted text.
4
    options ls=97 ps=57 formdlim='-' pageno = 1 nocenter nodate nosource2;
5
6
    title1 h=2 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile
7
7 I mussels from seven different unionid species';
    title2 h=2 'Statistical Analysis of Light Intensity';
8
    title3 h=2 'SAS v. 9.4 Analysis Completion Date: 07MAY2014 Analysis prepared by: KLW';
9
    10
    * SAS ver 9.4 Analysis prepared by: KLW
11
12
    * Analysis completion date: 07MAY14
                                        WW
13
    ******
                                       **********************
14
    15
15 / ***********
16 * Variable Names:
16 !
              *
17 * sps = three letter code for mussel species
17 !
              BLS = Black sandshell (Ligumia recta)
18 *
18 !
19 *
              FAM = Fatmucket (Lampsilis siliquoidea)
19 !`
20
              WAS = Washboard (Megalonaias nervosa)
20 !
21 *
              HGE = Higgins eye (Lampsilis higginsii)
21 !
22 *
              PPB = Plain pocketbook (Lapsilis cardium)
22 1
23 *
             HIC = Hickorynut (Obovaria olivaria)
23 !
24 *
              WUC = Mucket (Actinonaias ligamentina)
24 !
25 * time = light intensity sampling time
25 1
26
              0 = Pre-exposure
26 !
27 *
             1 = Time 1 during exposure
                                                           FF # 18
27 1
              *
              2 = Time 2 during exposure
28 *
                                                           item No. 8
28 !
                                                           Pg\_\_ of 2
29
              3 = Time 1 during the holding period
29 1
30
              4 = Time 2 during the holding period
30 !
31 * form = formulation (FDP [freeze dried powder] vs. SDP [spray dried powder])
31 !
32 * id = block ID where light was measured (A or B)
32 !
          *
33 * lux = lumen/m2
33 I
             ×
   ***
34
34 ! **********/
```

```
35
36
     data light; set Pseudo02.light;
37
NOTE: There were 58 observations read from the data set PSEUD002.LIGHT.
NOTE: The data set WORK.LIGHT has 58 observations and 5 variables.
                                                                           AEH-11-PSEUDO-02
NOTE: DATA statement used (Total process time):
                         0.03 seconds
      real time
      cpu time
                        0.00 seconds
38
     proc sort data=light; by form sps time id; run;
NOTE: There were 58 observations read from the data set WORK.LIGHT.
                                                                           AWAY 3014
NOTE: The data set WORK.LIGHT has 58 observations and 5 variables.
NOTE: PROCEDURE SORT used (Total process time):
      real time 0.01 seconds
      cpu time
                        0.00 seconds
39 proc print data=light; run;
NOTE: Writing HTML Body file: sashtml.htm
NOTE: There were 58 observations read from the data set WORK.LIGHT.
NOTE: PROCEDURE PRINT used (Total process time):
     real time 1.61 seconds
      cpu time
                        0.45 seconds
40
    title1 h=2 'Light Intensity Means by Species and Formulation';
41
42
    proc means data = light mean std min max clm fw=8;
    by form;
43
44
    class sps;
45
    var lux;
46
    run;
NOTE: There were 58 observations read from the data set WORK.LIGHT.
NOTE: PROCEDURE MEANS used (Total process time):
     real time
                        0.04 seconds
     cpu time
                        0.01 seconds
```

FF# Item No. $Pg \partial of \lambda$

527

Rooted: SMS 21SECZON KLW OIDER 2011

Sample Description: 3 mL acidified exposure water(0.45 µm filtrated) Study #: AEH-PSEUDO-02

Upper Midwest Environmental Science Center Attn: James Luoma 2630 Fanta Reed Road La Crosse, Wi54603 Water Quality Laboratory Upper Midwest Environmental Science Center USGS

2630 Fanta Reed Road La Crosse, Wi 54603

Analyzing Date: 07/18 -07/19/2011 Report Date: 08/23/2011

REPORT OF ANALYSIS

Sample Code

Results (Total Ammonia Nitrogen, mg NH₃-N/L)

TOHIC100	0.045
T0HIC200	0.069
TOHIC300	0.104
T0HIC300HD	0.096
TOHIC50	0.033
TOHICCONTROL	0.022
TOMUC100	0.033
TOMUC200	0.057
TOMUC300	0.083
TOMUC300HD	0.080
TOMUC50	0.022
TOMUCCONTROL	0.011
T121A1	0.508
T121A10	0.068
T121A11	0.151
T121A12	0.466
T121A2	0.017
T121A3	0.324
T121A4	0.206
T121A5	0.012
T121A6	0.068
T121A7	0.131
T121A8	0.117
T121A9	0.129

Item No.

Sample Code

Results (total ammonia nitrogen, mg NH₃-N/L)

T121B1		0.325
T121B10	AEH-11-PSEUDO-02	0.071
T121B11		0. 076
T121B12		0.033
T121B2		0. 022
T121B3		0.022
T121B4		0.353
T121B5		0.066
T121B6		0.064
T121B7		0.064
T121B8		0.008
T121B9		0.079
T122A1		0.435
T122A10		0.162
T122A11		0.051
T122A12		0.209
T122A2		0.531
T122A3		0.150
T122A4		0.017
T122A5		0.285
T122A6		1.567
T122A7		0.141
T122A8		0.152
T122A9		0.375
T122B1		0.124
T122B10		0.022
T122B11		0.370
T122B12		0.342
T122B2		0.600
T122B3		0.162
T122B4		0.473
T122B5		0.124
T122B6		0.128
T122B7		0.019
T122B8		0.264
T122B9		0.132
T241A1		8.313
T241A10		11.63
T241A <u>11</u> * 77		8.181
T241A12 ON MON		1 1.50
T241A2 ⁰		0.017

Page 2 of 5

Sample Code

1

Results (total ammonia nitrogen, mg NH₃-N/L)

T241A3		11.244
T241A4		1.210
T241A5	AEH 11 00002	0.012
T241A6	host ble ward	3.657
T241A7	1-2313 4vin 200014	1.174
T241A8	7.	11.78
T241A9	- 00	3.714
T241B1	AEH-11-PSEUDO-02	9.028
T241B10	<i>•</i>	3.130
T241B11		1.352
T241B12		0.010
T241B2		0.022
T241B3		3.511
T241B4		10.235
T241B5		6.744
T241B6		11.90 6
T241B7		11.304
T241B8		7.968
T241B9		1.302
T242A1		8.800
T242A10		1.266
T242A11		0.013
T242A12		11.237
T242A2		12.373
T242A3		1.495
T242A4		0.012
T242A5		10.165
T242A6		4.212
T242A7		4.133
T242A8		10.208
T242A9		9.696
T242B1		10.533
T242B10		0.011
T242B11		7.168
T242B12		7.083
T242B2		12.13
T242B3		2.477
T242B4		11.61
T242B5		1.271
T242B6		10.703
T242B7		0.012

Page 3 of 5

Sample Code

Results (total ammonia nitrogen, mg NH₃-N/L)

T242B8		3.999
T242B9		1.395
T61A1		0.109
T61A10		0.094
T61A11		0.084
T61A12	AEH-11-PSEUDO-02	0.154
T61A2		0.013
T61A3		0.140
T61A4		0.063
T61A5		0.015
T61A6		0.054
T61A7		0.031
T61A8		0.088
T61A9		0.062
T61B1		0.139
T61B10		0.054
T61B11		0.034
T61B12		0.021
T61B2		0.016
T61B3		0.036
T61B4		0.305
T61B5		0.093
T61B6	,	0.082
T61B7		0.083
T61B8		0.098
T61B9		0.039
T62A1		0.106
T62A10		0.058
T62A11		0.021
T62A12		0.100
T62A2		0.151
T62A3		0.042
T62A4		0.018
T62A5		0.110
T62A6		0.225
T62A7		0.061
T62A8		0.105
T62A9		0.187
T62B1		0.087
T62B10		0.018
T62B11		0.109

Page 4 of 5

Results (total ammonia nitrogen, mg NH₃-N/L)

T62B12		0.103
T62B2		0.138
T62B3		0.075
T62B4		0.150
T62B5	AEH-11-PSEUDO-02	0.080
T62B6		0.093
T62B7		0.017
T62B8		0.061
T62B9		0.043

Water quality laboratory UMESC

Sample Code

Shirley Yuan, Laboratory Director

FF # <u>|0/</u> Item No. Pg <u>5</u> of

Page 5 of 5

Water Quality Laboratory Uppor Midwest Environmental Sciences Center USGS 2630 Finita Reed Road La Crosse, WI 54603

Analyzing Date: 12/28/2011, 01/06/2012 Report Date: 01/09/2012

Results (Total Ammonia Nitrogen, mg Nils-N/..)

.

1,704,00,711 0,312,00,711 0,314 0,071 0,314 0,071 0,324 0,334 0,334 0,337 0,33

Sample Description: 3 m. acidified exposure water (0.45 µm filtrated) Study & AEH-PSEUDQ 02

Upper Midwest Environmental Sciences Center atin: James Luoma 2630 Fanta Reed Road La Crosse, WIS4903

Sample Code

REPORT OF ANALYSIS

2A10T12H	
2A10T2411	
2A10T6H ZA11T12H	
2A11T24H	
2A11T6H 2A12T12H	
2A12T24H	
2A12T6H	
2A1T12H 2A1T24H	
2A1T6H	
2A2T12H 2A2T24H	
2A2T6H	
2A3T12H 2A3T24H	
2A3T6H	
2A4T12H 2A4T24H	
2A4T6H	
2AST12H	
ZASTZAH ZAST6H	
2AGT1ZH	
2A6T24H	
2AGT6H 2A7T12H	
2A7124H	
2A7T6H 2A8T12H	
2A8T24H	
2A8T6H 2A9T12H	
2A9124H	
2A9T6H 2B10T12H	
2B10724H	
2B10T6H	
2BJ1T12H 2B11T24H	
2B11T6H	
2812T12H 2812T24H	
2012T6H	
20112H 201724H	
20176H	
282T12H 282T24H	
282T6H	
2B3T12H	
263 (24H 263 16H	
284T12H	
284T24H 284T6H	
2B5T12H	
285 (24H 285 (54H	
2B5T24H	
2BGTGH	
286T12H 287T12H	
287 (24H	
2B7T6H 2B7TWEEKLY	
284T12H	
289T24H 289T6H	
289112H	
289T24H 289T6H	
209101	
USGS Water Quality Laboratory	
Laboratory Director	

FF #_10	h
Item No.	2
Pg <u>1</u>	of

AEH-11-PSEUDO-02

Watar Quality Laboratory Uppar Midwast Environmental Sciences Center USGS 2630 Fanta Reed Road La Crosso, WI S4603

,

AEH-11-PSEUDO-02

.

Ana yzing Date: 02/07/2012 Report Date: 02/21/2012

Results (Total Ammonia Nitrogen, mg NH₂-N/L)

0.6724 4.034 0.729 0.066 0.729 0.068 0.429 3.36 0.439 0.439 0.439 0.459 0.459 0.459 0.459 0.459 0.454 0.755 0.400 0.4590

REPORT OF ANALYSIS

Sample Description: 3 mL actilified exposure water (0.45 μm filtrated) Study II: AEH-10-PSEJDO-02

Upper Midwest Environmental Sciences Center

attn: James Luoma 2630 Fanta Reed Road La Crosse, WI54603

Sample Code FAMILA10T12H FAMILA10T2H FAMILA10T2H FAMILA10T2H FAMILA10T2H FAMILA10T2H FAMILA11T2H FAMILA11T2H FAMILA11T2H FAMILA11T2H FAMILA1T2H FAMILA1T2H FAMILA1T2H FAMILA1T2H FAMILA1T2H FAMILA1T2H FAMILA112H FAMILA12H FAMILA12H FAMILA12H FAMILA112H FAMILA112H FAMILA112H FAMILA112H FAMILA112H FAM

USGS Water Quality Laboratory

FF # 10h Item No. 3 Pg____of__

Sample Description: 3 ml, acklified exposure water (0.45 µm filtrated) Study II: AEH-11-PSEUDO-02

Upper Midwest Environmental Sciences Center attin: James Luoma 2630 Fanta Reed Road La Crosse, WIS4603 Water Quality Laborstory Upper Midwest Environmenta: Sciences Center US65 2630 Finita Reed Road La Crosse, WI S4603

Analyzing Date: 04/23/2012 Report Date: 04/24/2012

Results (Total Ammonia Nitrogen, mg NH₄-N/L)

0.123 0.135 0.135 0.139 0.155 0.139 0.155 0.139 0.155 0.130 0.057 0.011 0.042 0.044 0.115 0.042 0.044 0.115 0.042 0.044 0.115 0.042 0.044 0.051 0.044 0.051 0.044 0.051 0.046 0.047 0.058 0.046 0.

REPORT OF ANALYSIS

Sample Code	
8LS2A10T1211	
8L\$2A1011211 8L\$2A10724H	
BLS2A10T6H	
BLS2A11712H	
BLS2A11T24N	
BLS2AL1T6H BLS2AL1T6H BLS2AL2T12H	
BLS2AL2T24H	
BLS2A12T6H	
BLS2A1T12H	
BLS2A1724H	
BLS2A1T6H BLS2A2T12H	
BLSZAZTZAH	
BLSZAZTOH	
BLS2A3T12H	
BLS2A3T24H	
BL52A376H BL52A4712H	
BL\$2A4T24H	
BLS2A4T6H	
BL52A5712H	
BLS2A5T24H	
BIS2A5T6H BIS2A6T12H	
BISZAGTZAH	
B152A6T6H	
BLS2A/T12H	
BLSZA7TZ4H	
BLS2A7T6H BLS2A8712H	
BLSZABTZEH	
BLSZABTEH	
B1\$2A971211	
B1S2A9T24H B1S2A9T6H	
B152A916H B152B10T12H	
BL52810T24H	
BLS2B10T6H	
BIS2R11T12H	
BLS2B11T24H BLS2B11T6H	
SL52812112H	
8L52812124H	
BLS2B1276H	
8152B1T12H 8152B1T24H	
8LS2B176H	
BLS2B2T12H	
BL\$2B2T24H	
BLS2B2T6H BLS2B3T12H	
BLS2B3T24H	
BLS2B3T6H	
8LS2B4T12H	
B152B4T24H B152B4T6H	
8tS2BSTI2H	
BLS2BST24H	
8LS2BST6H	
BLS2B6T12H	
8L52B6T24H BL52B6T6H	
BLS2B7T12H	
8L\$287T24H	
6L52B7T6H	
BLS2B8T12H BLS2B8T24H	
BL5298124H BL52987611	
BLS289T22H	
BLS289T24H	
BLS2B9T6H BLSPREEXPOSURE	
PLIFTCCAPUSUNE	
USGS	
Water Quality Laboratory	
Laboratory Director	

Xiacii Yuan

AEH-11-PSEUDO-02

,

FF # <u>|0h</u> Item <u>No.</u> _ Pg___ of <u>\</u>

Sample Description: 3 m_ addified exposure water (0.45 μm filtrated) Study #: AEH-11-PSEUDO-02

Upper Midwest Environmental Sciences Center attn: James Luoma 2630 Fanta Reed Road La Crosse, WI54603

REPORT OF ANALYSIS

Sample Code

BLS2B3TWEEKLY

Analyzing Date:05/01/2012

Report Date: 05/08/2014

Water Quality Laboratory

2630 Fanta Reed Road La Crosse, WI 54603

USGS

Upper Midwest Environmental Sciences Center

Results (Total Ammonia Nitrogen, mg NH3-N/L)

0.053

AEH-11-PSEUDO-02

USGS Water Quality Laboratory Laboratory Director

Xiaoli Yuan

FF #	loh	
Item		
Pg	of	

Sample Devolptice: 3 m., activities exposure water (0.45 µm literated) Study (r. 1414: 1.4-35LUDU 0.3 Study (r. 1414: 1.1-3LUDU 0.2 Upper Midwest Environmental Sciences Center 446: Jannes Luoma 2505 Janta Beel Toud La Crosse, WIS4603 Water Quality Laboratory Uppar VIGVest Environmental Sciences Center USGS 2630 Fania Reed Royd Le Groaxe, WI 54603 Analydrig base US/21/2012 Report Date: 03/24/2012

Results (Total Ammonia Nitrogen, mg NH₂-N/L)

0.158 0.359 0.347 0.36 0.384 0.384 0.384 0.326 0

REPORT OF ANALYSIS

Semple Code
 BKT-100-A-24H

 BKT-100-A-24H

 BKT-200-A-24H

 PFBLA.2112-H

 PFBLA.2112-H

 PFBLA.2112-H

 PFBLA.2112-H

 PFBLA.212-H

 P USGS Water Quality Laboratory

bustory Offector

•

AEH-11-PSEUDO-02

FF # _	10h	
Item N	lo. 👔	
Pg	of	

Sample Description; 3 mL addified exposure water (0.45 μm Nitrated) Study X: AEH-11-PSEUDO-02

Upper Midwest Environmental Sciences Center attn: James Luoma 2630 Panta Reed Roed La Crosse, Wi54603

7

Water Quality Laboratory Upper MidWest Environmental Sciences Center USSS 2630 Fonte Reed Road La Crosse, WI 54603 Analyzing Date: 06/14/2012 Report Date: 06/15/2012

REPORT OF ANALYSIS

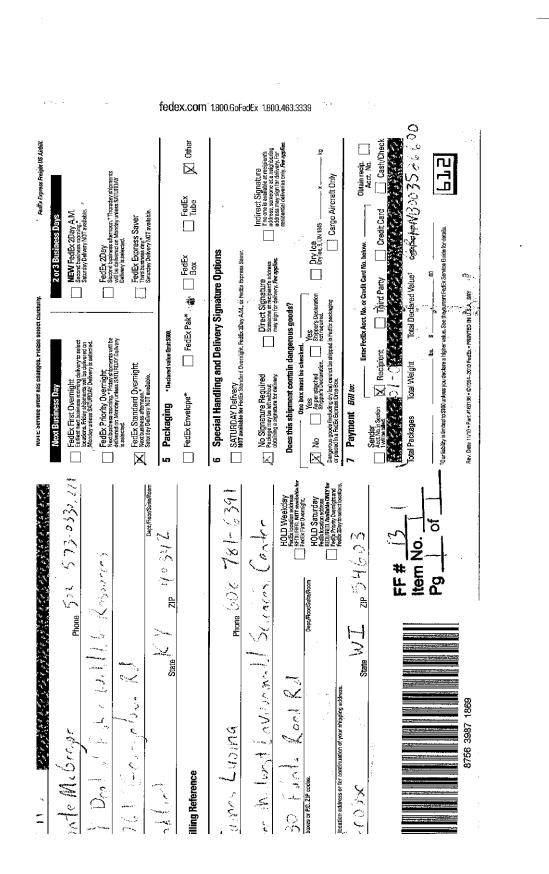
Sample Code HGF1A10F12H HGE1A10T24H HGE1A10T6H HGE1A11T12H Proclatilizati Reclatilizati Reclatilizati Reclatilizati Reclatilizati Reclatilizati Reclaticati ati Reclaticati R

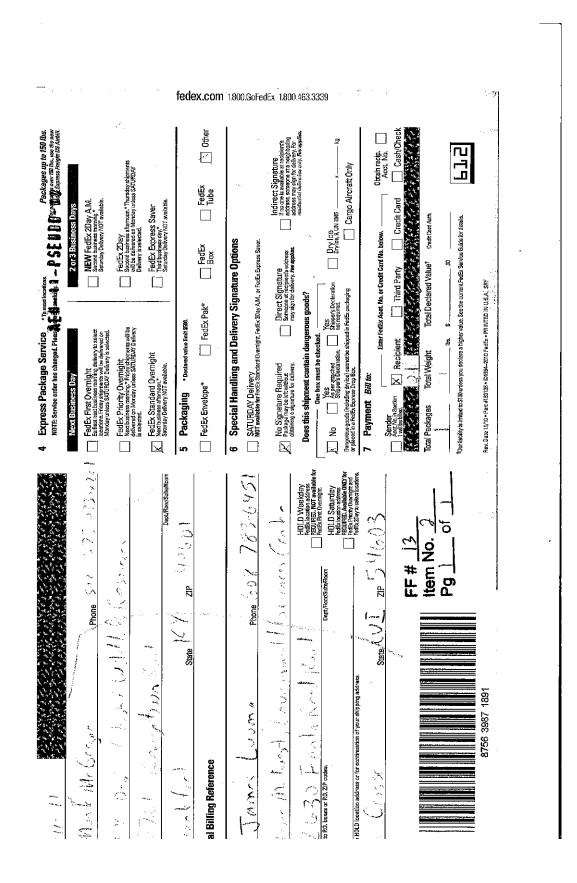
> USGS Water Quality Laboratory Laboratory Director

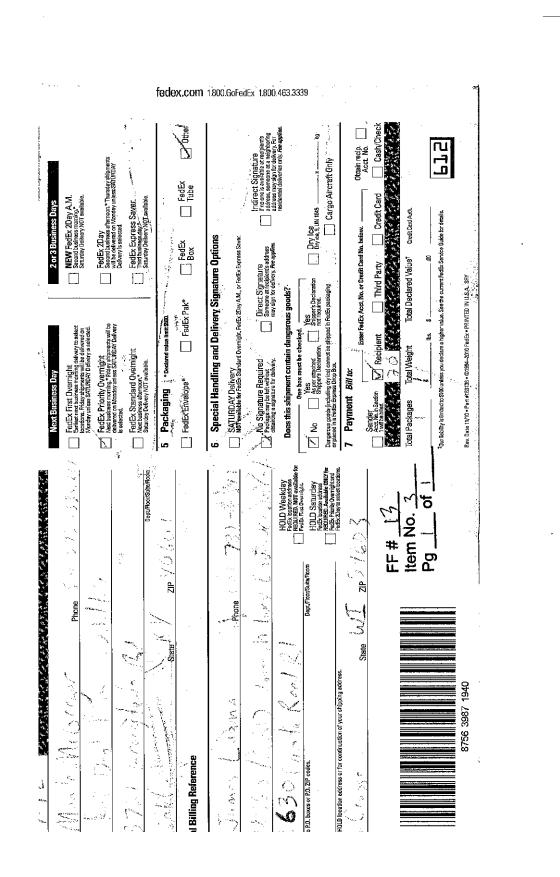
Results (Total Ammonia Nitrogen, mg NH--N/L) 0.065 0.260 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.055 0.055

AEH-11-PSEUDO-02

.


î.


FF# Joh Nem No. Pg_ of


Appendix 7. Animal Feed Information

Item number	Item description	Number of pages	Report page number
1	Chlorella Algae: FedEx Standard Overnight Label (shipped from Monte McGregor) – dated May 31, 2011	1	541
2	Chlorella Algae: FedEx Standard Overnight Label (shipped from Monte McGregor) – dated July 11, 2011	1	542
3	Chlorella Algae: FedEx Priority Overnight Label (shipped from Monte McGregor) – dated May 7, 2011	1	543
4	Nanno–3600 and Shelfish Diet 1800 Algae – Order Invoice from Reed Mariculture – dated May 11, 2011	1	544
5	Tet 3600 and Nanno–3600 Algae – Order Invoice from Reed Mariculture – dated March 20, 2012	1	545
6	Note from Monte McGregor regarding chlorella algae shipment – Harvest date May 10, 2011	1	546
7	Note from Monte McGregor regarding chlorella algae shipment – Harvest date June 24	1	547
8	Reed Mariculture literature on Shellfish Diet, Nannochloropsis, and Tetraselmis – Internet printout	6	548
9	Algae Stock Dry Weight Determination Procedure	1	554
10	Algae Stock Dry Weight Determination Datasheet – 48 hour dry weight date May 26, 2011	3	555
11	Algae Stock Dry Weight Determination Datasheet – 48 hour dry weight date June 5, 2011	1	558
12	Algae Stock Dry Weight Determination Datasheet – 48 hour dry weight date June 25, 2011	1	559
13	Algae Stock Dry Weight Determination Datasheet – 48 hour dry weight date July 7, 2011	1	560
14	Algae Stock Dry Weight Determination Datasheet – 48 hour dry weight date December 8, 2011	3	561
15	Algae Stock Dry Weight Determination Datasheet – 48 hour dry weight date January 26, 2012	1	564
16	Algae Stock Dry Weight Determination Datasheet – 48 hour dry weight date March 31, 2012	2	565
17	Algae Stock Dry Weight Determination Datasheet – 48 hour dry weight date April 13, 2012	1	567
18	Algae Stock Dry Weight Determination Datasheet – 48 hour dry weight date May 12, 2012	1	568
19	Algae Stock Preparation Chart – Effective date June 3, 2011	2	569
20	Algae Stock Preparation Chart – Effective date June 6, 2011	2	571
21	Algae Stock Preparation Chart – Effective date June 17, 2011	2	573
22	Algae Stock Preparation Chart – Effective date June 27, 2011	2	575
23	Algae Stock Preparation Chart – Effective date July 7, 2011	2	577
24	Algae Stock Preparation Chart – Effective date December 8, 2011	2	579
25	Algae Stock Preparation Chart – Effective date January 25, 2012	2	581

26	Algae Stock Preparation Chart – Effective date January 27, 2012	2	583
27	Algae Stock Preparation Chart – Effective date April 14, 2012	2	585
28	Algae Stock Preparation Chart – Effective date May 14, 2012	2	587

AEH-11-PSEUD0-02

Invoice

Reed Mariculture 6600 Silacci Way Gilroy, CA 95020-7019 Phone: 408-848-8294 Billing Toll Free: 877-732-3276 Orders FAX: 408-377-3498 orders@reed-store.com

t

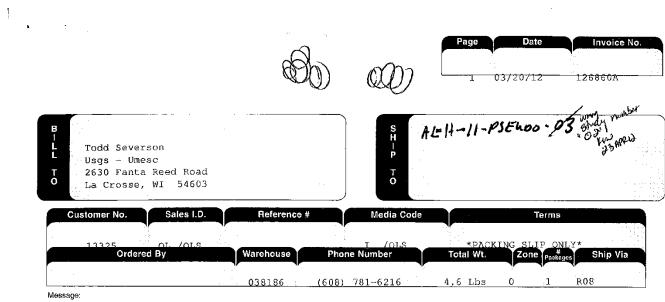
Order Transaction and Shipping History

Order Number	Order Status	InternetiD	Order Date
22243	Shipped on 05/11/2011	201105111508RMI21112	05/11/2011
		ence GR11NB00E526600	
Billing Information	λ. . Δ <u>1</u>	Shipping Information	
James Luoma Umesc 2630 Fanta Reed Rd Lacrosse , Wi 54603 United States (608) 783-6451 Jluoma@usgs.gov		James Luoma Umesc 2630 Fanta Reed Rd Lacrosse , WI 54603 United States (608) 783-6451 jluoma@usgs.gov	

Order Details

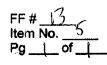
Invoice Part		Item Description	Qty Ordered	Qty Shipped	Price	Extended
A	NAN-QT	Nanno-3600, 1 Quart Bottle	2	2	\$70.00	\$140.00
A	SD-QT	Shellfish Diet 1800 - 1 Quart	1	1	\$44.00	\$44.00
A	TET-LITER	Tet 3600 - 1 liter bag	2	2	\$77.00	\$154.00
Paymethod:					Subtotal	\$338.00
	568-XXXX-XXX	(-X XXX			Shipping	\$0.00
0.000					Tax	\$0.00
				0	rder Total	\$338.00
				Am	ount Paid	\$338.00
				An	ount Due	\$0.00

Transaction Journal

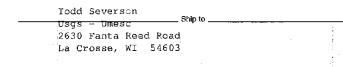

Invoice Part	Date	Туре	Amount	Note
A	05/11/2011	Payment via MC	\$338.00	CR.INCARD: 086440
A	05/11/2011	Invoice	\$338.00	CHARGES FOR INVOICE: A

Shipping Details

Invoice	Status	Description	Shipdate	Tracking Number Code
22243A	S	MID WEST PRIORITY OVERNIGHT	05/11/2011	


Date received pms 5/12/11 pms

Item No.



877-732-3276

Qty.	B/0	Shipped	Item #		Description	Unit Price	Disc.	Extension
	1	0 1	TET-LITER		Tet 3600 ÷ 1 liter bag			· · · · ·
	1	0 1	, NAN-QT	-	Instant Algae Tetraselmis 3600 Nanno-3600, 1 Quart Bottle Instant Algae Nannochloropsis	peid	· · ·	
		· · ·				3/22/12	•	
					ASELENCE CONDEL	51-		
							`	
					<i>kStar</i>			
		; ,		:				

PKG ID #126860A___

MOM-11-DB

AEH-11-PSEUD0-02 Chlurelle Sorokiniana ~ 200g wet weight ~ 10-15% would = dry wth. FF # 17 Item No. Pg____ of Cultured Center for Mollusk Conservation from May 5-10, harvestel May 10; concentrated & shipped inthe Alternoom

Liquid culture C. surokan. hanestal 6-24 in forg (2 100 g) lept ls/lon FF # <u>13</u> Item No. _3 Pg_____of AEH-11-PSEUDO-02

.

Reed Mariculture Marine Larviculture & Aquarium Feeds

The current time is 8: 32: 31 AM Prices Newsletter Website Index

Home

Compare Products Product Sizes " NEW ** Roti-Grow & N-Rich Products

Shellfish Diet Nannochloropsis Rotifer Diet HD Pavlova Isochrysis **Tetraselmis** TW

Storage and Feeding Product FAQ Choosing the Right Algae Dry Weight Nutritional / Proximate Profile Product Safety Live vs. Non-Viable Live Starter Cultures Microalgae Images Use In Fish Hatcheries Use In Shellfish Hatcheries Use In Shrimp Hatcheries

AEH-11-PSEUDO-02

Shellfish Diet AFH-11-PSEUD0-02

www.Shellfish-Dict.com

Shellfish Dict 1800[®] is a mix of four marine microalgae that all have demonstrated success with a variety of shellfish including oysters, clams, mussels, and scallops. A mixed diet provides a much better nutritional profile for all types of shellfish, increasing both growth rates and survival.

Shellfish Diet can be used with pre-set larvae all the way up through broodstock and will typically perform as well as live algae so it can be used as a complete live algae replacement. 1 quart of Shellfish Diet will replace the equivalent to 1800 liters of dense algae culture. This product is available in 1 plastic bottles of 1 quart (standard) and 1 gallon sizes (special orders).

HERE.

For information on how much algae to feed shellfish CLICK The dry weight of Shellfish Diet is always 9%. The cell count varies depending on the time of the year but is roughly 2 billion cells per ml.

ADD TO CART

Isochrysis	30%
Pavlova	20%
<u>Tetraselmis</u>	20%

Other Applications: Shellfish Diet 1800® is also an excellent feed for ascidians/tunicates, sea urchins, soft corals, brine shrimp, and copepods.

Shellfish Diet 1800 is part of the Instant Algae® product line and does not contain any preservative chemicals or filler material just pure marine microalgae.

Contact Us

Page ____ 10

871 East Hamilton Ave, Suite #D, Campbell, CA 95008 Phone 408-377-1065 / Fax 408-377-3498 Office hours - 9 AM to 4 PM (California PST)

Ordering Find Your Local Aquarium Store

Shipping internationally to over 80 countries. Click Here for your country distributor.

Shipment Tracking

Google		Subscribe to the Reed Mariculture Newsletter
	Groups	Email: Subscribe
Google Search		Browse Archives at
Reed-Mariculture.com		groups.google.com
O www		

AEH-11-PSEUDO-02

.

65 # Item No. Pg______d

Page <u>2</u> of <u>6</u>

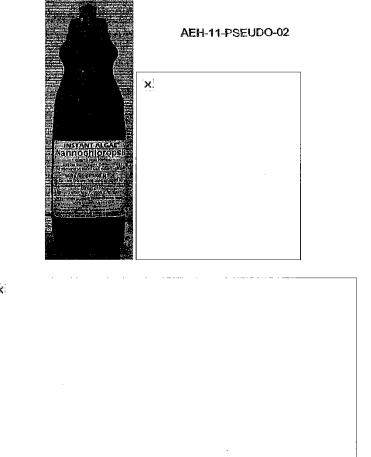
Reed Mariculture Marine Larviculture & Aquarium Feeds
 Order
 Contact

 Prices
 Newsletter

Home

Compare Products Product Sizes na NEW 🗠 Roti-Grow & **N-Rich Products** Shellfish Diet Nannochloropsis Rotifer Diet HD <u>Pavlova</u> **Isochrysis Tetraselmis** <u>TW</u> Storage and Feeding Product FAQ Choosing the Right <u>Algae</u> Dry Weight Nutritional / Proximate Profile Product Safety Live vs. Non-<u>Viable</u> Live Starter Cultures Microalgae Images <u>Use In Fish</u> **Hatcheries**

<u>Use In Shellfish</u> Hatcheries Use In Shrimp Hatcheries



of V Page _ -900⁻9 Ì٥

Nannochloropsis

(www.Nannochloropsis.com)

AEH-11-PSEUD0-02

Nannochloropsis is a small green algae that is extensively used in the aquaculture industry for growing small zooplankton such as rotifers and for <u>Greenwater</u>. It is also used in reef tanks for feeding corals and other filter feeders. Instant Algae Nanno 3600[®] is 3600 X as dense as cultured algae, so 1 liter replaces almost 4 metric tons of live algae! Nanno 3600 is available in 1 quart and 1 pint bottles, and 1 liter bags.

Fin Fish Hatcheries: Nannochloropsis is the single best food for growing rotifers. It has an very high EPA level and can be frozen for long term storage. It also works very well for <u>Greenwater</u>.

Shellfish Hatcheries: Works very well with mussels. It has not been traditionally used with oysters and clams, however a study currently being done at a university in Los Angeles indicates that it can work as well or better than Isochrysis and Pavlova with larvae and post set. As soon as this study is complete we will post it on our website.

Storage: Instant Algae Nannochloropsis can be stored in a refrigerator for 3 months (best if stored at -1 to +3C) or it can be frozen for longer shelf life (2+ years). When frozen the algac will "hard-freeze" like ice.

AEH-11-PSEUDO-02

Ice Cubes: If you have received a liter of Nanno and don't plan to use it all within 3 months we suggest making it into ice cubes. Simply pour the algae into a standard ice cube tray and freeze for 24 hours. Then take the cubes and store them in a plastic bag in your refrigerator. As you need more algae remove a cube from the plastic bag and thaw.

Source: CCMP525

For more information about our microalgae products please use the following links:

For **Proximate Analysis** (nuritional profile)

For information about feeding rotifers

For information about feeding shellfish

For a comparison of this algae to our other algae species

For information about Greenwater technique

<u>Contact Us</u>	<u>Ordering</u> Find Your Local Aquarium Store	Shipment Tracking
871 East Hamilton Ave, Suite #D, Campbell, CA 95008 Phone 408-377-1065 / Fax 408-377-3498 Office hours - 9 AM to 4 PM (California PST)	Shipping internationally to over 80 countries. <u>Click Here</u> for your country distributor.	
Google G	Subscribe to the Re Newsle	
Google Search @ Reed-Mariculture.com	Browse Arc groups.goo	
⊖ www		Page 4 of 6

<u>Reed Mariculture</u> Marine Larviculture & Aquarium Feeds

Order Contact Prices Newsletter

AEH-11-PSEUD0-02

<u>Home</u>

Compare Products Product Sizes NEW an Roti-Grow & N-Rich Products

Shellfish Diet Nannochloropsis Rotifer Diet HD Pavlova Isochrysis Tetraselmis TW

Storage and Feeding Product FAQ Choosing the Right Algae Dry Weight Nutritional / Proximate Profile Product Safety Live vs. Non-Viable Live Starter Cultures Microalgae Images Use In Fish Hatcheries Use In Shellfish Hatcheries Use In Shrimp Hatcheries

AEH-11-PSEUDO-02

ADD TO CART

ерет №0. 10 _____ 10 Tetraselmis www.Tetraselmis.com

Tetraselmis is a large green flagellate with a very high lipid level. It also contains natural amino acids that stimulate feeding in marine animals. It is an excellent feed for larval shrimp.

Fin Fish Hatcheries: Used in conjunction with Nannochloropsis for producing rotifers. It is also a good size for feeding brine shrimp.

Shellfish Hatcheries: A standard feed for oysters, clams, mussels, and scallops

Shrimp Hatcheries: An excellent feed for increasing growth rates and fighting "zoea syndrome".

Source: Private Lab

Page <u>5</u> of $\frac{b}{2}$

For more information about our microalgae products please use the following links: For <u>Proximate Analysis</u> (nuritional profile) For information about feeding <u>rotifers</u> For information about feeding <u>shellfish</u> For a <u>comparison</u> of this algae to our other algae species

For information about <u>Greenwater</u> technique

<u>Contact Us</u>			ering Aquarium Store	<u>Ship</u>	ment Tracl	king
871 East Hamilton Ave, Suit Campbell, CA 95008 Phone 408-377-1065 / Fax 408-3 Office hours - 9 AM to 4 PM (C PST)	377-3498	Shipping internat count <u>Click Here</u> fo distril	tries. r your country	Antanion Espaine	VISA	Master - 10
Google	G	1	ubscribe to the Ro Newsle nail:			
Google Search			Browse Arc groups.goo			
🕙 www						

AEH-11-PSEUDO-02

of

AEH-11-PSEUDO-02

Algae Stock Dry Weight Determination Procedure

Set drying oven to 65°C. Place metal weigh pans in drying oven for at least 1 hour. Remove weigh pans from drying oven and place into desiccator to cool for 1 hour. Calibrate analytical balance using appropriate weight set. Label pans with appropriate Pan IDs (e.g. N 1 for rep 1 of Nanno). Weigh pans and record pan tare weights on Algae Stock Dry Weight Determination Datasheet. Shake algae stock well. Add approximately 1g to each pan and record Pan + Diet Wet Weight on datasheet. Perform 6 reps for each algae stock. Initial/Date/Time appropriate section of datasheet. Place pans into drying oven to dry for 24 hours. Diet Wet Weight can be calculated by subtracting Pan Tare Weight from Pan + Diet Wet Weight.

After 24 hours, remove pans from drying oven and place into desiccator to cool for 1 hour. Calibrate analytical balance using appropriate weight set. Remove pans from desiccator and weigh them. Record 24 hour dry weights on datasheet. Place pans back into drying oven for another 24 hours. Initial/Date/Time appropriate section of datasheet.

After 48 total hours, remove pans from drying oven and place into desiccator to cool for 1 hour. Calibrate analytical balance with appropriate weight set. Remove pans from desiccator and weigh them. Record 48 hour dry weights on datasheet and discard pans. Initial/Date/Time appropriate section of datasheet.

Perform calculations on datasheet to achieve Mean Percent Dry Weight for each algae stock.

Equipment List:

Fisher Isotemp Oven, Model 255G, S/N 1757, room 122 (OVEN-1)

Sartorius Analytical Balance, Model 1712 MP8, S/N 3505049, room 122 (BAL-5)

Weight set, S/N 38951, room 122 (WTS-6)

Approved

6/1/1

FF # <u>13</u> Item No. <u>9</u> Pa 1_ of ___

File Folder: 13A

Lab book/pgs: proofed: Kin 9, JAN & Reviewed: JA- 11-21-14

Algae Stock Dry Weight Determination Datasheet

				1.17	vided by 6]:	n of column I, div	Mean Percent Dry Weight [Sum of column I, divided by 6]:	Mean Percen
165°C		Drying Oven / Temperature(°C): <u>OVEN</u> -	rying Oven / Ten		t(s): WTJ-6	Weight Set(s):	BAL-5	Balance:
FF # Item Pg			_		1330	26MAY11 /	SL	48 h Dry Weight:
130 No.					040	25MAY11 / 1040	ht: 185	24 h Dry Weight:
$\frac{\lambda}{1}$				1035	24mAYII 10	775 2	Pan Tare Weight/Wet Weight:	an Tare Weig
		ctive time point.	its at each respe	etermining weigh	/ data collector d	o be filled out by	Initials/Date/Time (military): To be filled out by data collector determining weights at each respective time point.	itials/Date/
2.16	0,02215	1,01035	1.0101	1.0106	1.0260	2.0142	0,9882	C6
2.16	0.02305	0,99305	0.9929	0.9932	1.0687	2.0387	0.9700	С.5
2,18	0.0228	1.0058	1.0056	1.0060	1,0475	2.0305	0:9830	C4
2.15	0,0222	1.0277	1.0275	1.0279	1.0309	2.0364	1,0055	C3
2.17	0,02235	1.01225	1.0120	1.0125	1.0279	2.0178	0.9899	C2
2,18	0.02205	586001	1.0097	1.0/00	1.0120	1.9998	0.9878	CI
Weight (H/D)*10C	Weight (g) [G-8]	Dry Weight (g) [(E+F)/2]	48 h Pan + Diet Dry Weight (g)	24 h Pan + Diet Dry Weight (g)	Utet wet weight (g), [C-B]	Pan + Diet Wet Weight (g)	Pan Tare Weight (g)	Pan ID
Percent Dry	Diet Mean Dry	San + Diet Mean	T	m	D	C	ω	A

File Folder: 174 Lab book/pgs: 1/1-3

Proofed: Liw if The 12 Reviewed: 5- 11-21-11

Algae Stock Dry Weight Determination Datasheet

Algal Diet:	Nanno 3600		Batch #:	11112		Expiration Date:	22 OCT 201	2011
A		C	0	m	п	G	Т	
Pan ID	Pan Tare Weight (g)	Pan + Diet Wet Weight (g)	Diet Wet Weight (g) [C-B]	24 h Pan + Diet ´ Dry Weight (g)	48 h Pan + Diet Dry Weight (g)	Pan + Diet Mean D:y Weight (g) [(E+F)/2]	Diet Mean Dry Weight (g) [G-B]	Percent Dry Weight (H/D)*100
N	0.9904	2,0896	1.0992	1.2088	1.2074	1.2081	0.2177	18.61
N2	0.9621	2.0341	1.0720	1.1748	1.1740	1.1744	0.2123	19,80
N3	0.9986	2.0269	1.0283	1.2031	1,2019	1.2025	0,2039	19.83
NŸ	0.9788	2.0117	1.0329	1.1843	1.1831	1.1837	0,2049	19.84
NS	0.9753	1.9964	1.0211	1.1779	1.1768	1,17735	0.20205	19.79
24	0.9665	1.9879	1.0214	1.1698	86 914	1.1693	0.2028	19.86
Initials/Date/1	Dan Tare Weight /Wet Weight.	Initials/Date/Time (military): To be filled out by data collector determining weights at each respective time point.	it by data collector det	stermining weigh	its at each respe	ctive time point.		3
24 h Dry Weight:	5°U	ĹĹ	1045				12.	<u> 36</u> <u>No.</u> <u>2</u> of
48 h Dry Weight:	584		1335					FF # Item Pg _
Balance:	BAL-5	Weight Set(s):	(s): WTS-6		Drying Oven / Temperature(°C):	nperature(°C):	OVEN-16	65°C
Mean Percent	Dry Weight [Sun	Mean Percent Dry Weight [Sum of column I, divided by 6]:	ded by 6]:	19.82				
Version 1.0 / 23MAY2011		Approved by		Da+0.	7.7 May Jan			

File Folder: 13A Lab book/pgs: 1/1-3 Proofed: KW

Proofed: KLin 195AN 12 Reviewed: In- 11-21-14

Algae Stock Dry Weight Determination Datasheet

	1		Datu: #:	-1001		Expiration pate:	107 747 12	
F	σ	С	D	(F)	·	6	Ŧ	-
	Day Tasa Maraht	Das - Diat Mint	Diet Wet Weight			Pan + Diet Mean	Diet Mean Dry	Percent Dry
Pan ID	(g)	Weight (g)	[C-B]	Dry Weight (g)	Dry Weight (g)	[(E+F)/2]	[G-B]	(H/D)*100
T1	0.9793	1.9958	1.0165	1.1565	1.1560	1,15625	0.17695	17.41
T2	1.00 14	2.0227	1,0213	1.1795	1./789	1.1792	0.1778	17.41
73	0.9891	2.0139	1.0248	1.1674	1.1671	1.16725	017815	17.38
74	0.9663	1.9748	1.00 35	1.1415	i.14/0	1.14125	0.17495	17.35
75	0.9842	1,9953	1.0111	1.1584	\$ 1578	1.851.1	0.1739	17,20
76	0.9690	1.9886	1.0196	1.1453	94411	1.1451	0.1761	17.27
³ an Tare Weig	Pan Tare Weight/Wet Weight: _	775 2	24mAY11 1055				ia i	of <u>3</u>
24 h Dry Weight:	- 5et	25may1) / 16	1050				#7	# <u>1</u> 2 n No.
48 h Dry Weight:	Th5	26max11 / 1340	340		-1		FF	iter Pg
Balance:	BAL-5	Weight Set(s):	(s): <u>WTS-6</u>	D	Drying Oven / Temperature(°C): <u>_0v∉N∽ /</u>	perature(°C):	OVEN-1 / 65°C	°C
Mean Percent	Mean Percent Dry Weight [Sum of column I, divided by 6]:	of column I, divi		17.34				
Version 1.0 / 23MAY2011		Approved by			Data: 2.3 Maky Zon			

File Folder: 134 ____ Lab book/pgs: 1/3-4 - Proofed: 12 19 JAN 12 Reviewed: 54- 11-21-14

Individual Algae Product Dry Weight Determination Datasheet

Version 1.0 / 23MAY2011 Approved by: Date: $\frac{\epsilon}{3}/3/h$	Balance: $\frac{BALS}{Balance}$ Weight Set(s): $\frac{LTS}{D}$ Drying Oven / Temperature(°C): $\frac{Oan}{1/65^{\circ}}$ Mean Percent Dry Weight [Sum of column I, divided by 6]: 2, 90	48 h Dry Weight: JKW / SJUN2301/ 1400 FF tem Pg	24 h Dry Weight: TKW / YJUNEZEW 1403	Pan Tare Weight/Wet Weight: 11-W / 3 JUNE u/ 1400	weights	0.02775	0.97886 2.01245 1.03359 1.00886 1.00881 0.029605	1 1,9320 1,000 1, 0,121 0,121 0,000 0,000 0,000 0,000 1,000 0,000 1,000 0,000 1,000 0,0000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	2104,023 200, 2005 00,000 00000 00000 00000 000000 0000000	0.07479 1.102 v 1.000 1.01003 0.03051	Meight (g) IC-B; Dry Weight (g) Dry Weight (g) Dry Weight (g) Dry Weight (g) Weight (g) Q: Q35 47 I Affair I Affair I Affair I Affair I Affair	Diet Weight E F G	Algal Diet: Childred la Scrakiniana Batch #: Harrested 31 MAY 2011 Expiration Date: 30 AUG 11	
;		Item No	o. <u>∂</u> _of _	l	2.90	2.90	2,90	2.92	2.89	2.89	Percent Dry Weight (H/D)*100	-		

File Folder: 13A Lab book/pgs: 1/36-38 Proofed: The 173AN 12 Reviewed: Jac 11-21-14

,

Individual Algae Product Dry Weight Determination Datasheet

Version 1.0 / 23MAY2011 Approved by:	Mean Percent Dry Weight [Sum of column i, divided by 6]: 2.58	Balance:らみし 5 Weight Set(s):	48 h Dry Weight: KLW 125 JUNII 1040	24 h Dry Weight: JTV / 24 July 1338	Pan Tare Weight/Wet Weight: <u>JTV / 23 JU</u>	Initials/Date/Time (military): To be filled out by data collector determining weights at each respective time point.	C-6 6.9360 2.0268 1.0408	2-5 0.9972 1.9973 1.0001	C-4 1.0179 2.0474 1.0	C-3 1.0041 2.0244 1.0	C-2 6.9752 2.0269 1.0517	C-1 0.9627 1.9902 1.0281	Pan ID (g) Weight Par + Diet Wet Pan ID (g) Weight (g)	ВС	Algal Diet: Chlorelle
Da		WT3 6	I	ł	23 JUNII/ 1322	collector determining wei	8210-1 2012	05 1 1.02.30	1-0292 1-0445	1.0203 1.0303	17 1.002Q	.81 0.9890	Diet Wet Weight (g) [C-B] Dry Weight (g)	Ē	Batch #: Recieved 1341/1
Date: <u>6/7///</u>		کلافی) Drying Oven / Temperature(°C				ghts at each respec	1.0127	1.0225	1.0447	1,0302	1.0 024	0.9890	48 h Pan + Diet Dry Weight (g)	т	hattle 20 ^{P 2} Expiration Date:
		bye perature(°C): 6A				tive time point.	1.0128	800-1-	1.0446	1.0303	1,0025	0.9890	Pan + Diet Mean Dry Weight (g) [(E+F)/2]	6	xpiration Date:
O Lecording Error. Tops 23 Jun 11 O Riccording Error KLW 20 JUN 11		10/65°C					8980.0	9.0.256	0.0267	0.0262	5460.0	0.0263	Diet Mean Dry Weight (g) [G-B]	Н	\$/30/11
			FF # Item Pg	3# No /_0	3		2.54 40	2.56	2.59	2.57	2.60	2.56	Percent Dry Weight (H/D)*100	-	

File Folder: 13A Lab book/pgs: 1/47-49; 2/1 Proofed: 195AN12 Lab book/pgs: 1/47-49; 2/1 Proofed: 197AN12 Reviewed: J. 1-21-14

Individual Algae Product Dry Weight Determination Datasheet

Balance:	48 h Dry Weight: KLW / 07JUL 11 / 0855	24 h Dry Weight: 725 / 065411 / 0745	Pan Tare Weight/Wet Weight:/ 05:	initials/Date/Time (military): To be filled out by data collector determining weights at each respective time point.	C6 1.2160 2.2686	C5 1.2193 2.2774	CH 1. 2065 2. 2118	C3 1.2168 2.2210	C2 1.2284 2.2298	CI 1.2326 2.2773	Pan Tare Weight Pan + Diet Wet Pan ID (g) Weight (g)	В	Algal Diet: <u>Chlore IIa</u>
s):	5	45	05JUL11 0748	data collector de	1.0526	1.0581	1.0053	1.0042	1.0014	1,0447	Diet Wet Weight (g) [C-B]	D	Batch #:
×8			81	etermining weigh	1.2352	1.2388	1,2251	1.2352	1.2472	1.2515	24 h Pan + Diet Dry Weight (g)	m	Batch #: <u>Received</u> : 1454N 11
Drying Oven / Temperature(°C):				its at each respe	1.2347	1. 2383	1.2245	1.2346	1.2466	1.2513	48 h Pan + Diet Dry Weight (g)	- F	
nperature(°C):				ctive time point.	1,2350	1.2384	84661	1.2349	1.2469	1,2514	Pan + Diet Mean Dry Weight (g) [(F+7)/2]	6	Expiration Date:
OVEN 6		ſ.			6.0190	0,0193	0.083	0.0181	6.0185	0.0188	Diet Mean Dry Weight (g) [G-B]	Т	1494611
65°C	FF # Item Pg _	No.	년 이	-	0.3	1.82	r8.1	a& 1	58']	08'	Percent Dry Weight (H/D)*100		

1

File Folder: 13A - Lab book/pgs: 2/24,35

Proofed: KLW 19JANIZ Reviewed: JA 11-21-14

Individual Algae Product Dry Weight Determination Datasheet

			Data: 6/2/4	7		Approved by:		Varsian 1 D / January
				1.90%	ided by 6]:	ı of column I, divi	Mean Percent Dry Weight [Sum of column I, divided by 6]:	Mean Percent
	VEN-1, 65°C	Drying Oven / Temperature(°C): <u>©rén-i</u>	rying Oven / Tei	þ	(s): <u>()</u> 75-6	weight Set(s):	BAL-5	Balance:
Item Pg _	FF #				330	8DEC 11 / 1330	it The	48 h Dry Weight:
+ <u>13</u> No. 	ŧ_ <u>13</u>				1335	Apecal / 13	nt: 135_/	24 h Dry Weight:
of <u>3</u>	<u>A.</u>				626(11) 1335	105 1 6	Pan Tare Weight/Wet Weight:	Pan Tare Weig
		active time point.	nts at each respe	etermining weigt	data collector d	o be filled out by	Initials/Date/Time (military): To be filled out by data collector determining weights at each respective time point.	Initials/Date/1
1.95	0.019425	1.323465	1.32344	1.32349	0.99668	2.30072	1.30404	6
1.91	£56100	1.31255	1.31252	1.31258	1.02422	2.31790	1.29298	C5
1.88	0.019285	1.329475	1.32957	1.32938	1.02334	2.33353	1.31019	5
1.90	0.019/45	1.316395	1.31640	1.31639	1.00850	2.30575	1.29725	63
1.88	0.01936	1.31988	1.31993	1.31983	1.02922	2.32974	1.30052	C2
1.89	0.01941	1.32486	1.32483	1.32487	1.02633	82125.2	1.30545	CI
Percent Dry Weight (H/D)*100	Diet Mean Dry Weight (g) [G-B]	Pan + Diet Mean Dry Weight (g) [(E+F)/2]	48 h Pan + Diet Dry Weight (g)	24 h Pan + Diet Dry Weight (g)	Diet Wet Weight (g) [C-B]	Pan + Díet Wet Weight (g)	Pan Tare Weight (g)	Pan ID
	I	ត	п	m	D	C	В	A
	6MAR12	Expiration Date:		Batch #: Keceiveel, LDEC !!	Batch #:		Chlorella	Algal Diet:

File Folder: 134 Lab book/pgs: 2 24,25 Proofed: Ktw 19 JAW

Proofed: KIN 19JANIA Reviewed: Ja- 11-21-14

Individual Algae Product Dry Weight Determination Datasheet

24 hPan + Diet Dry Weight (B) 1. 50 839 1. 52 19
48 h Pan + Diet Dry Weight (g) 1,50755 1,52087

Algal Diet: Tetraselmis File Folder: Mean Percent Dry Weight [Sum of column I, divided by 6]: _ Balance: BAL-S 48 h Dry Weight: 24 h Dry Weight: Pan Tare Weight/Wet Weight: _ Version 1.0 / 23MAY2011 Initials/Date/Time (military): To be filled out by data collector determining weights at each respective time point. 4 2 な 77 5 Pan ID Pan Tare Weight Pan + Diet Wet (g) Weight (g) 1.29683 2.30132 162921 1.30567 1.29424 たとうんどい 1.30 337 2.32422 R 2 Approved by: 2.32701 2.30511 2.32115 «DECIV / IDBAE 2.29665 705 60ECH 1315 Lab book/pgs: 2/2x7 in 24,25 proofed: Liw 193 AND 12 Weight Set(s): いてくん Individual Algae Product Dry Weight Determination Datasheet 1320 1325 1.020 85 1.03024 1.00449 1.00720 1.01548 Diet Wet Weight 1.00241 Batch #: opened: 06DEC11 [C-8] 17.93% 86224'I 24 h Pan + Diet Dry Weight (g) 1.47830 1.47371 1.48877 48220 f 67 84 . 68011 Date: 6/3/h Drying Oven / Temperature(°C): ______ 48 h Pan + Diet Dry Weight (g) 929261 1.47290 56 984.1 47728 t 608 hi 1-48769 Expiration Date: APRIL 2012 Pan + Diet Mean Dry Weight (g) [(E+F)/2] セミナナがリ したととかり 58984 1.48823 1,473305 1.481585 Reviewed: JAC 11-21-14 886610 59064.0 0.18054 0,18348 0,18256 Diet Mean Dry Weight (g) [G-B] D.184815 FF # <u>120</u> Item No. <u>5</u> 77 <u>3</u> of 65°C たった 98:21 たりたり 9841 17.94 86.41 Percent Dry Weight (H/D)*100 ;

Study

Jer AEH-11-PSEUDO-02

4PP12 Hermony Pr Hermony Pr	Version 1.1/11JAN2012 This datasheet was approved by on ノムJネイ 2ッノム	Balance: BALS Weight Set(s): WTS 6 Drying Oven / Temperature(°C): DUE/U Mean Percent Dry Weight [Sum of column I, divided by 6]: 1.8 1.8 1.8 1.8	24 h Dry Weight: Kun / 2537Avily 1545 48 h Dry Weight: Klun / 2637Avily 1515	t: KIW / 2427ANNB/ 1446 OPE. Should be 2.6 919 g	b I. 30 50 2.3468 .0418 I. 3233 I. 3233 I. 3233 0.3333 Initials/Date/Time (military): To be filled out by data collector determining weights at each respective time point.	1.3093 2:3330 1:0237 1:3278 1:3277 1:32775 C	9 ,	3 1,319 2,3272 1,0153 1,3304 1.3304 1.3304 0.	0	1.3309 6	24 h Pan + Diet 48 h Pan + Diet Dry Weight (g) Dry Weight (g) Dry Weight (g) [(E+F)/2]	A B C D E F G Pan + Diet Mean Diet	Feeding Chart: 1.5 and 1.6 Species: FAM System: 1	Batch #: 50.4 g algal ast in 50% Expiration Date: 04	Individual Algae Product Dry Weight Determination Datasheet	-
	N 2012	1-15		2.6 919 g Kun 24 Thruis	3233 0.0183	0	· · · ·	.3304 0.0185	- C	Ő,		Diet N	m:		isheet	-

--

Study 1 Jer AEH-11-PSEUDO-02

File Folder: 13A Lab book/pgs: 2/38-34

Reviewed: Un 23mpla Verified: Jn 11-11-14

Individual Algae Product Dry Weight Determination Datasheet

12. BLS E 24hPan+ Dry Weight I.278	I2.03 Expiration Date: BLS System: 2 BLS F G E F G Dry Weight (g) Dry Weight (g) Dry Weight (g) I.27853 I.27853 I.27853 I.27853 I.27853 I.27853 I.27853 I.27853 I.27853
	F 48 h Pan + Diet Dry Weight (g) 1.37 853

48 h Dry Weight: 24 h Dry Weight: SKW Pan Tare Weight/Wet Weight: _ Version 1.1/11JAN2012 Mean Percent Dry Weight [Sum of column I, divided by 6]: $\frac{17.39}{17.39}$ Balance: Initials/Date/Time (military): To be filled out by data collector determining weights at each respective time point Feeding Chart: Wisson 1.7 Algal Diet: Tetraselmis File Folder: 4 1-1 -1 _L -1 -1 い -1 |~> Pan ID ⊳ 4-749 Pan Tare Weight (g) 13A いしてもの .03605 1.06337 1.06864 + +643+ .07753 œ This datasheet was approved by 1-20MARIZ_1 1345 131MARIA 1440 3150 2.04645 3 Pan + Diet Wet Weight (g) 2.02760 2-06373 2.02411 206705 3600 Lab book/pgs: _ 10t t 0. Weight Set(s): WTS-3 Individual Algae Product Dry Weight Determination Datasheet 1 29MARIN 1250 0.99841 C0000' t 6666.0 Diet Wet Weight (g) [C-B] 0.9 9806 1.00041 59 CON -2/38-39 Batch #: Species: 1.25 100 1.21693 24 h Pan + Diet Dry Weight (g) 1.23938 1.24410 -25107 11139 26055 20 m Reviewed: 10 7 North Drying Oven / Temperature(°C): 11.24304 1.21664 1.24779 1.23914 5973 48 h Pan + Diet Dry Weight (g) t105% on /2 JAN 20/2 System: **Expiration Date:** 1. 26014 Pan + Diet Mean Dry Weight (g) [(E+F)/2] 1, 24943 1, 260585 1.23926 1.216785 1.24357 Verified: Jac 11-21-14 tb(110 0.173015 012219 0.17409 682610 Diet Mean Dry Weight (g) [G-B] 0,17493 65°(SEP2012 96.71 17.30 PC. 11 HH + Percent Dry Weight (H/D)*100 17.58 12 F FF # <u>136</u> Item No. <u>1</u> Pg <u>7</u> of Э

Study N

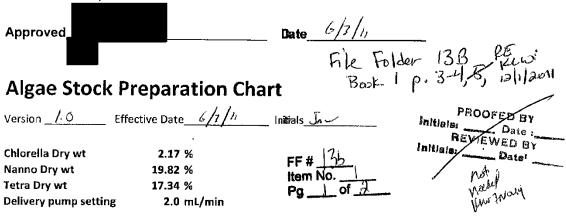
Jer AEH-11-PSEUDO-02

Study 1 Jer AEH-11-PSEUDO-02

File Folder: 13 A Lab book/pgs: 2/39

Reviewed: Kin J3APP13 Verified: Jr. 1-21-14

Individual Algae Product Dry Weight Determination Datasheet


c D Pan + Diet Wet Diet Wet Weight (g) Weight (g) (c-B) 2.29199 0.99800 2.29199 0.99800	E 24 h Pan + Diet Dry Weight (g) 1. 3 i 4 5 2 1. 3 i 9 i 1	F 48.h Pan + Diet Dry Weight (g) 1.31449 1.31410	Pan + Diet Mean Dry Weight (g) ([E+F)/2] 1, 3) 4/SDS 1.3 19105	
	24 h Pan + Diet Dry Weight (g) 1.31452 1.31911	48 h Pan + Diet Dry Weight (g) 1.31449 1.31410	Pan + Diet Mean Dry Weight (g) [(E+F)/2] [, 3]4505 [.3]9105	
	24 h Pan + Diet Dry Weight (g) 1. 3 14 52 1. 3 19 11	48 h Pan + Diet Dry Weight (g) 1. 3 1 4 4 9 1. 3 1 4 10	Dry Weight (g) [(E+F)/2] [, 3]4505 [.319105	
0.99800	1.31452	1.31449	1.314505	
0 99 tob	1.31911	1.31910	1.319105	
			3	
34.366.0	046151	1.31964	1.319670	SIRO'L ONOUN
toppp.o	1.30919	1.30923	1.309210	
tt8pp.0	1.31397	1.31390	1.313935	0.018535
D. PRSS	1.31446	1.31439	1.314425	SCEE 10.0
by data collector de	etermining weig	ghts at each respec	ctive time point.	
11APR12 1 1515	1			
505				
515				
		Drying Oven / Tem	1perature(°C):	7.59
livided by 6]:	93%			
as approved by				
	2.29 764 0.99876 2.28 405 0.99907 2.29 112 0.99907 2.29 12 0.99877 2.29575 0.99877 2.29575 0.99877 1. To be filled out by data collector d t: <u>JTw</u> 1.140812 1.12498 12 1.505 1.13498 12 1.505 1.13498 12 1.505 1.13498 12 1.505 1.13498 12 1.505 1.13498 12 1.505 1.1540 12 1.505 1.1540 12 1.505 1.1540 12 1.505 1.1540 12 1.505 1.1540 12 1.505 1.1540 12 1.505 1.1540 12 1.505 1.1540 12 1.505 1.1540 12 1.505 1.1540 12 1.505 1.1550 12 1.505 1.1550 12 1.505 1.1550 12 1.505 1.1550 12 1.505 1.1550 12 1.505 1.1550 12 1.505 1.1550 12 1.505 1.1550 12 1.505 1.1550 12 1.505 1.1550 12 1.505 1.1550 12 1.505 1.1550 12 </td <td>C3 1. 2988 2.2976 0.9987 1.31970 $C4$ 1. 28998 2.28405 0.99807 1.30919 $C5$ 1. 28998 2.28405 0.99877 1.30919 $C6$ 1. 29535 2.29412 0.99877 1.3197 $C6$ 1. 29770 2.29412 0.99877 1.31977 $C6$ 1. 21770 2.29412 0.99877 1.31977 Initials/Date/Time Imilitary1: To be filled out by data collector determining weight Pan Tare Weight/Wet Weight: 350 1.24972 1515 24 h Dry Weight: 75 1249712 1505 48 h Dry Weight: 350 1.349712 1505 Balance: 0742 1249712 1505 Mean Percent Dry Weight [Sum of column I, divided by 6]: $1.973%$</td> <td>0.9987k 1.31970 1.31970 0.99907 1.30923 0.99877 1.33977 1.31390 b.98855 1.31446 1.31970 by data collector determining weights at each respectively 1.31446 1.31439 505 1.515 1.515 1.515 505 1.515 1.515 1.515 505 1.515 1.31446 1.31439 1.49812 1.515 1.515 1.515 505 1.515 1.515 1.515 505 1.515 1.515 1.515 505 1.515 1.7175-03 Drying Oven / Ten wided by 61: 1.973% 1.93% 1.93%</td> <td>1970 1.30923 1397 1.31390 1397 1.31439 1446 1.31439 ning weights at each respective Drying Oven / Temper</td>	C3 1. 2988 2.2976 0.9987 1.31970 $C4$ 1. 28998 2.28405 0.99807 1.30919 $C5$ 1. 28998 2.28405 0.99877 1.30919 $C6$ 1. 29535 2.29412 0.99877 1.3197 $C6$ 1. 29770 2.29412 0.99877 1.31977 $C6$ 1. 21770 2.29412 0.99877 1.31977 Initials/Date/Time Imilitary1: To be filled out by data collector determining weight Pan Tare Weight/Wet Weight: 350 1.24972 1515 24 h Dry Weight: 75 1249712 1505 48 h Dry Weight: 350 1.349712 1505 Balance: 0742 1249712 1505 Mean Percent Dry Weight [Sum of column I, divided by 6]: $1.973%$	0.9987k 1.31970 1.31970 0.99907 1.30923 0.99877 1.33977 1.31390 b.98855 1.31446 1.31970 by data collector determining weights at each respectively 1.31446 1.31439 505 1.515 1.515 1.515 505 1.515 1.515 1.515 505 1.515 1.31446 1.31439 1.49812 1.515 1.515 1.515 505 1.515 1.515 1.515 505 1.515 1.515 1.515 505 1.515 1.7175-03 Drying Oven / Ten wided by 61: 1.973% 1.93% 1.93%	1970 1.30923 1397 1.31390 1397 1.31439 1446 1.31439 ning weights at each respective Drying Oven / Temper

48 h Dry Weight: <u>Ja</u>と 24 h Dry Weight: Version 1.1/11JAN2012 Mean Percent Dry Weight [Sum of column I, divided by 6]: **Balance**: Pan Tare Weight/Wet Weight: 1000 Initials/Date/TIme (military): To be filled out by data collector determining weights at each respective time point. Algal Diet: Ch locha Feeding Chart: Version File Folder: ÷ Ś ە \mathcal{O} S Pan ID ⊅ BAL george w 1.2958 Pan Tare Weight 1.2922 1.2928 1.2956 1.2969 +1 . 2935 8 (Rm 17A) Weight Set(s): 13046 (Rm 2) Drying Oven / Temperature(°C): This datasheet was approved by 3 15/12/1045 1 11M M.D. 1130 2,3230 2.3332 1265.8 Pan + Diet Wet Weight (g) 2,3186 2.3676 2.3177 Lab book/pgs: 2/45 Individual Algae Product Dry Weight Determination Datasheet 101444 1 1030 6460.1 Diet Wet Weight 1.1049 1.0258 81401 1,0363 14001 [C-8] Batch #: 10f 1 recived Species: 1.867442% PPG 24 h Pan + Diet Dry Weight (g) 1.3160 1.3129 1-3129 * 1.349 5 315 (C (C Reviewed: Lu inmana CI LANOI 1.314.81 1.31271 1.31559 .31589 1.31258 48 h Pan + Diet Dry Weight (g) 1.31 185 on /2-JAN 20/2 System: _ Expiration Date: Pan + Diet Mean Dry Weight (g) [(E+F)/2] 290915 1. 34855 35795 1.312805 1.31975 ったたぶ Verified: Jre /1-21-14 7.59 ANG 2012 0.019995 0.019240 556 610 0 0,019195 50906010 Diet Mean Dry Weight (g) [G-B] 54-1610:0 π (Pm15) SHIFE 81 1.864875 1,8529,9 Etchag. CO 5595. S76539 Percent Dry Weight (H/D)*100 FF # 13A Item No. _9 Pg ____ of

Study I.

Jer AEH-11-PSEUDO-02

Study Number AEH-11-PSEUDO-02 Effects of Pseudomonas fluorescens (Pf-CL145A) to newlymetamorphosed juvenile mussels from seven different unionid species

Stock for each system prepared in 3,600 mL of well water

Flow Rate (mL/min)	Vol. Delivered 30 hrs (L)	Delivery pump Flow (mL/min)	Pump Vol 30 hrs (L)	Total voi through Headbox (30h [L])	Dry wt. algae required per type (mg)	Wet wt Chlorella required (g)	Wei wt Nanno required {g}	Wet wt Tetra required (g)
300	540.0	2.0	3.6	543.6	407.7	18.79	2.06	2.35
301	541.8	2.0	3. 6	545.4	409.1	18.85	2.05	2.36
302	543.6	2.0	3.6	547.2	410.4	18.91	2.07	2.37
303	545.4	2.0	3.6	549.0	411 .8	18.97	2.08	2.37
304	547.2	2.0	3.6	5 50.8	413,1	19.04	2.08	2.38
305	549.0	2.0	3.6	552.6	41 4.5	19.10	2.09	2.39
306	550.8	2.0	3.6	554.4	415.8	19.16	2.10	2.40
307	552.6	2.0	3.6	556.2	417.2	19.22	2.10	2.41
308	554.4	2.0	3.6	558.0	41 8.5	19.29	2.11	2.41
309	556.2	2.0	3.6	559.8	419.9	19.35	2.12	2.42
310	558.0	2.0	3.6	561.6	421.2	19.41	2.13	2,43
311	559.8	2.0	3.6	563.4	422.6	19.47	2.13	2.44
312	561.6	2.0	3.6	565.2	423.9	19.53	2.14	2,44
313	563.4	2.0	3.6	567.0	425,3	19,60	2.15	2.45
314	565 .2	2.0	3.6	568 .8	426.6	19.66	2.15	2.46
315	567.0	2.0	3.6	5 70.6	428.0	19.72	2.16	2.47
316	568.8	2.0	3.6	57 2. 4	429.3	19,78	2.17	2.48
317	570.6	2.0	3.6	574.2	430.7	19.85	2.17	2.48
318	572,4	2.0	3.6	576.0	432.0	19.91	2.18	2,49
319	574.2	2.0	3.6	577.8	433.4	19.97	2.19	2.50
320	576.0	2.0	3.6	579.6	434.7	20.03	2.19	2.51
321	577.8	2.0	3.6	581.4	436.1	20.09	2.20	2.51
322	579.6	2.0	3.6	583.2	437.4	20.16	2.21	2.52

1 of 2

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

323	581.4	2.0	3.6	585.0	438.8	20.22	2.21	2.53
324	583.2	2.0	3.6	586.8	440.1	20.28	2.22	2.54
325	585.0	2.0	3.6	588.6	441.5	20,34	2.23	2.55
326	586.8	2.0	3.6	590,4	442.8	20,41	2,23	2.55
327	588.6	2.0	3.6	592.2	444.2	20.47	2.24	2.56
328	590.4	2.0	3.6	594.0	445.5	20.53	2.25	2.57
329	592.2	2.0	3.6	595,8	446.9	20.59	2.25	2.58
330	594.0	2.0	3 .6	597.6	448.2	20.65	2.26	2.58
331	595.8	2.0	3.6	599.4	449.6	20.72	2.27	2.59
332	597.6	2.0	3.6	6 01 .2	450.9	20.78	2.27	2.60
333	599.4	2.0	3.6	603.0	452.3	20.84	2.28	2.61
334	601,2	2.0	3.6	604.8	453.6	20.90	2.29	2.62
335	603.0	2.0	3.6	606.6	4 55.0	20.97	2.30	2.62
336	604.8	2.0	3.6	608.4	456.3	21.03	2.30	2.63
337	606.6	2,0	3.6	610.2	457.7	21.09	2.31	2.64
338	608.4	2.0	3.6	612.0	459 ,0	21.15	2.32	2.65
339	610.2	2.0	3.6	613.8	460.4	21.21	2.32	2.65
340	612.0	2.0	3.6	615.6	461.7	21.28	2.33	2.66

FF Item ю ofa Pc

Log Book/Pages 1/3-4 File Folder 15B	
Initials how Date Twovit	

;

PROOFED BY Iniliaisi Date REVIEWED Initials ___ Date' needed north

2 of 2

Study Number AEH-11-PSEUDO-02 Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

7

Date_6/6/11 Approved File Filder 13B Book 1 p. 5,7,11,19, 22,23,24,25, 26,27,28 **Algae Stock Preparation Chart** Version 1. 1a Effective Date 6/6/1 Initials Ja 2.9 % Chlorella Dry wt FF # <u>\3b</u> Item <u>No.</u> PROOFERBY 19.82 % Nanno Dry wt Initials: Date : 17.34 % Tetra Dry wt REVIEWED BY **Delivery pump setting** 2.0 mL/min Initialer Date not Stock for each system prepared in 3,600 mL of well water

Dry wt

Mot

Wot

Mot

					Dry wt.	Wet	Wet	Wet
Flow	Vol.	Delivery	Pump	Total vol	algae	wt	wt	wt
Rate	Delivered	pump	Vol	t hro ugh	required	Chlorella	Nanno	Tetra
(mL/min)	30 hrs	Flow	30 hrs	Headbox	per type	required	required	required
	. (L)	(mL/min)	(L) .	(30h [L])	(mg)	(g)	(g)	(g)
300	540.0	2.0	3.6	543.6	407.7	14.06	2.06	2.35
301	541.8	2.0	3.6	545.4	409.1	1 4. 1 1	2.06	2,36
302	543.6	2.0	3.6	547.2	410.4	1 4. 1 5		2.37
303	545.4	2.0	3.6	549.0	411.8	14.20	2.08	2.37
304	547.2	2.0	3.6	550.8	413,1	14,24	2.08	2.38
305	549.0	2.0	3.6	552.6	414.5	14.29	2.09	2.39
306	550.8	2.0	3.6	554,4	415.8	14.34	2,10	2.40
307	552.6	2.0	3.6	556.2	417.2	14.38	2.10	2.41
308	554.4	2.0	3.6	558.0	418.5	14.43	2.11	2.41
309	556.2	2.0	3.6	559.8	419.9	14.48	2.12	2,42
310	558.0	2.0	3.6	561.6	421.2	14.52	2.13	2.43
311	559.8	2.0	3.6	563.4	422.6	14.57	2.13	2.44
312	561.6	2.0	3.6	565.2	423.9	14.62	2.14	2.44
313	563.4	2.0	3.6	567.0	425.3	14.66	2.15	2.45
314	565.2	2.0	3.6	568.8	426.6	14.71	2.15	2.46
315	567.0	2.0	3.6	570.6	428.0	14.76	2.16	2.47
316	568.8	2.0	3.6	572.4	429.3	14.80	2.17	2.48
317	570.6	2.0	3.6	574.2	430.7	14.85	2.17	2.48
318	57 2.4	2.0	3.6	576.0	432.0	14.90	2.18	2.49
319	574.2	2.0	3.6	577.8	433.4	14.94	2.19	2.50
320	576.0	2.0	3.6	579.6	434.7	14.99	2.19	2.51
321	577.8	2.0	3.6	581.4	436.1	15.04	2.20	2.51
322	579.6	2.0	3.6	583.2	437.4	15.08	2.21	2.52

1 of 2

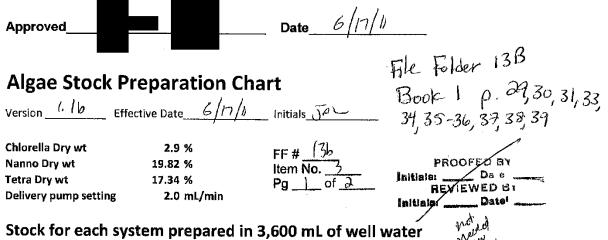
FF #

Pg

Item No

3

Of


Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

323	581.4	2.0	3.6	585.0	438.8	15.13	2.21	2.53
324	583.2	2.0	3.6	586.8	440.1	15.18	2.22	2.54
325	585.0	2.0	3.6	588.6	441.5	15.22	2,23	2.55
326	586.8	2.0	3.6	590.4	442.8	15,27	2.23	2.55
327	588.6	2.0	3.6	592.2	444.2	15.32	2.24	2.56
328	590.4	2.0	3.6	594.0	445.5	15.36	2.25	2.57
329	592.2	2.0	3.6	595.8	446.9	15.41	2.25	2.58
330	594.0	2.0	3.6	597.6	448.2	15.46	2.26	2.58
331	595.8	2.0	3.6	599.4	449.6	15.50	2.27	2.59
332	597.6	2.0	3.6	601.2	450.9	15.55	2.27	2.60
333	599.4	2.0	3.6	.603.0	452.3	15.59	2.28	2.61
334	601.2	2.0	3.6	, 604.8,,,	453.6	15.64	2.29	2.62
·335	603.0	2.0	3.6	606.6	455.0	15.69	2.30	2.62
336	604.8	2.0	3.6	608.4	456.3	15.73	2.30	2.63
337	606.6	2.0	3.6	610.2	457.7	15.78	2.31	2.64
338	608.4	2.0	3.6	612.0	459.0	15.83	2.32	2.65
339	610.2	2.0	3.6	613.8	460.4	15.87	2.32	2.65
340	612.0	2.0	3.6	615.6	461.7	15.92	2.33	2.66

7, 11, 19, 22-28 Log Book / Page File Folder 131 Initials ______ Date _ INOIP PROOFED BY REVIEWED B Initiais: laitiels. Date! Not ul nerul posic posic posic

.

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

Flow Rate (mL/min)	Vol. Delivered 30 hrs (L)	Delivery pump Flow (mL/min)	Pump Vol 30 hrs (L)	Total vol through Headbox (30h [L])	Dry wt. algae required per type (mg)	Wet wt Chlorella required {g)	Wet wt Nanno required (g)	Wet wt Tetra required (g)
300	540.0	2.0	3.6	543.6	362.4	12.50	1.83	2.09
301	541.8	2.0	3.6	545.4	363.6	12.54	1,83	2.10
302	543.6	2.0	3.6	547.2	364.8	12.58	1.84	2.10
303	545.4	2.0	3.6	549.0	366.0	12.62	1.85	2,11
304	547.2	2.0	3.6	5 5 0. 8	367.2	212.66	1.85	2.12
305	549.0	2.0	3.6	552.6	368.4		1.86	2,12
306	55 0, 8	2.0	3.6	554.4	369.6	12.74	1,86	2.13
307	552.6	2.0	3.6	556,2	370.8	12.79	1.87	2.14
308	554.4	2.0	3.6	558.0	372.0	12.83	1,88	2.15
309	556.2	2.0	3.6	559 ,8	373.2	12.87	1.88	2.15
310	558.0	2.0	3.6	561.6	374.4	12.91	1,89	2.16
311	559.8	2.0	3.6	563.4	375.6	12.95	1.9 0	2.17
312	561.6	2.0	3.6	565.2	376.8	12.99	1.9 0	2.17
313	563.4	2,0	3.6	567.0	378.0	13.03	1.91	2.18
314	565.2	2.0	3.6	568.8	379. 2	13.08	1,91	2.19
315	567.0	2.0	3.6	570.6	380.4	13.12	1.92	2.19
316	568.8	2.0	3.6	572.4	381.6	13.16	1.93	2.20
317	570.6	2.0	3.6	574.2	382.8	13.20	1.93	2.21
318	572.4	2.0	3.6	576.0	384.0	13.24	1.94	2.21
319	574.2	2.0	3.6	577.8	385.2	13.28	1.94	2.22
320	576.0	2.0	3.6	579.6	386.4	13.32	1.95	2.23
321	577.8	2.0	3.6	581.4	387.6	13.37	1.96	2.24
322	579.6	2,0	3.6	583.2	388.8	13.41	1.96	2.24

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

323	581.4	2.0	3.6	585.0	390.0	13.45	1.97	2.25
324	583.2	2.0	3.6	586.8	391.2	13,49	1.97	2.26
325	585.0	2.0	3.6	588.6	392.4	13.53	1.98	2.26
326	586.8	2.0	3.6	590.4	393.6	13.57	1.99	2.27
327	588.6	2.0	3.6	592.2	394.8	13.61	1.99	2.28
328	590.4	2.0	3.6	594.0	396.0	13.66	2.00	2.28
329	592.2	2.0	3.6	595.8	397.2	13.70	2.00	2.29
330	594.0	2.0	3.6	597.6	398.4	13.74	2.01	2.30
331	595.8	2.0	3.6	599.4	399.6	13.78	2.02	2.30
332	597.6	2.0	3.6	()601.2)))	400.8	13.82	2.02	2.31
333	599.4	2.0	3.6	603.Q S	402.0	13.86	2.03	2.32
334	601.2	2.0	3.6	604.8	403.2	13.90	2.03	2,33
335	603.0	2.0	3.6	606.6	404.4	13.94	2.04	2.33
336	604.8	2.0	3.6	608.4	405. 6	13.99	2.05	2.34
337	606.6	2.0	3.6	610.2	406.8	14.03	2.05	2.35
338	608.4	2.0	3.6	612.0	408.0	14.07	2.06	2.35
339	610.2	2.0	3.6	613.8	409.2	14.11	2.06	2.36
340	612.0	2.0	3.6	615.6	410.4	14.15	2.07	2.37

F**F** # Item No Рg

Log Book/Pages File Folder 131 Ipitials _____ Date Inail ខ ទា PROO Da e initials: IEWED ø RE) Dates -NIL MONIE MONIE Initialny

29-31, 33-36

2 of 2

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

Date_ 6/21/1 Approved File Folder 13B Book 1 p. 40, 41, 42, 43, 45, 46, 47, 48 **Algae Stock Preparation Chart** Version $\frac{1}{2}$ Effective Date $\frac{6/22}{11}$ Initials 5FF # <u>(3</u>) Item No. <u>4</u> Chlorella Dry wt 2.58 % Nanno Dry wt 19.82 % PROOFED Tetra Dry wt 17.34 % Initiater Date : **Delivery pump setting** 2.0 mL/min REVIEWED BY Initials: Date! Stock for each system prepared in 3,600 mL of well water not Needed WW Inorth Dry wt. Wet Wet Wet Flow Vol. Delivery Pump Total vol algae wt wt wt Rate Delivered pump Vol through required Chlorella Nanno Tetra 30 hrs (mL/min) Flow 30 hrs Headbox per type required required required (L) (mL/min) (30h [L]) (L) (mg) (g) (g) (g) 300 540.0 2.0 3.6 543.6 362.4 14.05 1.83 2.09 301 541.8 2.0 3.6 545.4 14,09 363.6 e 1.83 2.10 302 543.6 2.0 3.6 14⁰14 1.84 547.2 364(8 2.10 303 545.4 2.0 3.6 549.0 366.0 14.19 1.85 2.11 304 547.2 2.0 3.6 550.8 367.2 14.23 1.85 2.12 305 549.0 2.0 3.6 552.6 368.4 14.28 1.86 2.12 306 550.8 2.0 3.6 554.4 369.6 14.33 1.86 2.13 2.0 307 552.6 3.6 556.2 370.8 14.37 1.87 2.14 308 554.4 2.0 3.6 558.0 372.0 14.42 1,88 2.15 2.0 309 556.2 3.6 559.8 373.2 14.47 1.88 2.15 2.0 310 558.0 3.6 561.6 374.4 14.51 1.89 2.16 311 559.8 2.0 3.6 563.4 375.6 14.56 1.90 2.17 2.0 312 561.6 3.6 565.2 376.8 **1**4.60 1.90 2,17 313 563.4 2.0 3.6 567.0 14.65 1.91 378.0 2,18 2.0 314 565.2 3.6 568.8 379.2 14.70 1,91 2.19 315 567.0 2.0 3.6 570.6 380.4 14.74 1.92 2.19 316 568.8 2.0 3.6 572.4 381.6 14.79 1.93 2.20 317 570.6 2.0 3.6 574.2 14.84 1.93 2.21 382.8 2.0 318 572.4 3.6 576.0 384.0 14.88 1.94 2.21 574.2 2.0 319 1.94 3.6 577.8 385.2 14.93 2,22 320 576.0 2.0 3.6 579.6 386.4 1.95 2.23 14.98 321 577.8 2.0 3.6 581.4 387.6 15.02 1.96 2.24

388.8

15.07

1.96

2,24

583.2

2.0

3.6

579.6

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species 0.0

						0.0
-	323	581.4	2.0	3.6	585.0	390.
-	324	583.2	2.0	3,6	586.8	391.
-	325	585.0	2.0	3.6	588.6	392
-	326	586.8	2.0	3.6	590.4	393.
-	327	588.6	2.0	3.6	592.2	394.
-	328	590.4	2.0	3.6	5 9 4.0	396.0
-	329	592.2	2.0	3.6	595.8	397.3
-	330	594.0	2.0	3.6	597.6	398.
	331	595.8	2.0	3.6	599.4	399.
	332	597.6	2.0	3.6	601.2	400.3
	333	599.4	2.0	3.6	603.0 ₀₁₂	402.
	334	601.2	2.0	3.6	604.8	403.3
_	335	603.0	2.0	3.6	606.6	404.4
	336	604.8	2.0	3.6	608.4	405.0
	337	606.6	2.0	3.6	610.2	406.3
_	338	608.4	2.0	3.6	612.0	408.0
	339	610.2	2.0	3.6	613,8	409.3
_	340	612.0	2.0	3.6	615.6	410.4

0.0			
390.0	15.12	1.97	2.25
391.2	15.16	1.97	2.26
392.4	15,21	1.98	2.26
393.6	15.26	1.99	2.27
894.8	15.30	1.99	2.28
896.0	15.35	2.00	2.28
397.2	15.40	2,00	2.29
98.4	15.44	2.01	2.30
899.6	15,49	2.02	2.30
8.00	15.53	2.02	2.31
02.0	15.58	2.03	2.32
03.2	15.63	2,03	2.33
04.4	15.67	2.04	2.33
05.6	15.72	2.05	2.34
06.8	15.77	2.05	2.35
08.0	15.81	2.06	2.35
09.2	15.86	2.06	2.36
10.4	15.91	2,07	2.37

FF # Item No. Pg <u></u> of

Log Book / Pages File Folder 13 B Initials Lno Date Phovy PROOFED Фē Initials: . arat. REVIEWE ... Date Initialer

not. needed 1000 7 NOVIY

140-43,45

2 of 2

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

Date 7/1/11 Approved_ File Rider 13B Bookl P. 30 **Algae Stock Preparation Chart** Version 1.3 Effective Date 7/7/2011 Initials KLW Back 2 Chlorella Dry wt 1.81 % $\begin{array}{c} \text{FF \# } \underline{3b} \\ \text{Item No. } \underline{5} \\ \text{Pg } \underline{1} \\ \text{of} \end{array}$ р.1,3,6,10,13,16, H, 18,19,21 РВООГЕВ ВУ Nanno Dry wt 19.82 % Tetra Dry wt 17.34 % **Delivery pump setting** 2.0 mL/min Initials

Stock for each system prepared in 3,600 mL of well water

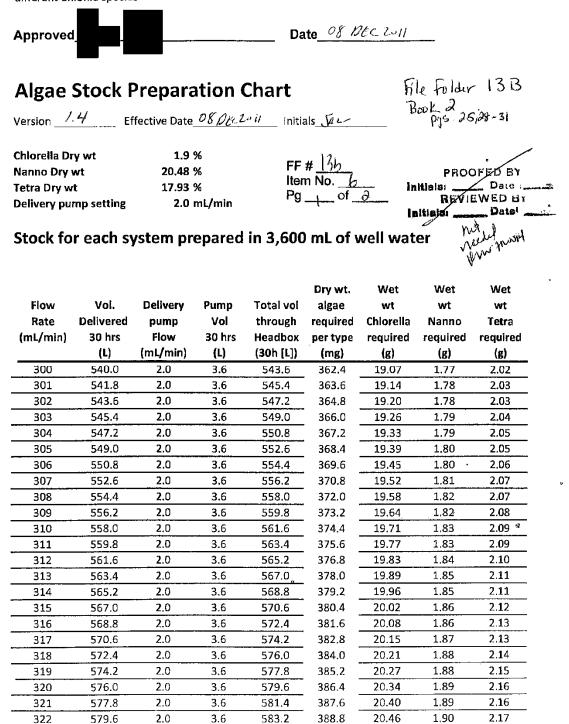
								not needed
					Dry wt.	Wet	Wet	Wet Imany
Flow	Vol.	Delivery	Pump	Total vol	algae	wt	wt	wt
Rate	Delivered	pump	Vol	through	required	Chlorella	Nanno	Tetra
(mL/min)	30 hrs	Flow	30 hrs	Headbox	per type	required	required	required
	(L)	(mL/min)	(L)	(30h [L])	(mg)	(g)	(g)	(g)
300	540.0	2.0	3.6	543,6	362.4	20.02	1.83	2.09
301	541.8	2.0	3.6	545.4	363.6	20.09	1.83	2.10
302	543.6	2.0	3.6	547.2	36 <u>4</u> 38	20.15	1.84	2.10
303	545,4	2.0	3.6	549.0	366.0	20.22	1.85	2.11
304	547.2	2.0	3.6	550.8	367.2	20.29	1.85	2.12
305	549.0	2.0	3.6	552.6	368.4	20.35	1.86	2,12
306	550.8	2.0	3.6	554.4	369.6	20.42	1.86	2.13
307	552.6	2.0	3.6	556.2	370.8	20.49	1,87	2.14
308	554.4	2.0	3,6	558.0	372.0	20.55	1.88	2.15
309	556,2	2.0	3.6	559.8	373.2	20.62	1.88	2.15
310	558.0	2.0	3.6	561.6	374.4	20.69	1.89	2.16
311	559.8	2.0	3.6	563.4	375.6	20.75	1.90	2.17
312	561.6	2.0	3.6	565.2	376.8	20.82	1.90	2.17
313	563.4	2.0	3.6	567.0	378.0	20.88	1.91	2.18
314	565.2	2.0	3.6	568.8	379.2	20.95	1.91	2.19
315	567.0	2 .0	3.6	570.6	380.4	21.02	1.92	2.19
316	568.8	2.0	3.6	572.4	381.6	21.08	1.93	2.20
317	570.6	2.0	3.6	574.2	382.8	21.15	1.93	2.21
318	572.4	2,0	3.6	576.0	384.0	21.22	1.94	2.21
319	574.2	2,0	3.6	577.8	385.2	21.28	1.94	2.22
320	576 .0	2.0	3.6	579.6	386.4	21.35	1.95	2,23
321	577.8	2.0	3.6	581.4	387.6	21.41	1.96	2.24
322	579.6	2.0	3.6	583.2	388.8	21.48	1.96	2.24

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species 0.0

_						0.0	
	323	581.4	2.0	3.6	585.0	390.0	2
_	324	583. 2	2,0	3.6	586.8	391.2	2
_	325	585.0	2.0	3.6	588.6	392.4	2
_	326	586.8	2.0	3.6	590.4	393.6	2
	327	588.6	2.0	3.6	592.2	394.8	2
_	328	590.4	2.0	3.6	594.0	396.0	2
	329	592.2	2.0	3.6	595.8	397.2	2
_	330	5 9 4.0	2.0	3.6	597.6	398.4	2
	331	595.8	2.0	3.6	599.4	399.6	2
	332	597.6	2.0	3.6	601.2	400.8	2
	333	599.4	2,0	3.6	603.0	402.0	2
_	334	601.2	2.0	3.6	604.8	403.2	2
_	335	603.0	2.0	3.6	606.6	404.4	2
_	336	604.8	2.0	3,6	608.4	405.6	2
	337	606.6	2.0	3.6	610. 2	406.8	2
	338	608.4	2.0	3.6	612.0	408.0	2
_	339	610.2	2.0	3.6	613.8	409.2	2
	340	612.0	2.0	3.6	615.6	410.4	2:

0	21.55	1.97	2.25
2	21.61	1.97	2.26
4	21.68	1.98	2 .26
6	21.75	1.99	2.27
8	21,81	1.99	2.28
0	21.88	2,00	2.28
2	21.94	2.00	2.29
4	22.01	2.01	2.30
6	22.08	2.02	2.30
8	22.14	2,02	2.31
0	22.21	2.03	2.32
2	22.28	2,03	2.33
4	22.34	2,04	2.33
6	22.41	2.05	2.34
8	22.48	2.05	2.35
0	22.54	2.06	2.35
2	22.61	2.06	2.36
4	22.67	2.07	2.37

η



 $\begin{array}{c} \mathsf{FF} \ \# \ \underline{156}\\ \mathsf{Item} \ \mathsf{No.}\\ \mathsf{Pg} \ \underline{2} \ \mathbf{o} \end{array}$ of 2

PROOFED BY Date : Initiale: REVIEWED BY Date' Initials: redel not hno.

2 of 2

Study Number AEH-11-PSEUDO-02 Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

1 of 2

579

7

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species 0.0

323	581.4	2.0	3.6	585.0
324	583.2	2.0	3.6	586.8
325	585.0	2.0	3.6	588.6
326	586.8	2.0	3.6	590.4
327	588.6	2.0	3.6	592.2
328	590.4	2.0	3.6	5 9 4.0
329	592.2	2.0	3.6	595.8
330	594.0	2.0	3.6	597.6
331	595.8	2.0	3.6	599.4
332	597.6	2.0	3.6	601.2
333	599.4	2.0	3.6	603.0
334	601.2	2.0	3.6	604.8
335	603.0	2.0	3.6	606.6
336	604.8	2.0	3.6	608.4
337	606.6	2.0	3.6	610.2
338	608.4	2.0	3 .6	612. 0
339	610.2	2.0	3.6	613.8
340	612.0	2.0	3.6	615.6

0.0			
390.0	20.53	1.90	2.18
391.2	20.59	1.91	2.18
392.4	- 20.65	1.92	2.19
393.6	20.72	1.92	2.20
394.8	20,78	1.93	2.20
396.0	20.84	1.93	2.21
397.2	20.91	1.94	2.22
398.4	- 20.97	1.95	2.22
399.6	21.03	1.95	2.23
400.8	21.09	1.96	2.24
402.0	21.16	1.96	2.24
403.2	21.22	1.97	2.25
404.4	21.28	1.97	2.26
405.6	21.35	1.98	2.26
4 06 .8	21.41	1.99	2.27
408.0	21,47	1.99	2.28
409.2	21.54	2.00	2.28
410.4	21.60	2.00	2.29

 $FF \# \frac{12}{N0}$ Pg of

...

2/25,28-31 Log Book / Pages File Folder triovi Date . PROOFED Dane : Initials: REVIEWED BY Date¹ Initiale Mms though withed

Study Number AEH-11-PSEUDO-02 Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different uni<u>onid species</u>

Approvec	1			Da	te_253	WN 2-012.		
Algae	Stock F	Prepara	ntion (Chart				
ersion	5 Ef	fective Date	25 JA	N 200 Initia	als KLW	. File	Filder	13B
			·					
Chlorella Di	ry wt	1.8	%		la.	Pg	2 15.32,35	-37
lanno Dry		20.48		FF #				
letra Dry w		17.93		Item I	No. $\frac{7}{2}$	-		PROOFE
elivery pu	mp setting	2.0	mL/min	Pg_	of		Initial	REVIEW
itock fo	r each sy	ystem pro	epared	in 3,600	mL of v	well wate	Initia er Ź	not de mere
					Dry wt.	Wet	Wet	Wet
Flow	Vol.	Delivery	Pump	Total vol	algae	wt	wt	wt
Rate	Delivered	pump	Vol	through	required	Chlorella	Nanno	Tetra
(mL/min)	30 hrs	Flow	30 hrs	Headbox	per type	required	required	required
	(L)	(mL/min)	(L)	(30h [L])	(mg)	(g)	(g)	(g)
	540.0	2.0	3.6	543.6	362.4	20.13	1,77	2.02
301	541.8	2.0	3.6	545.4	363.6	20.20	1.78	2.03
302	543.6	2.0	3.6	547.2	364.8	20.27	1.78	2.03
302 303	543.6 545.4	2.0 2.0	3.6 3.6	547.2 549.0	364.8 366.0	20.27 20.33	1.78 1.79	2.03 2.04
302 303 304	543.6 545.4 547.2	2.0 2.0 2.0	3.6 3.6 3.6	547.2 549.0 550.8	364.8 366.0 367.2	20.27 20.33 20.40	1.78 1.79 1.79	2.03 2.04 2.05
302 303 304 305	543.6 545.4 547.2 549.0	2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6	547.2 549.0 550.8 552.6	364.8 366.0 367.2 368.4	20.27 20.33 20.40 20.47	1.78 1.79 1.79 1.80	2.03 2.04 2.05 2.05
302 303 304 305 306	543.6 545.4 547.2 549.0 550.8	2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6	547.2 549.0 550.8 552.6 554.4	364.8 366.0 367.2 368.4 369.6	20.27 20.33 20.40 20.47 20.53	1.78 1.79 1.79 1.80 1.80	2.03 2.04 2.05 2.05 2.06
302 303 304 305 306 307	543.6 545.4 547.2 549.0 550.8 552.6	2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6	547.2 549.0 550.8 552.6 554.4 556.2	364.8 366.0 367.2 368.4 369.6 370.8	20.27 20.33 20.40 20.47 20.53 20.60/	1.78 1.79 1.79 1.80 1.80 1.81	2.03 2.04 2.05 2.05 2.06 2.07
302 303 304 305 306 307 308	543.6 545.4 547.2 549.0 550.8 552.6 554.4	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	547.2 549.0 550.8 552.6 554.4 556.2 558.0	364.8 366.0 367.2 368.4 369.6 370.8 372.0	20.27 20.33 20.40 20.47 20.53 20.60/ ^{C1} 20.60/	1.78 1.79 1.79 1.80 1.80 1.81 1.82	2.03 2.04 2.05 2.05 2.06 2.07 2.07
302 303 304 305 306 307 308 309	543.6 545.4 547.2 549.0 550.8 552.6 554.4 556.2	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8	364.8 366.0 367.2 368.4 369.6 370.8 372.0 373.2	20.27 20.33 20.40 .20.47- 20.53))/ 20.60) ^{C1} 20.67 20.67 20.73	1.78 1.79 1.79 1.80 1.80 1.81 1.82 1.82	2.03 2.04 2.05 2.05 2.06 2.07 2.07 2.07 2.08
302 303 304 305 306 307 308 309 310	543.6 545.4 547.2 549.0 550.8 552.6 554.4 556.2 558.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 559.8 561.6	364.8 366.0 367.2 368.4 369.6 370.8 372.0 373.2 374.4	20.27 20.33 20.40 .20.47- .20.53:17 20.60? 20.67 20.67 20.73 20.80	1.78 1.79 1.79 1.80 1.80 1.81 1.82 1.82 1.82 1.83	2.03 2.04 2.05 2.05 2.06 2.07 2.07 2.08 2.09
302 303 304 305 306 307 308 309 310 311	543.6 545.4 547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 561.6 563.4	364.8 366.0 367.2 368.4 369.6 370.8 372.0 373.2 374.4 375.6	20.27 20.33 20.40 20.47-3 (20.53))) 20.60? ^{C1} 20.67 20.73 20.80 20.87	1.78 1.79 1.79 1.80 1.80 1.81 1.82 1.82 1.82 1.83 1.83	2.03 2.04 2.05 2.05 2.06 2.07 2.07 2.07 2.08 2.09 2.09
302 303 304 305 306 307 308 309 310	543.6 545.4 547.2 549.0 550.8 552.6 554.4 556.2 558.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 561.6 563.4 565.2	364.8 366.0 367.2 368.4 369.6 370.8 372.0 373.2 374.4	20.27 20.33 20.40 20.47-1 20.53:17 20.60/ ^{C4} 20.67 20.73 20.80 20.87 20.93	1.78 1.79 1.79 1.80 1.80 1.81 1.82 1.82 1.83 1.83 1.83 1.84	2.03 2.04 2.05 2.05 2.06 2.07 2.07 2.07 2.08 2.09 2.09 2.09 2.10
302 303 304 305 306 307 308 309 311 312	543.6 545.4 547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 561.6 563.4	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 561.6 563.4 565.2 565.2 567.0	364.8 366.0 367.2 368.4 369.6 370.8 372.0 373.2 374.4 375.6 376.8 378.0	20.27 20.33 20.40 20.47 20.60) ^{C1} 20.60) ^{C1} 20.67 20.73 20.80 20.87 20.93 21.00	1.78 1.79 1.79 1.80 1.80 1.81 1.82 1.82 1.83 1.83 1.83 1.83 1.84 1.85	2.03 2.04 2.05 2.05 2.06 2.07 2.07 2.07 2.08 2.09 2.09 2.09 2.10 2.11
302 303 304 305 306 307 308 309 310 311 312 313	543.6 545.4 547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 559.8 561.6	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 561.6 563.4 565.2	364.8 366.0 367.2 368.4 369.6 370.8 372.0 373.2 374.4 375.6 376.8	20.27 20.33 20.40 20.47 20.60? ^{C1} 20.67 20.67 20.73 20.80 20.87 20.93 21.00 21.07	1.78 1.79 1.79 1.80 1.80 1.81 1.82 1.82 1.83 1.83 1.83 1.84	2.03 2.04 2.05 2.05 2.06 2.07 2.07 2.07 2.08 2.09 2.09 2.10 2.11 2.11
302 303 304 305 306 307 308 309 310 311 312 313 314	543.6 545.4 547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 561.6 563.4 565.2	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 561.6 563.4 565.2 565.2 567.0 568.8	364.8 366.0 367.2 368.4 369.6 370.8 372.0 373.2 374.4 375.6 376.8 378.0 379.2	20.27 20.33 20.40 .20.47- 20.53);; 20.60; ^{C1} 20.67 20.73 20.80 20.87 20.93 21.00 21.07 21.13	1.78 1.79 1.79 1.80 1.80 1.81 1.82 1.82 1.82 1.83 1.83 1.83 1.84 1.85 1.85	2.03 2.04 2.05 2.05 2.06 2.07 2.07 2.07 2.08 2.09 2.09 2.09 2.10 2.11
302 303 304 305 306 307 308 309 310 311 312 313 314 315	543.6 545.4 547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 561.6 563.4 565.2 567.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 561.6 563.4 565.2 567.0 568.8 570.6	364.8 366.0 367.2 368.4 369.6 370.8 372.0 373.2 374.4 375.6 376.8 378.0 379.2 380.4	20.27 20.33 20.40 20.47 20.60? ^{C1} 20.67 20.67 20.73 20.80 20.87 20.93 21.00 21.07	1.78 1.79 1.79 1.80 1.80 1.81 1.82 1.82 1.82 1.83 1.83 1.83 1.84 1.85 1.85 1.85	2.03 2.04 2.05 2.05 2.07 2.07 2.07 2.07 2.08 2.09 2.09 2.10 2.11 2.11 2.11
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316	543.6 545.4 547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 561.6 563.4 565.2 565.2 567.0 568.8	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 561.6 563.4 565.2 567.0 568.8 570.6 572.4	364.8 366.0 367.2 368.4 369.6 370.8 372.0 373.2 374.4 375.6 376.8 376.8 376.8 378.0 379.2 380.4 381.6	20.27 20.33 20.40 .20.47- 20.53:11 20.60? 20.67 20.73 20.80 20.87 20.93 21.00 21.07 21.13 21.20	1.78 1.79 1.79 1.80 1.80 1.81 1.82 1.82 1.82 1.83 1.83 1.83 1.84 1.85 1.85 1.85 1.86 1.86	2.03 2.04 2.05 2.05 2.07 2.07 2.07 2.07 2.09 2.09 2.10 2.11 2.11 2.11 2.12 2.13
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317	543.6 545.4 547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 561.6 563.4 565.2 567.0 568.8 570.6	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 561.6 563.4 565.2 567.0 568.8 570.6 572.4 574.2	364.8 366.0 367.2 368.4 369.6 370.8 372.0 373.2 374.4 375.6 376.8 376.8 378.0 379.2 380.4 381.6 382.8	20.27 20.33 20.40 20.47- 20.53:ii 20.60? 20.67 20.73 20.80 20.87 20.93 21.00 21.07 21.13 21.20 21.27	1.78 1.79 1.79 1.80 1.81 1.82 1.82 1.82 1.83 1.83 1.83 1.84 1.85 1.85 1.86 1.86 1.87	2.03 2.04 2.05 2.05 2.06 2.07 2.07 2.07 2.08 2.09 2.09 2.10 2.11 2.11 2.11 2.12 2.13 2.13
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318	543.6 545.4 547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 561.6 563.4 565.2 567.0 568.8 570.6 572.4	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	547.2 549.0 550.8 552.6 554.4 556.2 559.8 561.6 563.4 565.2 567.0 568.8 570.6 572.4 574.2 576.0	364.8 366.0 367.2 368.4 369.6 370.8 372.0 373.2 374.4 375.6 376.8 376.8 378.0 379.2 380.4 381.6 382.8 384.0	20.27 20.33 20.40 20.47-3 20.53:37 20.60? 20.73 20.80 20.87 20.93 21.00 21.07 21.13 21.20 21.27 21.33	1.78 1.79 1.79 1.80 1.80 1.81 1.82 1.82 1.82 1.83 1.83 1.83 1.83 1.84 1.85 1.85 1.86 1.86 1.87 1.88	2.03 2.04 2.05 2.05 2.06 2.07 2.07 2.08 2.09 2.09 2.10 2.11 2.11 2.11 2.11 2.12 2.13 2.13 2.14
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319	543.6 545.4 547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 561.6 563.4 565.2 567.0 568.8 570.6 572.4 574.2	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	547.2 549.0 550.8 552.6 554.4 556.2 558.0 559.8 561.6 563.4 565.2 567.0 568.8 570.6 572.4 574.2 576.0 577.8	364.8 366.0 367.2 368.4 369.6 370.8 372.0 373.2 374.4 375.6 376.8 376.8 378.0 379.2 380.4 381.6 382.8 384.0 385.2	20.27 20.33 20.40 20.47-1 20.53:17 20.60? ^{C4} 20.67 20.73 20.80 20.87 20.93 21.00 21.07 21.13 21.20 21.27 21.33 21.40	$\begin{array}{c} 1.78 \\ 1.79 \\ 1.79 \\ 1.80 \\ 1.80 \\ 1.81 \\ 1.82 \\ 1.82 \\ 1.83 \\ 1.83 \\ 1.83 \\ 1.83 \\ 1.83 \\ 1.84 \\ 1.85 \\ 1.85 \\ 1.86 \\ 1.86 \\ 1.87 \\ 1.88 \\ 1.88 \\ 1.88 \end{array}$	2.03 2.04 2.05 2.05 2.06 2.07 2.07 2.08 2.09 2.09 2.09 2.10 2.11 2.11 2.11 2.12 2.13 2.13 2.14 2.15

÷

..

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

323	581.4	2.0	3.6	585.0	390.0	21.67	1.90	2.18
324	583.2	2.0	3.6	586.8	391.2	21.73	1.91	2.18
325	585.0	2.0	3.6	588.6	392.4	21.80	1.92	2.19
326	586.8	2.0	3.6	5 9 0.4	393.6	21.87	1,92	2.20
327	588.6	2.0	3.6	5 92.2	394.8	21.93	1.93	2.20
328	590.4	2.0	3,6	594.0	396.0	22.00	1.93	2.21
329	592.2	2.0	3.6	595.8	397.2	22.07	1.94	2.22
3 30	594.0	2.0	3.6	5 97.6	398.4	22.13	1.95	2.22
331	595.8	2.0	3.6	5 9 9.4	399.6	22.20	1.95	2.23
3 32	597.6	2.0	3.6	601.2	400.8	22.27	1.96	2.24
333	599.4	2.0	3.6	603.0	402.0	22.33	1.96	2.24
334	601.2	2.0	3.6	604.8	403.2	22.40	1.97	2.25
335	603.0	2.0	3.6	606.6	404.4	22.47	1,97	2.26
336	604.8	2.0	3.6	608.4	405.6	22.53	1.98	2.26
337	606.6	2.0	3.6	610.2	406.8	22.60	1.99	2.27
338	608.4	2.0	3.6	612.0	408.0	22.67	1,99	2.28
339	610.2	2.0	3.6	613.8	409.2	22.73	2,00	2,28
340	612.0	2.0	3.6	615.6	410.4	22.80	2.00	2.29

Z/32,35-37 Log Book / Pages File Folder 138 Initials _____ Date movil - PROOFED BY Initials: . Baie :. REVIEWED BY Date¹ Initials; needed peeded per Inour

FF # Item Pg ot

2 of 2

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

Approved		Date_	275an/201	7 2435 Www.
Algae Stock	Preparation Cha	rt	Log Book File Folde Initials	Pages 13 B In Date From
Version].6	Effective Date 27 JAN 2013	Initials	KW	PROOFED BY
Chlorella Dry wt Nanno Dry wt	1.81 % 20.48 %	FF #	134	REVIEWED BY
Tetra Dry wt Delivery pump setting	17.93 % g 2.0 mL/min	Item Ñ Pg	lo. <u>8</u> of	Verde Front

Stock for each system prepared in 3,600 mL of well water

Flow Rate (mL/min)	Vol. Delivered 30 hrs (L)	Delivery pump Flow (mL/min)	Pump Vol 30 hrs (L)	Total vol through Headbox (30h [L])	Dry wt. algae required per type (mg)	Wet wt Chlorella required (g)	Wet wt Nanno required (g)	Wet wt Tetra required (g)
300	540.0	2.0	3.6	543.6	362.4	20.02	1.77	2,02
301	541.8	2.0	3.6	545.4	363.6	20.09	1.78	2.03
302	54 3.6	2.0	3.6	547.2	364.8	20.15	1.78	2.03
303	545.4	2.0	3.6	549.0	366.0	20.22	1.79	2.04
304	547.2	2.0	3.6	550.8	367.2	20.29	1.79	2.05
305	549.0	2.0	3.6	552.6	368.4	20.35	1.80	2.05
306	550.8	2.0	3.6	554.4	369.6	20.42	1.80	2.06
307	552.6	2.0	3.6	556.2	370.8	20.49	1.81	2.07
308	554,4	2.0	3.6	558.0	372.0	20.55	1.82	2.07
309	556.2	2.0	3.6	559.8	373.2	20,62	1.82	2.08
310	558.0	2.0	3.6	561.6	374.4	20.69	1.83	2.09
311	559.8	2.0	3.6	563.4	375.6	20.75	1.83	2.09
312	561.6	2.0	3.6	565.2	376.8	20.82	1.84	2.10
313	563.4	2.0	3.6	567.0	378.0	20.88	1.85	2.11
314	565.2	2.0	3.6	568.8	379.2	20. 9 5	1.85	2.11
315	567.0	2.0	3.6	570.6	380.4	21.02	1.86	2.12
316	568.8	2.0	3.6	572.4	381.6	21.08	1.86	2.13
317	570.6	2.0	3.6	574.2	382.8	21.15	1.87	2.13
318	572.4	2.0	3.6	576.0	384.0	21.22	1.88	2.14
319	574.2	2.0	3 .6	577.8	385.2	21.28	1.88	2.15
320	576.0	2,0	3.6	579.6	386.4	21.35	1.89	2.16
321	577.8	2.0	3.6	581.4	387.6	21.41	1.89	2.16
322	579.6	2,0	3.6	583.2	388.8	21.48	1.90	2.17

· . ·

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

323	581.4	2.0	3.6	585.0	390.0	21.55	1.90	2.18
324	583.2	2.0	3.6	586.8	391.2	21.61	1.91	2.18
325	585.0	2.0	3.6	588.6	392.4	21.68	1.92	2.19
326	586.8	2.0	3.6	590.4	393.6	21.75	1.92	2.20
327	5 8 8.6	2.0	3.6	592.2	394.8	21.81	1.93	2.20
328	5 9 0.4	2.0	3.6	594.0	396.0	21.88	1.93	2.21
329	5 92.2	2.0	3.6	595.8	397.2	21.94	1.94	2.22
330	594.0	2.0	3.6	597.6	398.4	22.01	1.95	2.22
331	5 9 5.8	2.0	3.6	599.4	399.6	22.08	1.95	2.23
332	597.6	2.0	3.6	601.2	400.8	22.14	1.96	2.24
333	599.4	2.0	3.6	603.0	402.0	22.21	1.96	2.24
334	601.2	2.0	3.6	604.8	403.2	22.28	1.97	2.25
335	603.0	2.0	3.6	606.6	404.4	22.34	1.97	2.26
336	604.8	2.0	3.6	608.4	405.6	22.41	1.98	2.26
337	606.6	2.0	3.6	610.2	406.8	22.48	1,99	2,27
338	608.4	2.0	3.6	612.0	408.0	22.54	1.99	2,28
3 39	610.2	2.0	3.6	613.8	40 9.2	22.61	2.00	2,28
340	612 .0	2.0	3.6	615.6	410.4	22.67	2,00	2.29

Log Book/Pages File Folder <u>13</u> Initials <u>Kaw</u> Date Inal

I.

FF # <u>15</u> Item No. Pg <u>2</u>

PROOFED BY Initials: _____Date .____ REVIEWED BY laitiaip __ Date! _ not needed proving

2 of 2

7

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

pprovec	k			Da	te <u> </u>	6/12		
Algae	Stock F	Prepara	ition (Chart				
/ersion		fective Date			Nr VIAN	MAPRIA		
version	• <u> </u>	rective Date_	191111-1	<u>≁</u> miua	als <u>p000</u>	<u> -1,1 </u> -10-		20 100
Chiorella Di	rv wt	1.93 9	%	١	71	Log Book/ Elle Folder	Pages ZL	39-75
Nanno Dry wt Fetra Dry wt		20.38 % 17.39 %		Item No. <u>9</u>		Elle Folder	ate TNOMEN	
						nitials _/r		
elivery pu	mp setting		mL/min	Pg	_ of <u>_</u>			PROOFED
							Initials	BEVIEWED B
Stock fo	r each sy	ystem pro	epared	in 3,600	mL of v	veil wat		
	- /		•	-			/	Not de front
					Dry wt.	Wet	Wet	Wet
Flow	Vol.	Delivery	Pump	Total vol	algae	wt	wt	wt
Rate	Delivered	pump	Vol	through	required	Chlorella	Nanno	Tetra
(mL/min)	30 hrs	Flow	30 hrs	Headbox	per type	required	required	required
	(L)	(mL/min)	(L)	(3 0h [L])	(mg)	(g)	(g)	(g)
300	540.0	2.0	3.6	543.6	362.4	18.78	1.78	2.08
301	541.8	2.0	3.6	545.4	363.6	18.84	1.78	2.09
302	543.6	2.0	3.6	547,2	364.8	18.90	1.79	2.10
303	545.4	2.0	3.6	549.0	366.0	18.96	1.80	2.10
304	547.2	2.0	3.6	550.8	367.2	19.03	1.80	2.11
305	549.0	2.0	3.6	552.6	368.4	19.09	1.81	2.12
306	550.8	2.0	3.6	554.4	369.6	19.15	1.81	2.13
307	552.6	2.0	3.6	556.2	370.8	19.21	1.82	2.13
	554.4	2.0	3.6	558.0	372.0	19.27	1,83	2.14
308		2.0	3.6	559.8	373.2	19.34	1.83	2.15
309	556.2	· · · ·				40.00	4.0.1	245
309 310	558.0	2,0	3.6	561,6	374.4	19.40	1.84	2.15
309 310 311	558.0 559.8	2,0 2.0	3.6 3.6	561.6 563.4	374.4 375.6	19.46	1.84	2.16
309 310 311 312	558.0 559.8 561.6	2.0 2.0 2.0	3.6 3.6 3.6	561.6 563.4 565.2	374.4 375.6 376.8	19.46 19.52	1.84 1.85	2.16 2.17
309 310 311 312 313	558.0 559.8 561.6 563.4	2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6	561.6 563.4 565.2 567.0	374.4 375.6 376.8 378.0	19.46 19.52 19.59	1.84 1.85 1.85	2.16 2.17 2.17
309 310 311 312 313 314	558.0 559.8 561.6 563.4 565.2	2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6	561.6 563.4 565.2 567.0 568.8	374.4 375.6 376.8 378.0 379.2	19.46 19.52 19.59 19.65	1.84 1.85 1.85 1.86	2.16 2.17 2.17 2.18
309 310 311 312 313 314 315	558.0 559.8 561.6 563.4 565.2 567.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6	561.6 563.4 565.2 567.0 568.8 570.6	374.4 375.6 376.8 378.0 379.2 380.4	19.46 19.52 19.59 19.65 19.71	1.84 1.85 1.85 1.86 1.87	2.16 2.17 2.17 2.18 2.19
309 310 311 312 313 314 315 316	558.0 559.8 561.6 563.4 565.2 567.0 568.8	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	561.6 563.4 565.2 567.0 568.8 570.6 572.4	374.4 375.6 376.8 378.0 379.2 380.4 381.6	19.46 19.52 19.59 19.65 19.71 19.77	1.84 1.85 1.85 1.86 1.87 1.87	2.16 2.17 2.17 2.18 2.19 2.19
309 310 311 312 313 314 315 316 317	558.0 559.8 561.6 563.4 565.2 567.0 568.8 570.6	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	561.6 563.4 565.2 567.0 568.8 570.6 572.4 574.2	374.4 375.6 376.8 378.0 379.2 380.4 381.6 382.8	19.46 19.52 19.59 19.65 19.71 19.77 19.83	1.84 1.85 1.85 1.86 1.87 1.87 1.87 1.88	2.16 2.17 2.17 2.18 2.19 2.19 2.20
309 310 311 312 313 314 315 316 317 318	558.0 559.8 561.6 563.4 565.2 567.0 568.8 570.6 572.4	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	561.6 563.4 565.2 567.0 568.8 570.6 572.4 574.2 576.0	374.4 375.6 376.8 378.0 379.2 380.4 381.6 382.8 384.0	19.46 19.52 19.59 19.65 19.71 19.77 19.83 19.90	1.84 1.85 1.85 1.86 1.87 1.88 1.88	2.16 2.17 2.17 2.18 2.19 2.19 2.20 2.21
309 310 311 312 313 314 315 316 317 318 319	558.0 559.8 561.6 563.4 565.2 567.0 568.8 570.6 572.4 574.2	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	561.6 563.4 565.2 567.0 568.8 570.6 572.4 574.2 576.0 577.8	374.4 375.6 376.8 378.0 379.2 380.4 381.6 382.8 384.0 385.2	19.46 19.52 19.59 19.65 19.71 19.77 19.83 19.90 19.96	1.84 1.85 1.85 1.86 1.87 1.87 1.88 1.88 1.88	2.16 2.17 2.17 2.18 2.19 2.19 2.20 2.21 2.22
309 310 311 312 313 314 315 316 317 318	558.0 559.8 561.6 563.4 565.2 567.0 568.8 570.6 572.4	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	561.6 563.4 565.2 567.0 568.8 570.6 572.4 574.2 576.0	374.4 375.6 376.8 378.0 379.2 380.4 381.6 382.8 384.0	19.46 19.52 19.59 19.65 19.71 19.77 19.83 19.90	1.84 1.85 1.85 1.86 1.87 1.88 1.88	2.16 2.17 2.17 2.18 2.19 2.19 2.20 2.21

î

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

323	581.4	2.0	3.6	585.0	390.0	20.21	1.91	2.24
324	583.2	2.0	3.6	586.8	391.2	20.27	1.92	2.25
325	585.0	2.0	3.6	588.6	392.4	20.33	1.93	2.26
326	586.8	2.0	3.6	590.4	393.6	20.39	1.93	2.26
327	588.6	2.0	3.6	592.2	394.8	20.46	1.94	2.27
328	590.4	2.0	3.6	594.0	396.0	20.52	1.94	2.28
329	592.2	2.0	3.6	595.8	397.2	20.58	1.95	2.28
330	594.0	2,0	3,6	597.6	398.4	20.64	1.95	2.29
331	595.8	2.0	3.6	599,4	399.6	20.70	1.96	2.30
332	597.6	2.0	3.6	601.2	400.8	20.77	1.97	2.30
333	599.4	2.0	3,6	603.0	402.0	20.83	1.97	2.31
334	601.2	2.0	3.6	604.8	403.2	20,89	1.98	2.32
335	603.0	2.0	3.6	606.6	404.4	20.9 5	1.98	2.33
336	604.8	2.0	3.6	608.4	405.6	21.02	1.99	2.33
337	606.6	2.0	3.6	610.2	406.8	21.08	2.00	2.34
338	608.4	2.0	3.6	612.0	408.0	21.14	2.00	2.35
339	610.2	2.0	3.6	613.8	409.2	21.20	2.01	2.35
340	612.0	2.0	3.6	615.6	410.4	21.26	2.01	2,36

FF # <u>\</u> Item No Pg

Log Book / Pages <u>2/31-45</u> File Folder <u>134</u> Juitials <u>Mar</u> Date <u>7</u> Date gnovig

PROOFED BY Initialis: _____ Date :_____ REVIEWED BY noteded provit

Algae		Prepara	tion					
-		Prepar a	tion					
Version	C			Chart				
	• <u>ð</u> Ef	fective Date_	HMAY	اnitia ال	als <u>kur</u>			
Chlorella Di	ry wt	1.87 9	%	FF # 35		Cog Book 7	ages 24	6-52
Nanno Dry	wt	20.38 9	%	Item No.	12	File Folder	[<u>3</u> β	
Tetra Dry w	rt	17.39 9		Pg _/_ of		Initials <u>(In</u>)		ste <u>24MAYD</u>
Delivery pu	mp setting	2.0	mL/min					PROOFF
							initials	DEVEWED
Stock fo	or each sy	ystem pro	epared	d in 3,600	mL of	well wat	er laitioj	Dat
							<u>, , , , , , , , , , , , , , , , , , , </u>	hut nee
					Dry wt.	Wet	Wet	Wet
Flow	Vol.	Delivery	Pump	Total vol	algae	wt	wt	wt
Rate	Delivered	pump	Vol	through	required	Chlorella	Nanno	Tetra
(mL/min)	3 0 hrs	Flow	30 hrs	Headbox	per type	required	required	required
	(L)	(mL/min)	(L)	(30h [L])	(mg)	(g)	(g)	(g)
30 0	540.0	2.0	3.6	543.6	362.4	19.38	1.78	2.08
301	541.8	2.0	3.6	545.4	363.6	19.44	1.78	2.09
302	543.6	2.0	3.6	547.2	364.8	19.51	1.79	2.10
303	545.4	2.0	3. 6	549.0	366.0	19.57	1.80	2.10
304	547.2	2.0	3.6	550.8	367.2	19.64	1.80	2.11
305	549.0	2.0	3.6	552.6	368.4	19.70	1.81	2.12
306	550.8	2.0	3.6	554.4	369.6	19.76	1.81	2.13
307	552.6	2.0	3.6	556.2	370.8	19.83	1.82	2.13
308	554.4	2.0	3.6	558.0	372.0	19.89	1.83	2.14
309	556.2	2.0	3.6	559.8	373.2	19.96	1.83	2.15
310	558.0	2.0	3.6	561.6	374.4	20.02	1.84	2.15
310	559.8	2.0	3.6	563.4	375.6	20.09	1.84	2.16
311			3.6	565.2	376.8	20.15	1.85	2.17
311 312	561.6	2.0			378.0	20.21	1.85	2.17
311 312 313	561.6 563.4	2.0	3.6	567.0		20.20	100	
311 312 313 314	561.6 563.4 565.2	2.0 2.0	3.6 3.6	568.8	3 7 9.2	20.28	1.86	2.18
311 312 313 314 315	561.6 563.4 565.2 567.0	2.0 2.0 2.0	3.6 3.6 3.6	568.8 570.6	379.2 380.4	20.34	1.87	2,19
311 312 313 314 315 316	561.6 563.4 565.2 567.0 568.8	2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6	568.8 570.6 572.4	379.2 380.4 381.6	20.34 20.41	1.87 1.87	2,19 2.19
311 312 313 314 315 316 317	561.6 563.4 565.2 567.0 568.8 570.6	2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6	568.8 570.6 572.4 574.2	379.2 380.4 381.6 382.8	20.34 20.41 20.47	1.87 1.87 1.88	2,19 2.19 2.20
311 312 313 314 315 316 317 318	561.6 563.4 565.2 567.0 568.8 570.6 572.4	2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6	568.8 570.6 572.4 574.2 576.0	379.2 380.4 381.6 382.8 384.0	20.34 20.41 20.47 20.53	1.87 1.87 1.88 1.88	2.19 2.19 2.20 2.21
311 312 313 314 315 316 317 318 319	561.6 563.4 565.2 567.0 568.8 570.6 572.4 574.2	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	568.8 570.6 572.4 574.2 576.0 577.8	379.2 380.4 381.6 382.8 384.0 385.2	20.34 20.41 20.47 20.53 20.60	1.87 1.87 1.88 1.88 1.89	2,19 2.19 2.20 2.21 2.22
311 312 313 314 315 316 317 318	561.6 563.4 565.2 567.0 568.8 570.6 572.4	2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.6 3.6 3.6 3.6 3.6 3.6 3.6	568.8 570.6 572.4 574.2 576.0	379.2 380.4 381.6 382.8 384.0	20.34 20.41 20.47 20.53	1.87 1.87 1.88 1.88	2.19 2.19 2.20 2.21

1 of 2

i.

Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels from seven different unionid species

323	581.4	2.0	3.6	585.0	390.0	20.86	1.91	2,24
324	583.2	2.0	3.6	586.8	391.2	20.92	1.92	2.25
325	585.0	2.0	3.6	588.6	392.4	20.98	1.93	2.26
326	586.8	2.0	3.6	590.4	393.6	21.05	1.93	2.26
327	588.6	2.0	3.6	592.2	394.8	21.11	1.94	2.27
328	590.4	2.0	3.6	594.0	396.0	21.18	1.94	2.28
329	592.2	2.0	3.6	595.8	397.2	21.24	1.95	2.28
330	594.0	2.0	3.6	597.6	398.4	21.30	1.95	2.29
331	595.8	2.0	3.6	599.4	399.6	21.37	1.96	2.30
332	597.6	2.0	3.6	601.2	400.8	21.43	1.97	2.30
333	599.4	2.0	3.6	603.0	402.0	21.50	1.97	2.31
334	601.2	2.0	3.6	604.8	403.2	21.56	1.98	2.32
335	603.0	2.0	3.6	606.6	404.4	21.63	1.98	2.33
336	604.8	2.0	3.6	608.4	405.6	21.69	1.99	2.33
337	606.6	2.0	3.6	610.2	406.8	21.75	2.00	2.34
338	608.4	2.0	3.6	612.0	408.0	21.82	2.00	2.35
339	610.2	2.0	3.6	613.8	409.2	21.88	2.01	2.35
340	612.0	2.0	3.6	615.6	410.4	21.95	2.01	2.36

FF # 13 Item No. Pg 102 of Sert NOUNY

Log Boo File Fold	k/Pages ler 13	2/46	- 50
laitials	Kw.	Date	Fround

PROOFED initials: Dale : not Nelled Im Provid Initials

2 of 2

Appendix 8. Juvenile Mussel Survival Summary and Statistical Analysis

ltem number	Item description	Number of pages	Report page number
1	Juvenile Mussel Survival Data Summary for SAS	5	590
2	SAS output for All Juvenile Mussel Survival Data	59	595
3	SAS program for All Juvenile Mussel Survival Data	3	654
4	SAS log for All Juvenile Mussel Survival Data	7	657

Study Numbe	; AEH-11-PSEUDO-02	Action	Date	Initials
Data Source:	File Folders: 11a-11g	Created	6-May-14	KI.W Less
	Form: "Juvenile Mussel Recovery Datasheet"	Revised	19-Nov-14	KLWLOC
		Reviewed	1910211	fim
		Certifted	11/21/14	JN-
File Name:	I:\AEH-11-PSEUDO-02\Data\[PSEUDO-02 Juvenile Survival for SAS,xisx]Survival			

Juvenile Mussel Survival

Sclentific Name	Common Name	Abbreviation	Formulation Type	Test Article Lot Number	Exposure Date	Assessment Date
Obovaria olivaria	Hickorynut	HIC	FDP	110510FD	12-Jui-11	20-Jui-11
Actinonaias ligamentina	Mucket	мис	FDP	110510FD	14-Jul-11	22-Ju -11
Megalonalas nervosa	Washboard	WAS	FDP	110928FD	13-Dec-11	21-Dec-11
Lampsilis siliquoldea	Fatmucket	FAM	SDP	MBI-401 SDP 4655-12-Mix	27-Jan-12	4-Feb-12
Ligumia recta	Black sandshell	BLS	SDP	TR4669-4-(7-8) 2nd shipment	17-Apr-12	25-Apr-12
Lampsilis cardium	Plain pocketbook	PPB	S DP	TR4669-4-(5)	16-May-12	24-May-12
Lampsills higginsil	Higgins eye	HGE	SDP	TR4669-4-(5)	26-May-12	3-Jun-12

Data codes used within SAS

sps = Juvenile mussel species (see 3 letter abbreviation codes above)

form = Product formulation

FDP = Freeze dried powder

SDP = Spray dried powder

conc = Concentration (mg/L)

0 = Control (no product added)

50 ≈ 50 mg/L active Ingredient

100 = 100 mg/L active ingredient

200 = 200 mg/L active Ingredient

300 = 300 mg/L active ingredient

400 = 300 mg/L deactive ingredient

cham = Exposure chamber ID

i.e., 1A2 = Test system (1, 2, or 3); Block ID (A or B), and Position in Block (1-12)

tot = Total number of juvenile mussels placed in chamber prior to exposure (n = 40)

rec = Number of recovered juvenile mussels during assessment

vía = Number of viable juvenile mussels from the recovered mussels

dead = Number of dead juvenile mussels (= rec - via)

unrec = Number of animals not recovered during the assessment (= tot - rec) tdeac = Total number of dead animals including unrecovered (= dead + unrec)

-

Data Analysis Explanation

Statistical comparisons of juvenile mussel survival were performed using SAS Version 9.4 (SAS Institute, Inc., Cary, North Carolina). A generalized linear mixed model (Proc GLIMMIX) was used to analyze the survival of juvenile mussels in each treatment. The proportion of mortalities (number of dead and unrecovered juvenile mussels/total number juvenile mussels placed) was modeled with a binomial distribution and a logit link function. A scale parameter was added to the model using the random_residual_statement. Juvenile mussel survival of each treatment group was individually compared to the survival in the non-treated control group using a two-sided means comparison test with a Tukey post-hoc adjustment.

Data Anomalies and Deviations NONE

File Folder Item Number of 🛱 Page

sps	form	conc	cham	tot	rec	via	dead	unrec	tdead
HIC	FDP	0	1A2	40	34	26	8	6	14
HIC	FDP	0	1A5	40	34	34	0	6	6
HIC	FDP	0	1B2	40	38	29	9	2	11
HIC	FDP	0	1B12	40	35	26	9	5	14
HIC	FDP	400	1A8	40	35	17	18	5	23
HIC	FDP	400	1A10	40	37	20	17	3	20
HIC	FDP	400	1B6	40	37	28	9	3	12
HIC	FDP	400	1B7	40	32	20	12	8	20
HIC	FDP	50	1A4	40	37	31	6	3	9
HIC	FDP	50	1A7	40	39	28	11	1	12
HIC	FDP	50	1B9	40	28	14	1.4	12	26
HIC	FDP	50	1B11	40	38	31	7	2	9
HIC	FDP	100	1A6	40	38	21	17	2	19
HIC	FDP	100	1A9	40	37	33	4	3	7
HIC	FDP	100	1B3	40	31	22	9	9	18
HIC	FDP	100	1B10	40	38	32	6	2	8
HIC	FDP	200	1A1	40	34	27	7	6	13
HIC	FDP	20 0	1A11	40	38	28	10	2	12
HIC	FDP	20 0	1B5	40	35	8	27	5	32
HIC	FDP	200	188	40	38	21	17	2	19
HIC	FDP	300	1A3	40	40	20	20	0	20
HIC	FDP	300	1A12	40	38	12	26	2	28
HIC	FDP	300	1B1	40	33	9	24	7	31
HIC	FDP	300	1B4	40	40	20	20	0	20
MUC	FDP	0	2A4	40	38	34	4	2	6
MUC	FDP	0	2A11	40	39	36	3	1	4
MUC	FDP	0	2B7	40	36	28	8	4	12
MUC	FDP	0	2B10	4 0	30	28	2	10	12
MUC	FDP	400	2A8	40	39	34	5	1	6
MUC	FDP	400	2A12	40	38	31	7	2	9
MUC	FDP	400	2B1	40	37	33	4	3	7
MUC	FDP	400	2B6	40	37	33	4	3	7
MUC	FDP	50	2A3	40	38	32	6	2	8
MUC	FDP	50	2B5	40	39	28	11	1	12
MUC	FDP	50	2B9	40	38	34	4	2	6
MUC	FDP	50	2A10	40	35	31	4	5	9
MUC	FDP	100	2B8	40	32	26	6	8	14
MUC	FDP	100	2B3	40	39	34	5	1	6
MUC	FDP	100	2A6	40	33	26	7	7	14
MUC	FDP	1.00	2A7	40	40	34	6	0	6
MUC	FDP	200	2A1.	40	39	31	8	1	9
MUC	FDP	200	2A5	40	38	32	6	2	8
MUC	FDP	200	2B11	40	39	24	15	1	16
MUC	FDP	200	2B12	40	35	25	10	5	15
MUC	FDP	300	2B2	40	38	29	9	2	11
MUC	FDP	300	2 B4	40	37	29	8	3	11
						•			
						Page		5	

AEH-11-PSEUDO-02

MUC	FDP	300	2A2	40	38	25	13	2	15
MUC	FDP	300	2A9	40	37	35	2	3	5
WAS	FDP	0	2A9	40	39	37	2	1	3
WAS	FDP	0	2A11	40	39	35	4	1	5
WAS	FDP	0	2B1	40	38	37	1	2	3
WAS	FDP	0	2B7	40	39	32	7	1	8
WAS	FDP	400	2A5	40	38	26	12	2	14
WAS	FDP	400	2A7	40	40	34	6	0	6
WAS	FDP	400	2B5	40	35	28	7	5	12
WAS	FDP	400	2B8	40	38	34	4	2	6
WAS	FDP	50	2A1	40	38	33	5	2	7
WAS	FDP	50	2A12	40	34	28	6	6	12
WAS	FDP	50	2B2	40	37	33	4	3	7
WAS	FDP	50	2B11	40	39	30	9	1	10
WAS	FDP	100	2A2	40	37	34	3	3	6
WAS	FDP	100	2A3	40	36	31	5	4	9
WAS	FDP	100	2B9	40	39	36	3	1	4
WAS	FDP	100	2B12	40	39	37	2	1	3
WAS	FDP	200	2A6	40	37	27	10	3	13
WAS	FDP	200	2A10	40	36	31	5	4	9
WAS	FDP	200	2B3	40	40	35	5	0	5
WAS	FDP	200	2B10	40	41	35	6	-1	5
WAS	FDP	300	2A4	40	38	17	21	2	23
WAS	FDP	300	2A8	40	39	17	22	1	23
WAS	FDP	3 0 0	2B4	40	38	26	12	2	14
WAS	FDP	3 0 0	2 B 6	40	39	17	22	1	23
FAM	SDP	0	1.85	40	37	34	3	3	6
FAM	SDP	0	1A1	4 0	37	34	3	3	6
FAM	SDP	0	1B10	40	37	37	0	3	3
FAM	SDP	0	1A7	40	35	35	0	5	5
FAM	SDP	400	1B2	40	38	33	5	2	7
FAM	SDP	400	1A6	40	35	5	30	5	35
FAM	SDP	400	188	40	35	2	33	5	38
FAM	SDP	400	1A8	40	38	8	30	2	32
FAM	SDP	50	1B1	40	34	23	11	6	17
FAM	SDP	50	1B 6	40	39	35	4	1	5
FAM	SDP	50	1A3	40	36	29	7	4	11
FAM	SDP	50	1A9	40	37	34	3	3	6
FAM	SDP	100	1B3	40	40	36	4	0	4
FAM	SDP	100	1A2	40	37	31	6	3	9
FAM	SDP	100	1 B 1 1	40	38	35	3	2	5
FAM	SDP	100	1A11	40	39	36	3	1	4
FAM	SDP	200	1A5	40	36	13	23	4	27
FAM	SDP	200	1B7	40	37	23	14	3	17
FAM	SDP	200	1A12	40	36	31	5	4	9
FAM	SDP	200	1B9	40	38	14	24	2	26
FAM	SDP	300	1A4	40	36	1	35	4	39
						•	-		•

Page ______ of _____

AEH-11-PSEUDO-02

FAM	SDP	300	1B4	40	38	0	38	2	40
FAM	SDP	300	1A10	40	37	2	35	3	38
FAM	SDP	300	1B 12	40	36	3	33	4	37
BLS	SDP	0	2A6	40	38	3	35	2	37
BLS	SDP	0	2A8	40	35	11	24	5	29
BLS	SDP	0	289	40	36	16	20	4	24
BLS	SDP	0	2B11	40	40	10	30	0	30
BLS	SDP	50	2A9	40	38	3	35	2	37
BLS	SDP	50	2A12	40	36	12	24	4	28
BLS	SDP	5 0	2B5	40	38	2	36	2	38
BLS	SDP	50	2B8	40	37	17	20	3	23
BLS	SDP	100	2A3	40	37	3	34	3	37
BLS	SDP	100	2A5	40	39	3	36	1	37
BLS	SDP	100	2B2	40	34	1	33	6	39
BLS	SDP	100	2B7	40	38	3	35	2	37
BLS	SDP	200	2A1	40	39	4	35	1	36
BLS	SDP	200	2A4	40	36	3	33	4	37
BLS	SDP	200	2B6	40	40	0	40	0	40
BLS	SDP	200	2B12	40	35	6	29	5	34
BLS	SDP	3 0 0	2A10	40	36	6	30	4	34
BLS	SDP	300	2A1 1	40	38	4	34	2	36
BLS	SDP	300	2B1	40	40	8	32	0	32
BLS	SDP	300	2B4	40	35	4	31	5	36
BLS	SDP	400	2A2	40	38	0	38	2	40
BLS	SDP	400	2A7	40	38	1	37	2	39
BLS	SDP	400	2B3	40	38	0	38	2	40
BLS	SDP	40 0	2B10	40	38	10	28	2	30
PPB	SDP	0	1A1	40	36	32	4	4	8
РРВ БОВ	SDP	0	1A3	40	34	23	11	6	17
PPB	SDP	0	1B9	40	39	29	10	1	11
РРВ РРВ	SDP SDP	0 400	1B10 1A2	40 40	37	26	11 13	3	14 10
РРВ РРВ	SDP	400 400	1A2 1A4	40 40	34 37	21 6	13 31	6 3	19 34
PPB	SDP	400 400	181	40 40	37	24		5 3	54 16
РРВ	SDP	400 400	181 184	40 40	36	24 14	13 22	5 4	10 26
РРВ	SDP	50	1A8	40 40	35	14 6	22	.5	34
PPB	SDP	50	1A3	40 40	38	10	23	2	30
PPB	SDP SDP	50 50	1B3	40 40	38	4	28 34	2	36
PPB	SDP	50 50	188	40	34	3	31	6	37
PPB	SDP	100	186 1A6	40	38	11 11	27	2	29
PPB	SDP	100	147	40	38	7	31	2	33
PPB	SDP	100	1B5	40	32	10	22	8	30
PPB	SDP	100	1B7	40	38	2	36	2	38
PPB	SDP	200	1A5	40	36	6	30	4	34
PPB	SDP	200	1A11	40	36	9	27	4	31
PPB	SDP	200	1B6	40	36	5	31	4	35
PPB	SDP	200	1B12	40	39	23	16	1	17
· · -						•	-**	-	

Page <u>4</u> of <u>5</u>

						AEH-1	1-PSEUDO	-02	
PPB	SDP	300	1A9	40	34	10	24	6	30
PPB	SDP	300	1A12	40	38	14	24	2	26
PPB	SDP	300	1B2	40	33	5	28	7	35
PPB	SDP	300	1 B11	40	39	1	38	1	39
HGE	SDP	0	1A1	40	36	31	5	4	9
HGE	SDP	0	1A8	40	35	33	2	5	7
HGE	SDP	0	181	40	38	38	0	2	2
HGE	SDP	0	1B8	40	40	39	1	0	1
HGE	SDP	400	1A5	40	36	24	12	4	16
HGE	SDP	400	1A7	40	3 9	31	8	1	9
HGE	SDP	400	1B7	40	38	36	2	2	4
HGE	SDP	400	1B 11	40	38	30	8	2	10
HGE	SDP	50	1A6	40	37	35	2	3	5
HGE	SDP	50	1A10	40	30	27	3	10	13
HGE	SDP	50	1 B4	40	37	31	6	3	9
HGE	SDP	50	1B10	40	37	34	3	3	6
HGE	SDP	100	1A3	40	38	33	5	2	່ 7
HGE	SDP	100	1A9	40	36	31	5	4	9
HGE	SDP	100	1B3	40	34	29	5	6	11
HGE	SDP	100	1B9	40	40	33	7	0	7
HGE	SDP	200	1A4	40	28	19	9	12	21
HGE	SDP	200	1A11	40	40	30	10	0	10
HGE	SDP	200	1B2	40	32	25	7	8	15
HGE	SDP	200	1B5	40	38	31	7	2	9
HGE	SDP	300	1A2	40	35	25	10	5	15
HGE	SDP	300	1A12	40	30	26	4	10	14
HGE	SDP	300	1B6	40	39	21	18	1	19
HGE	SDP	300	1B12	40	36	27	9	4	13

FF # __|| Item No. _ Pg _5 __ of _5

Page 1 of 59

Effects of Psoudomonas Ruoroscens (Pf-DL146A) to newly in	stamorphosed juvenile mussels from seven different unionid species
exposure to various concentrations of Pf-CL146A	
SAS v. 9.4 Analysis completion date: 27 February 2014 Analy	sis propared by: KLW
SAS v. 9.4 Analysis completion date: 27 February 2014 Analy All Juvenile Mussel Survival Data	1284000

All Juw	enile Mus	sel Surv	rival Data							WY	280015		
Obs	sps	form	conc	cham	tot	reç	via	dead	unrec		pctsurv	petmort	pctrec
1	BLS	SDP	0	2A6	40	38	3	35	2	37	7.5	92.5	95.0
2	BLS	SD⊃	0	2A3	40	35	11	24	5	29	27.5	72.5	87.5
3	BLS	SDP	0	2 B9	40	36	16	20	4	24	40.0	60.0	90.0
4	BLS	SDP	0	2B11	40	40	10	30	0	30	25.0	75.0	100.0
5	BLS	SDP	50	2A9	40	38	3	35	2	37	7,5	92.5	95.0
6	BLS	SDP	50	2A12	40	36	12	24	4	28	30,0	70.0	90.0
7	BLS	SDP	50	2B5	40	38	2	36	2	38	5.0	95.0	95.0
8	BLS	SDP	50	2B6	40	37	17	20	3	23	42.5	57.5	92,5
9	BLS	SDP	100	2A3	40	37	3	34	3	37	7,5	92.5	92.5
10	BLS	SDP	100	2A5	40	39	3	36	1	37	7.5	92.5	97.5
11	BLS	SDP	100	2B2	40	34	1	33	6	39	2.5	97.5	85.0
12	BLS	SDP	100	287	40	38	3	35	2	37	75	92.5	95.0
13	BLS	SDP	200	2A1	40	39	4	35	1	36	10.0	90. 0	97.5
14	BLS	SDF	200	2A4	40	36	3	33	4	37	7.5	92.5	90.0
15	BLS	SDP	200	2B6	40	40	0	40	0	40	0.0	100.0	100.0
16	BLS	SDP	200	2B12	40	35	6	29	5	34	15.0	85.0	87.5
17	BLS	SDP	300	2A10	40	36	6	30	4	34	15.0	85.D	90.0
18	BLS	SDP	300	2A11	40	38	4	34	2	36	10.0	90.0	95.0
19	BLS	SDP	300	2B1	40	40	β	32	0	32	20.0	80.0	100,0
20	BLS	SDP	300	2B4	40	35	4	31	5	36	10.0	90.0	87.5
21	BLS	SDP	400	2A2	40	38	0	38	2	40	0.0	100.0	95.0
22	BLS	4Q2	400	2A7	40	38	1	37	2	39	2.5	97,5	95.0
23	BLS	SOP	400	2B3	40	38	0	38	2	40	0.0	100.0	95.0
24	BLS	SDP	400	2810	40	38	10	28	2	30	25.0	75.0	95.0
25	FAM	SDP	0	1B5	40	37	34	3	3	6	85.0	15.0	92,5
26	FAM	SDP	0	1A1	40	37	34	3	3	6	85.0	15.0	92,5
27	FAM	SDP	0	1B10	40	37	37	0	3	3	92,5	7.5	92.5
28	FAM	SDP	0	1A7	40	35	35	0	5	5	87.5	12.5	87.5
29	FAM	SDP	50	161	40	34	23	11	6	17	57.5	42.5	85.0
30	FAM	SDP	50	1B6	40	39	35	4	1	5	87.5	12.5	97.5
31	FAM	SDP	50	1A3	40	36	29	7	4	11	72,5	27.5	90.0
32	FAM	SDP	50	1A9	40	37	34	3	3	6	85,0	15.0	92.
33	FAM	SDP	100	183	40	40	36	4	0	4	90,08	10.0	100.0
34	÷	SOP	100	1A2	40	37	31	6	3	9	77.5	22.5	92.
35	÷	SDP	100	1B11	40	38	35	3	2	5	87,5	12.5	95.0
	1		\$ [1							1	

AEH-11-PSEUDO-02

FF # _]]	
Item No.	<u> </u>
Pg	of <u>39</u>
	· · ·

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_I... 2/27/2015

36	FAM	SDP	100	1A11	40	39	36	3	1	4	90.0	10.0	97.5
37	FAM	SDP	200	1A5	40	36	13	23	4	27	32.5	67.5	90.0
38	FAM	SDP	200	1B7	40	37	23	14	3	17	57.5	42.5	92.5
39	FAM	SDP	200	1A12	40	36	31	5	4	9	77.5	22.5	90.0
40	FAM	\$DP	200	1B9	40	38	14	24	2	26	35,0	65.0	95,0
41	FAM	SDP	300	1A4	40	36	1	35	4	39	2.5	97.5	90.0
42	FAM	SDP	300	184	40	38	0	38	2	40	0.0	100.0	95.0
43	FAM	SDP	300	1A10	40	37	2	35	3	38	5.0	95.0	92.5
44	FAM	SDP	300	1B12	40	36	3	33	4	37	7.5	92.5	90.0
45	FAM	SD2		1B2	40	38	33	5	2	7	82.5	17.5	95.0
46	FAM	SD2		1A6	40	35	5	30	5	35	12.5	87.5	B7.5
47	FAM	SDP	400	186	40	35	2	33	5	38	5.0	95.0	87.5
48	FAM	SDP		1A8	40	38	- 8	30	2	32	20.0	80.0	95.0
49	HGE	SDP	0	1A1	40	36	31	5	4	9	77.5	22.5	90.0
	HGE	SDP	Ū Ū	1AB	40	35	33	2	5	7	82.5	17.5	87.5
51	HGE	SDP	0	181	40	38	38	0	2	2	95.0	5.0	95.0
51	HGE	SDP	0	1 B5	40	40	39	1	-	- 1	97.5	2.5	100.0
53	HGE	SDP	50	1A6	40	37	35	2	3	5	87.5	12.5	92.5
54	HGE	SDP	50	1A10	40	30	27	- 3	10	13	67 5	32,5	75.0
55	HGE	SDP	50	184	40	37	31	6	3	9	77.5	22.5	92.5
56	HGE	SDP	50	1B10	40	37	34	3	3	6	85.0	15.0	92,5
57	HGE	SDP	100	1A3	40	38	33	5	2	7	82.5	17.5	95.0
58	HGE	SDP	100	1A9	40	36	31	5		9	77.5	22.5	90.0
50 59	HGE	SDP	100	1B3	40	34	29	5	6	11	72.5	27,5	85.0
60	HGE	SDP	100	189	40	40	33	7	0	7	82.5	17.5	100.0
61	HGE	SDP	200	163	40	28	19	9	12	21	47.5	52.5	70,0
62	HGE	SDP	200	1A11	40	40	30	10	0	10	75.0	25.0	100.0
63	HGE	SDP	200	182	40	32	25	7		15	62,5	37.5	80.0
64	HGE	SDP	200	1B5	40	38	31	7	2	9	77.5	22.5	95,0
65	HGE	SDP	300	1A2	40	35	25	10	5	15	62.5	37.5	87.5
66	HGE	SDP	300	1A 1 2	40	30	26	4	10	14	65.0	35.0	75.0
67	HGE	SDP	300	1B6	40	39	21	18	1	19	52.5	47,5	97.5
68	HGE	SOP	300	1812	40	36	27	9	4	13	67.5	32.5	90.0
69	HGE	SOP	400	145	40	36	24	12	4	16	60.0	40.0	90.0
70	HGE	SDP	400	1A7	40	39	31	8	1	9	77.5	22.5	97.5
71	HGE	SDP	400	187	40	38	36	2	2	4	90,0	10,0	95,0
72	HGE	SDP	400	1811	40	36	30	8	2	10	75.0	25.0	95.0
73	HIC	FDP	0	1A2	40	34	26	8	6	14	65.0		85.0
74	HIC	FOP	0	145	40	34	34	0	6	6	85.0	15.0	85.0
75		- 1 541° 1		1				[ŀ			;	L

Page 2 of 59

AEH-11-PSEUDO-02

.

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L., 2/27/2015

	HIC	FDP	0	182	40	38	29	9	2	11	72.5	27.5	95.C
7B	HIC	FDP	D	1B12	40	35	26	9	5	14	65.0	35.0	87.5
77	HIC	FDP	50	1A4	40	37	31	6	3	9	77.5	22.5	92.5
78	HIC	FDP	60	1A7	40	39	28	11	1	12	70.0	30.0	97.5
79	HIC	FDP	5D	1 B 9	40	28	14	14	12	26	35.0	65.0	70.0
80	HIC	FDP	50	1811	40	38	31	7	2	9	77.5	22.5	95.0
81	HIC	FDP	100	1A6	40	38	21	17	2	19	52.5	47.5	95.0
82	HIC	FDP	100	1A9	40	37	33	4	3	7	82,5	17.5	92.5
83	HIC	FDP	100	1B3	40	31	22	9	9	18	55.0	45.0	77.5
84	ню	FDP	100	1B10	40	38	32	6	2	8	80.0	20,0	95,0
85	HIC	FDP	200	1A1	40	34	27	7	6	13	67.5	32.5	85.0
86	HIC	FDP	200	1A11	4C	38	28	10	2	12	70.0	30.0	95 0
87	HIC	FDP	200	1Bō	4C	35	8	27	5	32	20.0	80.0	87.5
88	HIC	FDP	200	1B8	4C	38	21	17	2	19	52.5	47.5	95.0
89	HIC	FDP	300	1A3	40	40	20	20	0	20	50.0	50.0	100.0
90	HIC	FDP	300	1A12	40	38	12	26	2	28	30.0	70.0	95.0
91	ніс	FDP	300	1 B1	40	33	9	24	7	31	22.5	77.5	82.5
92	HIC	FDP	300	1B4	40	40	20	20	0	20	50,0	50.0	100,0
93	HIC	FDP	400	1A8	40	35	17	18	5	23	42.5	57.5	87.5
94	ніс	FDP	400	1A10	40	37	20	17	3	20	50.0	50.0	92,5
96	ніс	FDP	400	1B6	40	37	28	9	3	12	70.0	30.0	92.5
96	HIC	FDP	400	1 B 7	40	32	20	12	8	20	50,C	50.0	80,0
97	мис	FDP	۵	2A4	40	38	34	4	2	6	85.0	15,0	95.0
98	MUC	FD2	٥	2A11	40	39	36	3	1	4	90.0	10.0	97.5
99	MUC	FDP	0	2B7	40	36	28	8	4	12	7 0 .0	30.0	90.0
100	MUC	FDP	0	2B10	40	30	28	2	10	12	70 0	30.0	75.0
101	MUC	FDP	50	2A3	40	38	32	6	2	8	80.0	20.0	95,0
102	MUC	FDP	50	2B5	40	39	28	:1	1	12	70.0	30.0	97.5
103	MUC	FDP	50	2B9	40	38	34	4	2	6	85.0	15.0	95.0
104	MUC	FDP	50	2A10	40	35	31	4	5	9	77.5	22.5	87.5
105	MUC	FDP	100	288	40	32	26	6	8	14	65.0	35.0	80.0
106	MUC	FDP	100	2B3	40	39	34	5	1	6	85.0	15.0	97,5
107	MUC	FDP	100	2A6	40	33	26	7	7	14	65.0	36.D	82.5
108	MUC	FDP	100	2A7	40	40	34	6	0	6	85.0	15.0	100.0
109	MUC	FDP	200	2A1	40	39	31	8	1	9	77.5	22.5	97.5
110	MUC	FDP	200	2A5	40	38	32	6	2	8	60.0	20,0	95.0
111	MUC	FDP	200	2B11	40	39	24	15	1	16	60.0	40.0	97.5
112	MUC	FDP	200	2812	40	35	25	10	5	15	62.5	37.5	87.5
113	MUC	FDP	300	282	40	38	29	9	2	11	72.5	27.5	95.0
111			1	;	i	-	1	:			: 4	l	: 1

Page 3 of 59

AEH-11-PSEUDO-02

.

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_1... 2/27/2015

-

	мис	FDP	300	2B4	40	37	29	8	3	11	72.5	27,5	92.5
115	MUC	FDP	300	2A2	40	38	25	13	2	15	62.5	37.5	95.0
116	MUC	FDP	300	2A9	40	37	35	2	3	5	87.5	12.5	92.5
117	MUG	FDP	400	2A8	40	39	34	5	1	6	85.0	15.0	97.5
118	MUC	FDP	400	2A12	40	38	31	7	2	9	77.5	22,5	95.0
119	MUC	FDP	400	2B1	40	37	33	4	3	7	82.5	17.5	92.5
120	MUC	FDP	400	2B6	40	37	33	4	3	7	82.5	17.5	92.5
121	PPB	SDP	0	1A1	40	36	32	4	4	8	80.0	20.0	90.0
122	PPB	SDP	0	1A3	40	34	23	11	6	17	57.5	42.5	85.0
123	PPB	SDP	0	1B9	40	39	29	10	1	11	72.5	27.5	97.5
124	PPB	SDP	0	1B10	4C	37	26	11	3	14	65,0	35.0	92.5
125	PPB	SDP	50	1A8	4C	35	6	29	5	34	15.0	85.0	87.5
126	PPB	SDP	50	1A10	4C	38	10	28	2	30	25.0	75.0	95.0
127	PPB	SOP	50	1 B 3	4C	38	4	34	2	36	10.0	90.0	95.0
	PPB	SOP	50	188	40	34	3	31	6	37	7.5	92.5	85.0
129	PPB	SDP	100	146	40	38	11	27	2	29	27.5	72,5	95,0
130	PPB	SDP	100	1A7	40	38	7	31	2	33	17.5	82.5	95.0
131	PPB	SDP	100	1B5	40	32	10	22	8	30	25.0	76.0	B0.0
132	PPB	SDP	100	1B7	40	38	2	36	2	38	5.0	95.0	95.0
133	PPB	SDP	200	1A5	40	36	6	30	4	34	15.0	85.0	90.0
134	PPB	SDP	200	1A11	40	36	9	27	4	31	22.5	77.5	90.0
135	PPB	SDP	200	1B6	40	36	5	31	4	35	12.5	87,5	90.0
136	PPB	SDP	200	1812	40	39	23	16	1	17	57.5	42.5	97.5
137	PPB	SDP	300	1A9	40	34	10	24	6	30	25.0	75.0	85.0
138	899	SD⊇	300	1A12	40	38	14	24	2	26	35.0	65.0	95.0
139	PPB	SDP	300	1B2	40	33	5	28	7	35	12.5	87.5	82.5
140	PPB	SDP	300	1B11	40	39	1	38	1	39	2.5	97.5	97.5
141	PPB	SDP	400	1A2	40	34	21	-3	6	19	52 5	47,5	85.0
142	PPB	SDP	400	1A4	40	37	6	31	3	34	15.0	85.0	92.5
143	PPB	SDP	400	1B1	40	37	24	13	3	16	60.0	40.0	92,5
144	PPB	SDP	400	1 B 4	40	36	14	22	4	26	35.0	65.0	90.0
145	WAS	FD>	0	2A9	40	39	37	2	1	3	92.5	7.5	97.5
146	WAS		0	2A11	40	39	35	4	1	5	87.5	12.5	97.5
147	WAS	FDP	0	2B1	40	38	37	1	2	3	92.5	7.5	95.0
148	WAS	FDP	0	2B7	40	39	32	7	1	8	80.0	20.0	97.5
149	WAS	FDP		2A1	40	38	33	5	2	7	82.5	17.5	95.0
150	WAS	÷	50	2A12	40	34	28	6	6	12	70.0	30.0	85,0
151		FDP	50	2B2	40	37	33	4	3	7	82.5	17.5	92.5
152		FDP	50	2811	40	39	30	9		10	75.0	25.0	97.5
163					4								

Page 4 of 59

AEH-11-PSEUDO-02

.

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L.. 2/27/2015

	WAS	FDP	100	2A2	40	37	34	3	3	6	85.0	15.0	92.5
154	WAS	FDP	100	2A3	40	36	31	5	4	9	77.5	22.5	90.0
155	WAS	FDP	100	289	40	39	36	3	1	4	90.0	10.0	97.5
158	WAS	FDP	100	2B12	40	39	37	2	1	3	92.5	7.5	97.5
157	WAS	FDP	200	2/16	40	37	27	10	3	13	67.5	32.5	92,5
158	WAS	FDP	200	2A10	40	36	31	5	4	9	77.5	22.5	90.0
159	WAS	FDP	200	2B3	40	40	35	5	0	5	87.5	12,5	100.0
160	WAS	FDP	200	2B10	40	41	35	6	-1	5	87,5	12.5	102.5
161	WAS	FDP	300	2A4	40	38	17	21	2	23	42,5	57.5	95.0
162	WAS	FDP	300	2A8	40	39	17	22	1	23	42.5	57.5	97.5
163	WAS	FDP	300	2B4	40	38	26	12	2	14	65.C	35.0	95.0
164	WAS	FDP	300	285	40	39	17	22	1	23	42.5	57.5	97.5
165	WAS	FD?	400	2A5	40	38	26	12	2	14	65,0	35.0	95.0
166	WAS	FDP	400	2A7	40	40	34	6	0	6	B5.0	15.0	100.0
167	WAS	FDP	400	2B5	40	35	28	7	5	12	70.0	30,0	87.5
168	WAS	FDP	400	2B8	40	38	34	4	2	6	85 0	15.0	95.0

file:///C:/Users/klwebcr/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L., 2/27/2015

Page 5 of 59

AEH-11-PSEUDO-02

Page 6 of 59

Juvenfle Mussel Recovery Study Number AEH-11-PSEUDO-02 Percent recovery for each species

The MEANS Procedure

form=FDP

sps	N Obs	Variablo	Label	N	Mean	Std Dev	Minimum	Maximum
ню		rec pctrec			36.0000000 90.0000000			40.0000000 100.0000000
MUC	24	rec potrec	rec					40.0000000 100.0000000
WAS	24	rec pctrec	rec		38.0416667 95.1041667			41.0000000 102 5000000

form=SDP

sps	N Obs	Variable	Label	N	Mean	Std Dev	Minimum	Maximum
BLS	24	rec potrec	rec		37.3750000 93.4375000			
FAM	2	rec pctrec	rec		36.9166667 92.2916667			
HGE	24	rec potrec	rec		36.1250000 90,3125000			
PPB		rec potrec	rec	24 24				39.0000000 97.5000000

Performed by K Weber using SAS version 9.4 at 13:36 on 27FEB15

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L., 2/27/2015

.

Page 7 of 59

AEH-11-PSEUDO-02

Juvenilo Mussel Recovery Study Number AEH-11-PSEUDO-82 Percent recovery for each species by instment group

The MEANS Procedure

form=FDP

.

sps	conc	N Obs	Variablo	Label	N	Mean	Std Dev	Minimum	Maximum
HIC	0	4	rec potrec	rec	4	35.2500000 88.1250000	1.8929694 4.7324236	34.0000000 85.0000000	38.0000000 95.0000000
	50	4	rec potrec	rec	4 4	35 5000000 88.7500000	5.0862281 12.6655701	28.0000000 70.0000000	39.0000000 97.5000000
a	100	4	rec potrec	rec	4	36.0000000 90.0000000	3,3665016 8,4162541	31.0000000 77.5000000	38.0000000 95.0000000
	200	4	rec pctrec	rec	4	36.2500000 90.6250000	2.0615528 5.1538820	34.0000000 85.0000000	38.0000000 95,0000000
	300	4	rec potrec	rec	4	37.7500000 94.3750000	3.3040379 8.2600948	33.0000000 82.5000000	40.0000000 100.0000000
	4DD	4	rec pctrec	rec	4	35.2500000 88.1250000	2.3629078 5.9072695	32.0000000 80.0000000	37,0000000 92,5000000
NUC	0	4	rec pctrec	'ec	4	35,7500000 89.3750000	4.0311289 10.0778222	30,0000000 75.0000000	39,0000000 97,5000000
	50	4	rec pctrec	cec	4 4	37.5000000 93.7500000	1,7320608 4.3301270	35.0000000 87.5000000	39.0000000 97.5000 00 0
	100	4	rec pctrec	rec	4	36,0000000 90.0000000	4.0824829 10.2062073	32.0000000 80.0000000	40,0000000 100,0000000
	200	4	rec pctrec	rec	4 4	37.7500000 94.3750000	1.8929694 4.7324236	35.0000000 87.5000000	39.0000000 97.5000000
	300	4	rec pctroc	rec	4 4	37.5000000 93.7500000	0.5773503 1.4433757	37,0000000 92,5000000	38.0000000 95.0000000
	400	4	rec pclrec	rec	4 4	37.7500000 94.3750000	0.9574271 2.3935678	37.0000000 92.5000000	39.0000000 97.5000000
WAS	0	4	rec pctrec	rec	4 4	38.7500000 96.8750000	0.5000000 1.2500000	38,0000000 95.0000000	39,0000000 97,5000000
	50	4	rec pctrec	rec	4 4	37.0000000 92.5000000	2.1602469 5.4006172	34,000000 85,000000	39,0000000 97,5000000
	100	4	rec pctrec	rec	4 4	37.7500000 94,3750000	1,5000000 3,7500000	36,0000000 90.0000000	39,0000000 97,5000000
	200	4	rec pctrec	rec	4 4	÷	2.3804761 5.9511904	36.0000000 90.0000000	41.0000000 102.5000000
	300	4	rec pctrec	rec	4 4	38,5000000 96,2500000	0.5773503 1.4433757	38.0000000 95.0000000	39.0000000 97.5000000
	400	4	rec pctrec	rec	4	•	2.0615528 5.1538820	35.0000000 87.5000000	40.0000000

,

sps conc N Obs Variable Label N Minimum Maximum Mean Std Dov

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_I., 2/27/2015

601

	Page	8	of	59
--	------	---	----	----

BLS	۵	4	rec pctrec	rec	4 4	37.2500000 93.1250000	2.2173558 5.5433895	35.0000000 87.5000000	40.0000000
	50	4	rec pcirec	rec	4 4	37,2500000 93,1250000	0.9574271 2,3935678	36,0000000 90,0000000	38,0000000 95,0000000
	100	4	rec potrec	rəc	4	37.0000000 92.5000000	2,1602469 5,4006172	34.0000000 85.0000000	39.0000000 97.600000
	200	4	rec pctrec	rec	4	37.5000000 93.7500000	2.3804761 5.9511904	35.0000000 87.5000000	40.0000000
ator : 1 1100	300	4	rec pctrec	rec	4	37,2500000 93.1250000	2.2173558 5.5433895	35.0000000 87.5000000	40.000000
Moday	400	4	rec polrec	rec	4	38.0000000 95.0000000	0 0	38.00000000 95.0000000	38.000000 95.000000
FAM	0	4	rec potrec	rec	4	36.5000000 91.2500000	1.0000000 2.5000000	35.0000000 87.5000000	37.000000 92.500000
	50	4	rec potrec	rec	4	36.5000000 91,2500000	2.0816660 5.2041650	34.0000000 85.0000000	39.000000 97.500000
	100	4	rec potrec	rec	4	38.5000000 96.2500000	1.2909944 3,2274861	37.0000000 92.5000000	40.000000 100.000000
	200	4	rec pctrec	rec	4 4	36.75000CC 91.87500CC	0.9574271 2.3935678	36.0000000 90.0000000	38,000000 95.000000
	300	4	rec poirec	rəc	4	36.7500000 91.8750000	0.9574271 2.3935678	36 0000000 90 0000000	38.000000 95.000000
	400	4	rec potrec	rec	4	36.500C000 91.2500000	1.7320508 4.3301270	35.0000000 67.5000000	38,000000 95.000000
HGE	0	4	rec pctrec	rec	4	37.2500000 93.1250000	2.2173558 5.5433895	35.0000000 87.5000000	40.000000 100.000000
	50	4	rec pctrec	rec	4 4	35.2500000 88.1250000	3.5000000 8.7500000	30.0000 000 75,0000000	37.000000 92,500000
	100	4	rec pctrec	rec	4	37.0000000 92.5000000	2.5819889 6.4549722	34.0000000 85.0000000	40,000000 100,000000
	200	4	rec potrec	rec	4	34.5000000 86.2500000	5.5075705 13,7689264	28,0000000 70.0000000	40.000000 100.000000
	300	4	tec tec	rec	4	35.0000000 87.5000000	3.7416574 9.3541435	30.0000000 75.0000000	39.000000 97.500000
	400	4	rec potrec	roc	4	37.7500000 94.3750000	1.2583057 3,1457643	36.0000000 90,0000000	39.000000 97.500000
РРВ	0	4	rec pctrec	rec	4	36.5000000 91.2500000	2.0816660 5.2041650	34.0000000 85.0000000	39.000000 97.500000
	50	4	rec pctrec	rec	4	36.2500000 90.6250000	2.0615528 5.1538820	34.0000000 85.0000000	38.000000 95.000000
	100	4	rec pctrec	rec	4	36,5000000 91,2500000	3.0000000 7,5000000	32.0000000 80.0000000	38.000000 95.000000
	200	4	rec pctrec	rec	4	36.7500000 91.8750000	1.5000000 3.7500000	36,0000000 90.0000000	39,00000 97,50000
	300	4	rec pctrec	rec	4		2.9439203 7.3598007	33.0000000 82.5000000	39.00000 97.50000
	400	4	rec	rec	4	36.0000000	1.4142136	34.0000000	37.00000

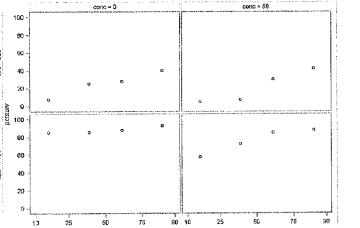
AEH-11-PSEUDO-02

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_1... 2/27/2015

Page 9 of 59

AEH-11-PSEUDO-02

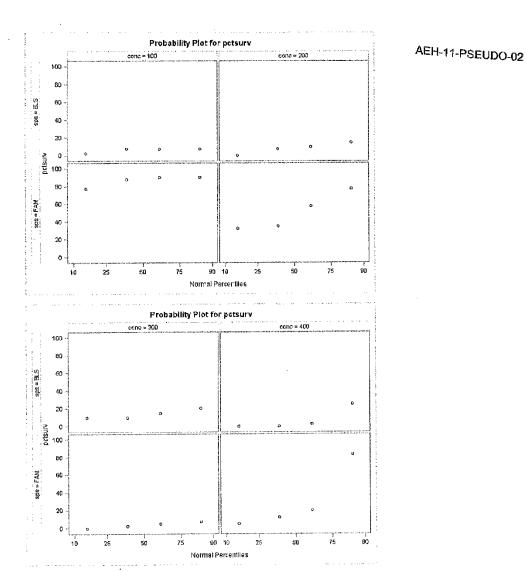

pctrec | 4 90.000000 3.5355339 85.0000000 92.5000000 Performed by K. Weber using SAS version 9.4 at 13:36 on 27FEB15


file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_1... 2/27/2015

sps = BLS

sps = FAM

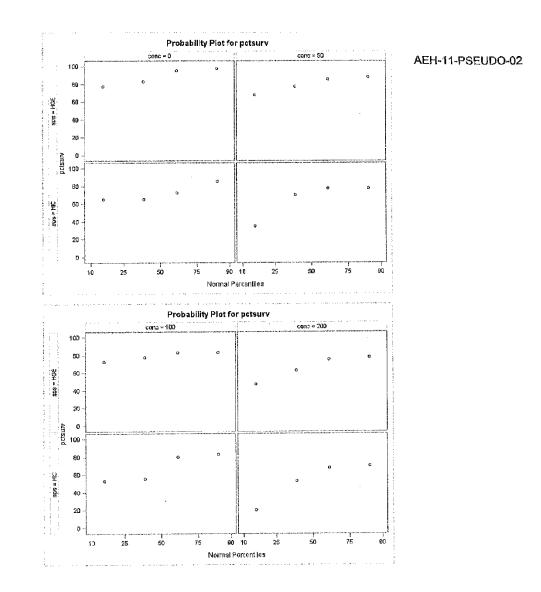
Page 10 of 59



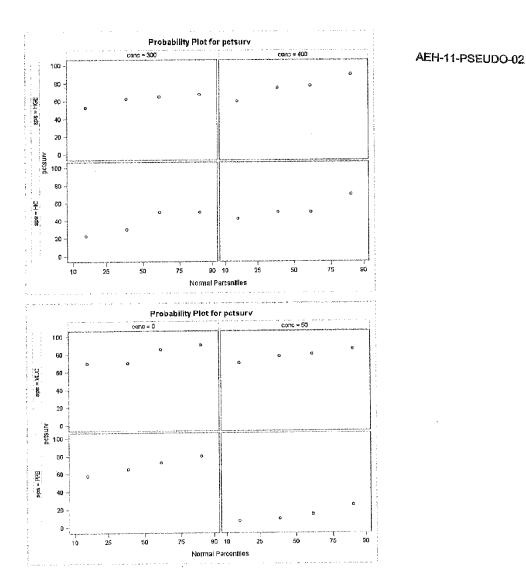
Normal Percent los

AEH-11-PSEUDO-02

file:///C:/Users/klweber/AppData/Local/Temp/I/SAS%20Temporary%20Files/_TD5144_1... 2/27/2015

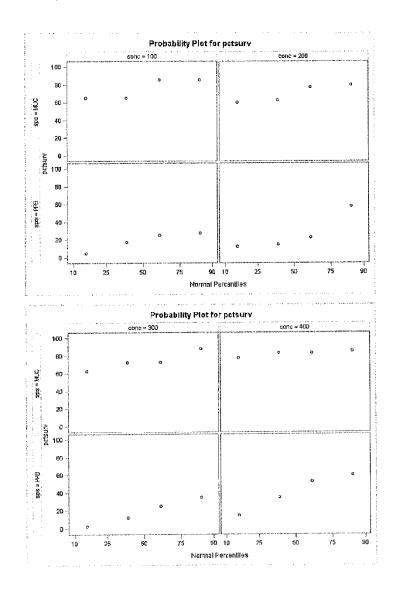

SAS Output

Page 11 of 59

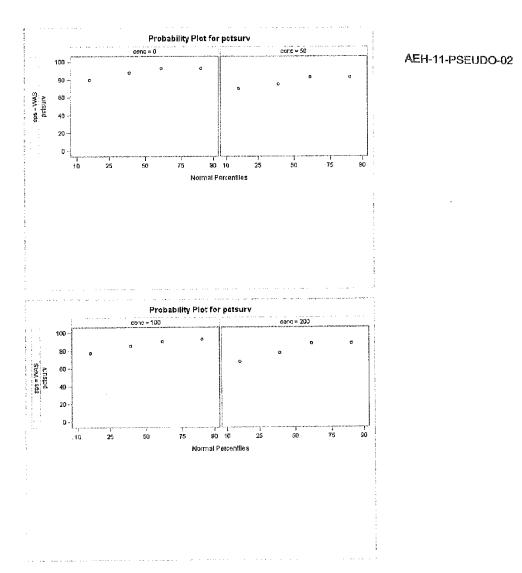

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_1... 2/27/2015

Page 12 of 59

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L.. 2/27/2015

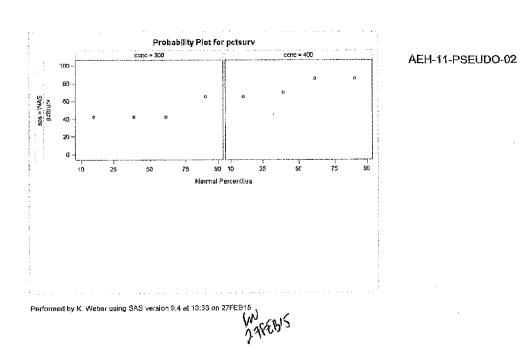

Page 13 of 59

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_1., 2/27/2015



Page 14 of 59

AEH-11-PSEUDO-02


file;///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L., 2/27/2015

SAS Output

Page 15 of 59

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_I... 2/27/2015

Page 16 of 59

SAS Output

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_I... 2/27/2015

Juvenile Mussel Survival Study Number AEH-11-PSEUDO-02 Mean survival for each species

The MEANS Procedure

sps=BLS form=SDP

	Analysis Variable : pctsurv											
conc	N Obs	N	Mean	Std Dev	Minimum	Maximum						
0	4	4	25.0000000	13.3853153	7.5000000	40,0000000						
50	4	4	21,2500000	18.0854453	5.0000000	42.5000000						
100	4	4	6.2500000	2.5000000	2,5000000	7.5000000						
200	4	4	8.1250000	3.2500000	0	15.0000000						
300	4	4	13.7500000	4.7871355	10.0000000	20.0000000						
400	4	4	6.8750000	12.1406686	0	25.0000000						

and a second second second second second second second second second second second second second second second

sps=FAM form=SDP

Analysis Variable : pctsurv								
conc	N Obs	Ν	Mean	Std Dev	Minlmum	Maximum		
0	4	4	87.5000000	3.5355339	85.0000000	92,5000000		
50	4	4	75.6250000	13,7500000	57.5000000	87.5000000		
100	4	4	85.2500000	5.9511904	77.5000000	90.0000000		
200	4	4	50.6250000	21.1517336	32.5000000	77.5000000		
300	4	4	3,7500000	3,2274861	0	7,5000000		
400	4	4	30,0000000	35.5316760	5.0000000	82,5000000		

sps=HGE form≂SDP

Analysis Variable : petsurv							
cone	N Obs	N	Mean	Std Dev	Minimum	Maximum	
0	4	4	88,1250000	9,6555252	77.5000000	97,5000000	
50	4	4	79.3750000	8.9849411	67,5000000	87,5000000	
100	4	4	78,7500000	4.7371355	72,5000000	82.5000000	
200	4	4	65,6250000	13.7500000	47.5000000	77.5000000	
300	4	4	61.8750000	6.5748891	52.5000000	67.5000000	
400	4	4	75.6250000	12.3110723	60.0000000	90.0000000	

sps=HIC form≃FDP

,	Analysis Variable : pctsurv								
conc	N Obs	N	Mean	Std Dev	Minimum	Maximum			
0	4	4	71.8750000	9,4372930	65.0000000	85.000000			
50	4	4	65.0000000	20.3100960	35.0000000	77.5000000			

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L., 2/27/2015

Page 17 of 59

AEH-11-PSEUDO-02

.....

100	4	4	67.5000000	15,9426054	52.5000000	82,5000000
200	4	4	52.5000000	23.0036229	20.0000000	70.0000000
300	4	4	38,1250000	14.0497628	22.5000000	50.0000000
400	4	4	53.1250000	11.7924764	42.5000000	70.0000000

sps≠MUC form=FDP

Analysis Variable : pctsurv								
CONG	N Obs	N	Møan	Std Dev	Minimum	Maximum		
0	4	4	78.7500000	10.3077641	70.0000000	90.0000000		
50	4	4	78.1250000	6.2500000	70,0000000	85.0000000		
100	4	4	75.0000000	11.5470054	65,0000000	85.0000000		
200	4	4	70.0000000	10.2062073	60.0000000	80.0000000		
300	4	4	73,7500000	10.3077641	62,5000000	87.5000000		
400	4	4	81.8750000	3.1457643	77.5000000	85.0000000		

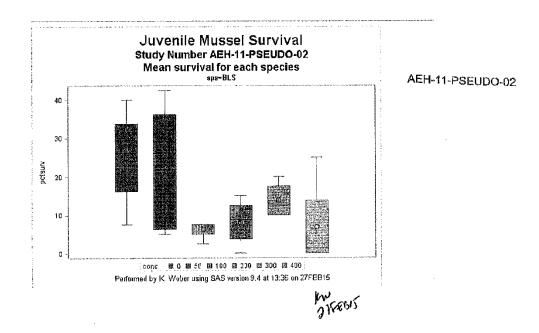
sps=PPB form=SDP

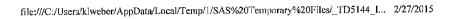
Analysis Varlable : pctsurv								
conc	N Obs	N	Mean	Std Dev	Minimum	Maximum		
0	4	4	\$8.7500000	9,6824584	57,5000000	80,0000000		
50	4	4	14.3750000	7.7392398	7.5000000	25,0000000		
100	4	4	18.7500000	10,1036297	5,0000000	27.5000000		
200	4	4	26.8750000	20.8541563	12.5000000	57.5000000		
300	4	4	18.7500000	14.2156018	2.500000D	35.0000000		
400	4	4	40.6250000	20.0390244	15.0000000	60.00000000		

sps=WAS form=FDP

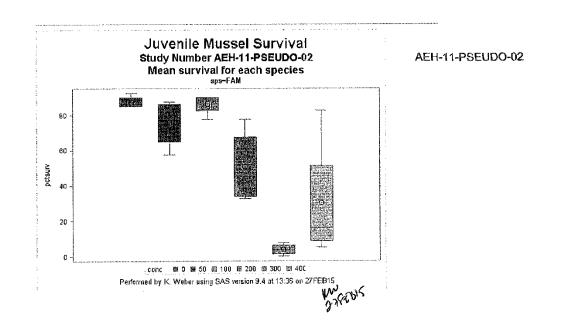
Analysis Variable : pctsurv								
conc	N Obs	N	Mean	Std Dev	Minimum	Maximum		
0	4	4	88.125000D	6.9072695	80.0000000	92.5000000		
50	4	4	77.5000000	6.1237244	70.0000000	82,5000000		
100	4	4	86.2500000	6.6143783	77.5000000	92.5000000		
200	4	4	80.0000000	9.5742711	67.5000000	87.5000000		
300	4	4	48.1250000	11.2500000	42.5000000	65.0000000		
400	4	4	76.2500000	10.3077641	65.0000000	85.0000000		

Performed by K. Weber using SAS version 9.4 at 13:36 on 27FEB15

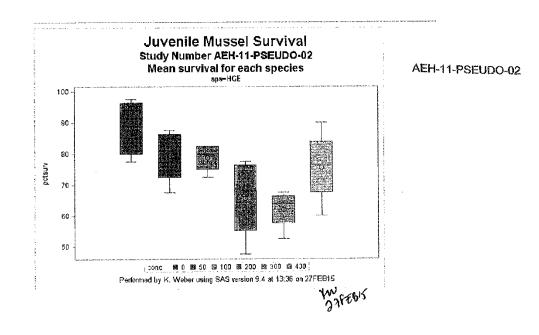

WAREAK


file:///C:/Use:s/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_1... 2/27/2015

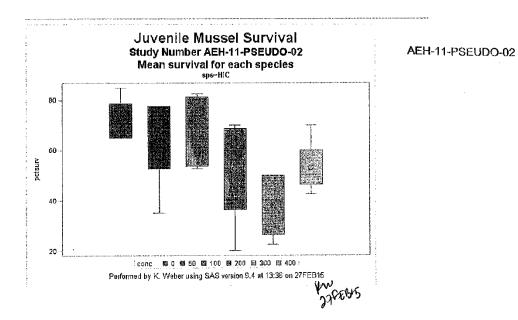
Page 18 of 59


AEH-11-PSEUDO-02

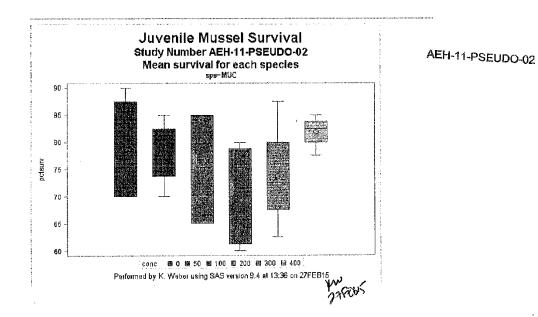
Page 19 of 59



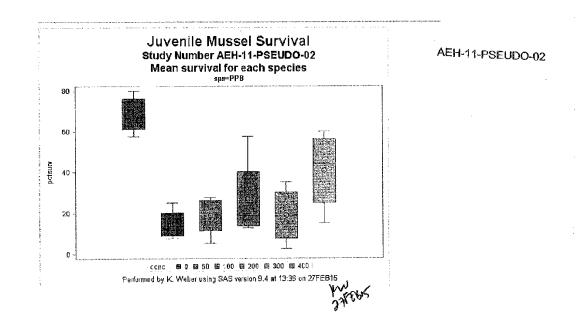
Page 20 of 59


file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L., 2/27/2015

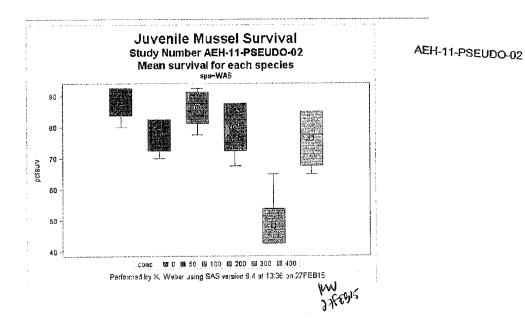
Page 21 of 59


file:///C:/Users/klweber/AppData/Locai/Temp/1/SAS%20Temporary%20Files/_TD5144_1... 2/27/2015

Page 22 of 59


file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L., 2/27/2015

Page 23 of 59


file:///C:/Users/k!weber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L., 2/27/2015

Page 24 of 59

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_1., 2/27/2015

Page 25 of 59

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_1... 2/27/2015

Juvenile Mussel Survival Study Number AEH-11-PSEUDO-02 Mean survival for each formulation

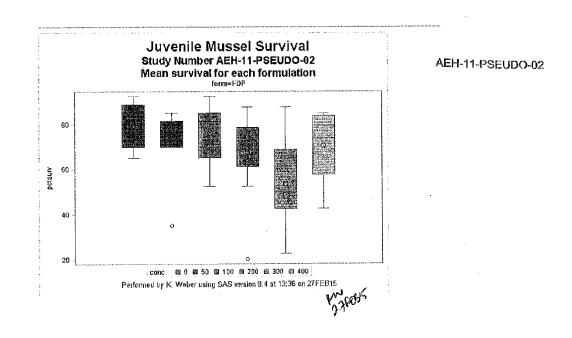
The MEANS Procedure

form=FDP

					Contraction and an and an and an and an and an and an an an an an an an an an an an an an	
onc	N Obs	N	Mean	Std Dev	Minimum	Maximun
0	12	12	79.5833333	10.5439197	65,0000000	82.500000
50	12	12	73.5416667	13.1623748	35.0000000	85.000000
100	12	12	76,2500000	13.5050496	52.5000000	92,500000
200	12	12	67,5000000	18.4020750	20.0000000	87,500000
300	12	12	53,33333333	19.0493776	22.5000000	87.500000
400	12	12	70,4166667	15,4417282	42,5000000	85.000000

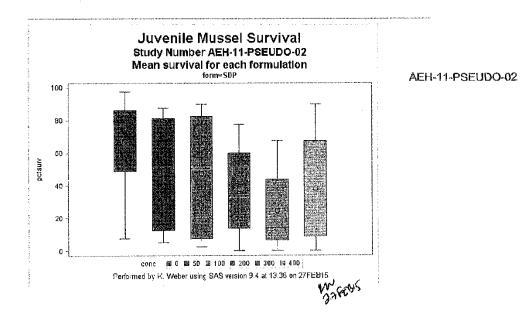
form≈SDP

Analysis Variable : pctsurv										
conc	N Obs	N	Mean	Std Dev	Minimum	Maximum				
0	16	16	67,3437500	27.8906907	7.5000000	97.5000000				
50	16	16	47.6562500	33.0084427	5,0000000	B7.500000				
100	16	16	47.5000000	36,9909899	2.500000	90.0000000				
200	16	16	37.8125000	27.1857040	D	77.500000				
300	16	16	24.5312500	24,1388130	٥	67 500000				
400	16	16	38.2812500	32.3614837	0	90.000000				


400 16 15 38.20 2000 ---Porformed by K. Weber using SAS version 9.4 at 13:36 on 27FEB15

file:///C:/Users/klweber/AppData/Local/Temp/I/SAS%20Temporary%20Files/_TD5144_L., 2/27/2015

Page 26 of 59


AEH-11-PSEUDO-02

Page 27 of 59

file:///C:/Users/klwcher/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD5144_L., 2/27/2015

Page 28 of 59

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/ TD5144_L.. 2/27/2015

Page 29 of 59

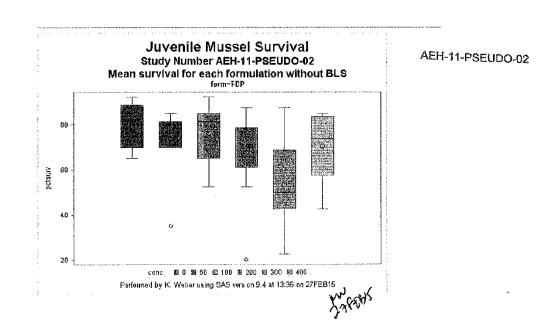
Juvanile Mussel Survival study Number ASI-11-PSEUD0-82 Mean survival for each formulation without BLS

The MEANS Procedure

form≈FDP

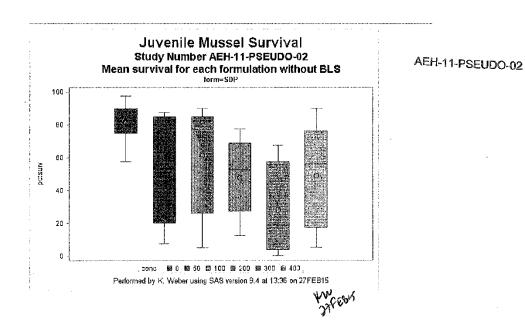
Analysis Variable : potsurv										
conc	N Obs	N	Mean	Std Dev	Minimum	Maximum				
0	12	12	79.5833333	10.5439197	65.0000000	92,5000000				
50	12	12	73.5416667	13.1623746	35.0000000	85,0000000				
100	12	12	76.2500000	13,5050496	52.5000000	92,50D0000				
200	12	12	67.5000000	18.4020750	20.0000000	87,5000000				
300	12	12	53.33333333	19.0493776	22.5000000	87.5000000				
400	12	12	70.4166667	15.4417282	42.5000000	85.0000000				

form≂SDP


Analysis Variable : pctsurv										
conc	N Obs	N	Mean	Std Dev	Minimum	Maximum				
0	12	12	81.4583333	11.9401126	57.5000000	97.5000000				
50	12	12	56.4583333	32,5342186	7.5000000	87.5000000				
100	12	12	61.2500000	32,2366958	5.0000000	90.000000				
200	12	12	47.7083333	23.8713011	12.5000000	77.500000				
300	12	12	28,1250000	27.0547635	0	67.500000				
400	12	12	48.7500000	30,1605552	5.0000000	90.000000				

Performed by K. Weber using SAS version 9.4 at 13:36 on 27FEB15

 $file: \label{eq:local_to_cal_tto_cal_tto_cal_to_cal_to_cal_to_cal_to_cal_to_cal_to_cal_to_c$


AEH-11-PSEUDO-02

Page 30 of 59

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L... 2/27/2015

Page 31 of 59

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_1... 2/27/2015

-

,

Page 32 of 59

AEH-11-PSEUDO-02

Proc Glimmix Analysis of Survival and Interactions of Species, Formulation, and Exposure Concentration

Overall Model: Juvenile Mussel Survival for each species

The GLIMMIX Procedure

form=FDP sps=HIC

Model Inform	ation
Data Set	WORK.SURVIVAL
Response Variable (Events)	tdead
Response Variable (Trials)	tot
Response Distribution	Binomial
Link Function	Logit
Variance Function	Default
Variance Matrix	Diagonal
Estimation Technique	Maximum Likelihood
Degrees of Freedom Method	Residual
Class Level Informatio Class Levels Values conc 6 0 50 100 200 Number of Observations Rea Number of Observations Use	300 400 ad 24
Number of Events	403
Number of Trials	960
Dimensions	
Covariance Parameters 1	
Columns in X 6	
Columns in Z 0	
Subjects (Blocks In V) 1	
Max Obs per Subject 24	
Optimization Infor	mation
Optimization Technique	Newton-Raphson
Parameters In Optimization	6
Lower Boundaries	0
Upper Boundaries	0
Fixed Effects	Not Profiled

 $file: ///C: /Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD5144_L., 2/27/2015$

Iteration History								
iteration	Restarts	Evaluations	Objective Function	Change	Max Gradient			
0	0	4	90.313308939		1.407314			
1	0	3	90,077830398	0.23547854	0.016389			
2	0	3	90.077814434	0.00001593	2.442E-6			

Convergence criterion (ABSGCONV=0.00001) satisfied.

Fit Statistics						
-2 Log Likellhood	180,16					
AIC (smaller is better)	192.16					
AICC (smaller is better)	197.10					
BIC (smaller is better)	199.22					
CAIC (smaller is better)	205.22					
HQIC (smaller is better)	194.03					
Pearson Chi-Square	83.15					
Pearson Chi-Square / DF	4 62					

		Par	ameter Estimates	\$		
Effect	cona	Estimate	Standard Error	DF	t Value	Pr > [t
conc	0	-C.9383	0.3779	18	-2,48	0.0231
conc	50	-C.6190	0.3663	18	-1.74	0.0994
conc	100	-C.7309	0.3628	18	-2.01	0.0591
conc	200	-0.1001	0.3403	18	-0.29	0.7720
conc	300	0.4842	0.3499	18	1.38	0.1832
cone	400	-0.1252	0.3405	18	-0,37	0.7175
Resi		4.6197				

	Type l	ll Tea	its of	Fixe	d Effect	S	
Effect	Num	DF	Den C)F F	• Value	Pr > F	
conc		6	•	18	2.56	0.0567	
		Oc	lds Ra	atio i	Estimate	es	
conc	conc	Esti	mate	DF	95% C	onfiden	
0	400	().443	18	0	.152	
50	400	(0.610	18	0	.217	
100	400	().546	18	C	.192	
200	400		1.025	18	C	.373	
300	400		1.839	18	0	.660	

.

Page 33 of 59

,

AEH-11-PSEUDO-02

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_I... 2/27/2015

Page 34 of 59

SAS Output

AEH-11-PSEUDO-02

÷

	conc Least Squares Means											
conc	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper	Mean	Standard Error Mean	Lower Mean	Upper Mean
0	-0.9383	0.3779	18	-2.48	0.0231	0.05	-1.7323	-0.1443	0.2813	0.07640	0.1503	0.4640
50	-0.6190	0.3563	18	-1.74	0.0994	0.05	-1.3675	0.1294	0.3500	0.08105	0,2030	0.5323
100	-0.7309	0.3628	18	-2.01	0.0591	0.05	-1.4931	0.03130	0.3250	0.07959	0.1835	0,5078
200	-0.1001	0.3403	18	-0.29	0.7720	0.05	-0.8150	0,6148	0.4750	0.08485	0.3068	0.6490
300	0.4842	0,3499	18	1,38	0.1832	0.05	-0.2508	1.2193	0.6187	0.08253	0.4376	0.7719
400	-0.1252	0.3405	18	-0.37	0.7175	0.05	-0.8405	0,5902	0.4688	0.08479	0.3014	0.6434

	Differences of conc Least Squares Means											
conc	canc	Estimate	Standard Error	DF	t Value	Pr>	Alpha	Lower	Upper	Odds Ratio	Lower Confidence Limit for Odds Ratio	Upper Confidence Limit for Odds Ratio
50	0	0.3192	0.5194	18	0.61	0.5465	0.05	-0.7719	1.4104	1.376	0.462	4.098
100	0	0.2074	0,5239	18	0.40	0.6969	0,05	-0,8932	1.3080	1.230	0.409	3.699
200	0	0.6382	0.5085	1B	1.65	0.1167	0.05	-0,2302	1.9066	2.312	0.794	6,730
300	0	1,4225	0.5150	18	2.76	0.0128	0.05	0.3405	2.5045	4.148	1,406	12.237
400	0	0.6131	0.50B7	18	1.60	0.1274	0.05	-0.2556	1.8818	2.255	0.774	6.566

Performed by K. Weber using SAS version 9.4 at 13:36 on 27FEB15

mareas

 $file: ///C: /Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD5144_L... \ 2/27/2015$

Page 35 of 59

...........

AEH-11-PSEUDO-02

Proc Glimmix Analysis of Survival and Interactions of Species, Formulation, and Exposure Concentration

Overall Model: Juvenile Mussel Survival for each species

The GLIMMIX Procedure

form=FDP sps=MUC

	a tao ta an manifesteride de set ar tra					
	Model Informa	ation				
et	WORK SURVIVAL					
nse Vari	able (Events)	tdead				
nsə Vari	able (Trials)	tol				
nse Dist	ribution	Binomial				
unction		Logit				
ce Func	lon	Default				
ce Matri	ĸ	Diagonal				
ation Teo	hnique	Maximum Likelihood				
as of Fre	edom Method	Residual				
Class Le	vel Informatio	n				
Levels	Values					
6	0 50 100 200 3	300 400				
er of Obs	ervations Rea	d 24				
er of Obs	ervations Use	ci 24				
er of Eve	nts	228				
or of Tria	16	960				
Dimen	sions	ananal 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,				
	nse Vari nse Vari nse Dist unction ce Funci ce Funci ce Funci ce Auro atton Tec as of Fre Class Le Levels 6 er of Obs er of Obs er of Dise er of Tria Dimensi	iet nse Variable (Events) nse Variable (Trials) nse Distribution unction ce Function ce Matrix ation Technique as of Freedom Method Class Level Informatio				

Covariance Parameters		
Columns in X	6	
Columns in Z	0	
Subjects (Blocks In V)	1	
Max Obs per Subject	24	

Optimization Information					
Optimization Technique	Newton-Raphson				
Parameters in Optimization	6				
Lower Boundaries	c				
Upper Boundaries	C				
Fixed Effects	Not Profiled				

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_1... 2/27/2015

629

Iteration History									
Iteration	Restarts	Evaluations	Objective Function	Change	Max Gradient				
0	0	4	62,005671026		1.223129				
1	0	3	61.764457035	0.24121399	0.026708				
2	0	3	61.764383767	0.00007327	0.000014				
3	0	3	61.764383767	0.00000000	3.82E-12				

Convergence criterion (GCONV=1E-8) satisfied.

Fit Statistics				
-2 Log Likelihood	123,53			
AIC (smaller is better)	135.53			
AICC (smaller is better)	140.47			
BIC (smaller is hetter)	142.60			
CAIC (smaller is better)	148.60			
HQIC (smaller is better)	137.40			
Pearson Chi-Square	32.23			
Pearson Chi-Square / DF	1.79			

Parameter Estimates						
Effect	conc	Estimate	Standard Error	DF	t Value	Pr > t
conc	D	-1.3099	0.2586	18	~5.07	<.0001
conc	50	-1.2730	0,2559	18	-4.97	<.0001
conc	100	-1.0986	0.2443	18	-4.50	0.0003
conc	200	-0.8473	0.2309	18	-3.67	0.0016
conc	300	-1.0330	0.2404	18	-4.30	0.0004
conc	400	-1.5079	0.2746	18	-5,49	<.0001
Resi		1.7908				

Type III Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
conc	6	18	22.12	<.0001

Odds Ratio Estimates							
conc	conc	95% Confiden	ce Limits				
C	400	1.219	18	0.552	2.693		
50	400	1.265	18	C.575	2.783		
100	400	1,506	18	C.696	3,259		
200	400	1.936	18	C.911	4.114		
300	400	1,608	18	C.747	3.462		

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L... 2/27/2015

Page 36 of 59

AEH-11-PSEUDO-02

AEH-11-PSEUDO-02

Page 37 of 59

SAS Output

cono	Estimate	Standard Error	DF	t Value	Pr > (t)	Alpha	Lower	Upper	Mean	Standard Error Mean	Lower Mean	
C	-1.3099	0.2586	18	-5.07	<.0001	0.05	-1.8533	-0.7666	0.2125	0.04328	0.1355	0.3172
50	-1.2730	0.2559	18	-4.97	<,0001	0.05	-1.8106	-0.7353	0.2188	0.04373	0.1406	0.3240
100	-1.0986	0.2443	18	-4.50	0.0003	0.05	-1.6119	-0.5853	0.2500	0.04581	0.1663	0.3577
200	-0.8473	0.2309	18	-3.67	0.0018	0.05	-1.3323	-0.3623	0.3000	0.04848	0,2088	0,4104
300	-1.0330	0.2404	18	-4.30	0.0004	0.05	-1.5382	-0,5279	0.2625	0,04665	0,1768	0,3710
400	-1.5079	0,2746	18	-5.49	<.0001	0.05	-2.0849	-0.9309	0.1813	0.04075	0.1106	0.2827

Differences of conc Least Squares Means												
conc	conc	Estimate	Standard Error	DF	t Value	Pr > [t]	Alpha	Lower	Upper	Odds Ratio	Lower Confidence Limit for Odds Ratio	Upper Confidence Limit for Odds Ratio
50	0	0.03696	0.3638	18	0.10	0.9202	0.05	-0.7274	0.8013	1.038	0.483	2.229
100	D	0.2113	0,3558	18	0.59	C.5599	0.05	-0.5361	0.9588	1.235	0.585	2.608
200	0	0,4626	0.3467	18	1,33	C.1987	0.05	-0.2657	1909	1,588	0,767	3,290
300	Q	0,2769	0,3531	18	0.78	C 4431	0,05	-0,4650	1.0188	1.319	0,628	2,770
400	0	-0,1980	0.3772	18	-0.52	C,6061	0.05	-0,9905	0,5946	0.820	0,371	1.812

Performed by K. Weber using SAS version 9.4 at 13:36 on 27FEB15

 $file; \label{eq:likelihood} file; \label{eq:likelihood}$

AEH-11-PSEUDO-02

SAS Output

Page 38 of 59

Proc Glimmix Analysis of Survival and interactions of Species, Formulation, and Exposure Concentration

Overall Model: Juvenile Mussel Survival for each species

The GLIMMIX Procedure

form≈FDP sps≈WAS

Model Information					
Data Set	WORK.SURVIVAL				
Response Variable (Events)	tdead				
Response Variable (Trials)	tot				
Response Distribution	Binomia				
Link Function	Logit				
Variance Function	Default				
Variance Matrix	Diagonal				
Estimation Technique	Max mum Likelihood				
Degrees of Freedom Method	Residual				

	Class Le	vel Information				
Class	Levels	Values				
conc	6 0 50 100 200 300 400					
Numb	er of Obs	ervations Read	24			
		ervations Used	24			

Number of Observations Oseu	24
Number of Events	230
Number of Trials	960
Dimensions	
Covariance Parameters 1	

Columns in X	6
Columns in Z	0
Subjects (Blocks In V)	1

Max Obs per Subject 24 Optimization Information

Opunization into	rination
Optimization Technique	Newton-Raphson
Parameters in Optimization	6
Lower Boundaries	0
Upper Boundaries	0
Fixed Effects	Not Profiled

 $file:///C:/Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD5144_L., \ \ 2/27/2015$

Page 39 of 59

AEH-11-PSEUDO-02

Iteration History								
Iteration	Restarts	Evaluations	Objective Function	Change	Max Gradient			
0	Q	4	59.244589077		0.951763			
1	0	3	59.04090318	0.20368590	0.017954			
2	0	3	59.040816988	0.00008619	0.000012			
3	0	3	59.040816988	0.00000000	5.57E-12			

Convergence criterion (GCONV=1E-8) satisfied.

Fit Statistics	
-2 Log Likelihood	118.08
AIC (smaller is better)	130.08
AICC (smaller is better)	135.02
BIC (smaller is better)	137.15
CAIC (smaller is better)	143.15
HQIC (smaller is better)	131.96
Pearson Chi-Square	31.01
Pearson Chl-Square / DF	1.72

Parameter Estimates							
Effect	conc	Estimate	Standard Error	DF	t Value	Pr > t	
conc	0	-2.0043	0,3208	18	-6.25	<.0001	
conc	50	-1.2368	0.2485	18	-4.98	<.0001	
conc	100	-1.8362	0.3013	18	-6.09	<.0001	
conc	200	-1.3863	3.2594	18	-5,34	<.0001	
conc	300	0.07504	0.2077	18	0,36	0.7221	
conc	400	-1. 1664	0.2438	18	-4.78	0.0001	
Resi		1.7227					

Type III Tests of Fixed Effects

conc 6 18 25.42 <.0001

Odds Ratio Estimates							
conc	conc	Estimate	DF	95% Confiden	ce Limits		
0	400	0.433	18	0.186	1.009		
50	40D	0.932	18	0.449	1.937		
100	400	0.512	18	0.227	1.156		
200	400	0,803	18	0.380	1.696		
300	400	3.461	18	1.766	6.783		

 $file: ///C: /Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD5144_L..-2/27/2015$

AEH-11-PSEUDO-02

Page 40 of 59

SAS Output

				C	onc Leas	st Squai	es Mean	5				
conc	Estimate	Standard Error	DF	t Value	j < 14	Alpha	Lower	Upper	Mean	Standard Error Mean	Lower Mean	Upper Mean
0	-2.0043	0,3208	18	-6,25	<.0001	0.05	-2,6782	-1.3304	0,1188	0.03357	0.06427	0.2091
50	-1.2368	0.2485	18	-4.98	<.0001	0.05	-1.7588	-0.7147	0.2250	0.04333	D.1469	0.3286
100	-1.8362 :	0.3013	18	-6.09	<,0001	0.05	-2.4692	-1.2032	0.1375	0.03573	0.07804	0.2309
200	-1.3863	0.2594	18	-5.34	<.0001	0.05	-1,9313	-0.8413	0.2000	0.04151	0.1266	0.3013
300	0.07504	0.2077	18	0.36	0.7221	0.05	-0.3613	0.5113	0,5188	0.05184	0.4107	0.6251
400	-1.1664	0,2438	18	-4.78	0.0001	0.05	-1.6787	-0.6542	0.2375	0.04416	0.1573	0.3421

	Differences of conc Least Squares Means											
conc	conc	Estimato	Standard Error	DF	t Valuo	Pr > t	Alpha	Lower	Uppor	Odds Ratio	Lower Confidence Limit for Odds Ratio	Upper Confidence Limit for Odds Ratio
50	0	0.7676	0.4057	18	1.89	0.0747	0.05	-0.08488	1.6200	2.154	0.919	5.053
100	0	0.1681	0.4401	18	0.38	0.7069	0.05	-0.7565	1.0927	1.183	0.469	2.982
200	0	0.6180	0.4125	18	1.50	0.1514	0.05	-0.2487	1.4847	1,855	0,7BQ	4,414
300	0	2.0794	0.3821	18	5.44	<.0001	0.05	1.2766	2.8822	7,999	3.584	17.853
400	0	0.8379	0.4029	18	2.08	0.0521	0.05	-0.00860	1.6844	2.311	0.991	5.389

Performed by K. Weber using SAS version 9.4 at 13:36 on 27FEB15

W ARONS

 $f:le:///C:/Users/klweber/AppData/Local/Temp/1/SAS\%20Temporary\%20Files/_TD5144_1... 2/27/2015$

.

Page 41 of 59

AEH-11-PSEUDO-02

Proc Glimmix Analysis of Survival and Interactions of Species, Formulation, and Exposure Concentration

Overall Model: Juvenile Mussel Survival for each species

The GLIMMIX Procedure

form≔SDP sps≃BLS

Model Info	rmation
Data Set	WORK.SURVIVAL
Response Variable (Event	s) tdead
Response Variable (Trials)	tot
Response Distribution	Binomial
Link Function	Logit
Variance Function	Default
Variance Matrix	Diagonal
Estimation Technique	Maximum Likelihood
Degrees of Freedom Metho	od Residual
Class Level informa	tion
Class Levels Values	
conc 6 0 50 100 20	00 300 400
Number of Observations R	tead 24
Number of Observations L	Isad 24
Number of Events	830
Number of Trials	960

Dimensions	
Covariance Parameters	1
Columns In X	6
Columns in Z	0
Subjects (Blocks in V)	1
Max Obs per Subject	24

Optimization Info	rmation
Optimization Technique	Newton-Raphson
Parameters In Optimization	6
Lower Boundaries	0
Upper Boundaries	0
Fixed Effects	Not Profiled

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_I... 2/27/2015

AEH-11-PSEUDO-02

Page 42 of 59

SAS Output

Itaration History							
Iteration	Restarts	Evaluations	Objective Function	Change	Max Gradient		
0	Q	4	77.245561628		5,711995		
1	0	3	72.365065097	4.88049653	1.075187		
2	0	3	7 2.1894271 93	0.17563790	0.071561		
3	0	3	72.188599825	0.00082737	0.000387		
4	0	3	72.1885998	0.00000002	1.154E-8		

Convergence criterion (GCONV=1E-8) satisfied.

Fit Statistics					
-2 Log Likelihood	144.38				
AIC (smaller is better)	156.38				
AICC (smaller is better)	161.32				
BIC (smaller is better)	163.45				
CAIC (smaller is better)	169.45				
HQIC (smaller is better)	158.25				
Pearson Chi-Square	72.43				
Pearson Chi-Square / DF	4.02				

Parameter Estimates									
Effect	conc	Estimate	Standard Error	DF	t Value	Pr > t			
conc	0	1.0986	0 3662	18	3.00	0.0077			
conc	50	1.3099	0 3877	18	3,38	0,0033			
conc	100	2,7081	0.6551	18	4,13	0.0006			
conc	200	2.4255	0.5804	18	4,18	0.0006			
conc	300	1.8362	0.4605	18	3,99	0.0009			
conc	400	2.6061	0.6267	18	4,16	0.0006			
Resi		4.0237			•	•			

Type III Tests of Fixed Effects						
Effect	Num DF	Den DF	F Value	Pr > F		
conc	6	18	14.69	<.0001		

conc conc Estimate DF 95% Confidence Lim							
CONC	CONC	Estimate	DF	95% Confiden	ce Lanats		
0	400	0,221	18	0.048	1.018		
50	400	0.274	18	0.058	1,287		
100	400	1.107	18	0.165	7.439		
200	400	0.835	18	0.139	5.023		

$file: \label{eq:linear} file: \label{eq:linear} we be r/App Data/Local/Temp/1/SAS\%20 Temporary\%20 Files/_TD5144_I... 2/27/2015$

Page 43 of 59

AEH-11-PSEUDO-02

SAS Output

	100	1	0 400 40	a 000	0.170
300	400		0.463 18	0.090	2,373

conc Least Squares Means												
conc	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper	Mean	Standard Error Mean	Lower Moan	Uppei Mear
0	1.0986	0.3662	1B	3.00	0.0077	0.05	0.3292	1.8680	0.7500	0.06867	0.5816	0.8662
50	1.3099	0.3877	18	3.38	0.0033	0.05	0.4955	2.1244	0.7875	0.06487	0.6214	0,8932
100	2,7081	0.6551	18	4.13	0.0006	0.05	1.3317	4.0844	0.9375	0.03839	0.7911	0.9834
200	2.4255	0.5804	16	4.18	0.0006	0.05	1.2061	3.6449	0.9188	0.04333	0.7696	0.9745
300	1.8362	0.4605	18	3.99	0.0009	0.05	0.8688	2,8037	0.8625	0.05461	0,7045	0.9429
400	2,6061	0,6267	18	4.16	0.0006	0.05	1.2893	3,9228	0.9312	0.04013	0.7840	0.9806

conc	conc	Estimate	Standard Error	DF	t Value	Pr> t	Alpha	Lower	Upper	Odds Ratio	Lower Confidence Limit for Odds Ratio	Upper Confidence Limit for Odds Ratio
50	0	0.2113	0,5333	18	0.40	0 6966	0.05	-0.9091	1.3317	1,235	0.403	3.788
100	0	1.6094	0.7505	18	2,14	0 0459	0.05	0.03260	3.1863	5.000	1.033	24.198
200	0	1.3269	0.6863	18	1.93	0 0691	0.05	-0.1150	2.7687	3.769	0,891	15.938
300	0	0.7376	0.5884	18	1.25	0 2260	0.05	-0,4985	1.9737	2.091	0.607	7.197
400	0	1.5074	0,7259	18	2.08	0.0524	0.05	-0.01760	3.0325	4.515	0.983	20.749

 $file; \label{eq:linear} file; \label{eq:linear} file; \label{eq:linear} we have been as the linear state of the linear state$

Page 44 of 59

AEH-11-PSEUDO-02

Proc Gilmmix Analysis of Survival and Interactions of Species, Formulation, and Exposure Concentration

Overall Model: Juvenile Mussel Survival for each species

The GLIMMIX Procedure

form≔SDP sps≖FAM

Mødel Inform	ation
Data Set	WORK.SURVIVAL
Response Variable (Events)	tdead
Response Variable (Trials)	tot
Response Distribution	Binomial
Link Function	Logit
Variance Function	Default
Varianco Matrix	Diagonal
Estimation Technique	Max mum Likelihood
Degrees of Freedom Method	Residual

Class Level Information							
Class	Levels	Values					
conc	6	0 50 100 200 300 400					

Number of Observations Read	24
Number of Observations Used	24
Number of Events	426
Number of Trials	960

Dimensions]
Covariance Parameters	1
Columns in X	6
Columns in Z	0
Subjects (Blocks in V)	1
Max Obs per Subject	24

Fixed Effects

 Optimization Information

 Optimization Technique
 Newton-Raphson

 Parameters in Optimization
 6

 Lower Boundaries
 0

 Upper Boundaries
 0

Not Profiled

$file: \label{eq:linear} file: \file: \file: \file: \file: \file: \file: \file: \file: \file: \file:$

Page 45 of 59

AEH-11-PSEUDO-02

Iteration History											
Iteration	Restarts	Evaluations	Objective Function	Change	Max Gradient						
0	0	4	97.63 4836 406		1.460501						
1	Û	3	97.292908253	0.34192815	0.058074						
2	0	3	97,291881474	0.00102678	0.000482						
3	0	3	97.291881407	0.00000007	3.393E-8						

Convergence criterion (GCONV=1E-8) satisfied.

Fit Statistics		
-2 Log Likelihood	194.58	
AIC (smaller is better)	206.58	
AICC (smaller is better)	211.52	
BIC (smaller is better)	213.65	
CAIC (smaller is better)	219.65	
HQIC (smaller is better)	208,46	
Pearson Chi-Square	114.35	
Pearson Chi-Square / DF	8.35	

Parameter Estimates										
Effect	conc	Estimate	Standard Error	DF	t Value	Pr > t				
conc	0	-1.9459	0.6025	18	-3.23	0.0046				
conc	50	-1.1322	0.4641	18	-2,44	0,0253				
conc	100	-1.8362	0.5786	18	-3,17	0.0053				
conc	200	-0.02500	0.3985	18	-C.06	0.9507				
conc	300	3.2452	1.0488	18	3,09	0,0063				
conc	400	0.8473	0.4348	18	1.95	0,0671				
Resi		6.3526								

Type III Tests of Fixed Effects

 Effect
 Num DF
 Den DF
 F Value
 Pr > F

 conc
 6
 18
 6.64
 0.0008

		Odds Ra	atio E	Estimates	
conc	conc	Estimate	DF	95% Confide	ence Limits
0	400	0,061	18	0.013	0.292
50	400	0,138	18	0.036	0,525
100	400	0.068	18	0.015	0.313
200	400	0,418	18	0.121	1.443
300	400	11.000	18	1.013	119.491

 $file: \label{eq:linear} file: \file: \file: \file: \file: \file: \file: \file: \file: \file: \file:$

Page 46 of 59

SAS Output

AEH-11-PSEUDO-02

	conc Least Squares Means													
conc	Estimate	Standard Error	DF	t Value	Pr> t	Alpha	Lower	Upper	Mean	Standard Error Mean	Lower Mean			
0	-1.9459	0,6025	18	-3.23	0.0046	0.05	-3,2117	-0.6801	0,1250	0.06590	0.03873	0.3362		
50	-1.1322	0.4641	18	-2.44	0.0253	0.05	-2.1073	-0.1572	0.2438	0.08555	0.1084	0.4608		
100	-1.8362	0,5786	18	-3,17	0.0053	0.05	-3,0518	-0,6206	0.1375	0.06862	0.04514	0,3496		
200	-0.02500	0.3985	18	-0.06	0.9507	0.05	-0.8623	0.8123	0.4938	0.09962	0,2969	0.6926		
300	3.2452	1.0488	18	3,09	0.0063	0.05	1.0417	5.4487	0.9625	0.03786	0.7392	0,9957		
400	0.8473	0.4348	18	1.95	0.0671	0.05	-0.06622	1.7608	0,7000	0.09131	0.4835	0.8533		

cona	cono	Estimato	Standard Error		t Value	Pr≻ [t]	Alpha	Squares Lower	Upper	Odds Ratio	Lower Confidence Limit for Odds Ratio	Upper Confidence Limit for Odds Ratio
50	٥	0.8137	0,7605	18	1.07	0.2968	0.05	-0.7841	2.4115	2.256	0.457	11 150
100	0	0.1097	0,8353	18	0.13	0.8970	0.05	-1.6453	1.8647	1.116	0.193	6 454
200	0	1.9209	0.7224	18	2.66	0.0160	0.05	0.4032	3,4386	6,827	1,497	31.143
300	0	5.1911	1.2096	18	4.29	0.0004	Q.05	2,6499	7.7323	179.667	14.153	>999.999
400	٥	2.7932	0.7430	18	3.76	0.0014	0.05	1.2322	4.3542	16.333	3.429	77.807

Performed by K. Weber using SAS version 9.4 at 13:36 on 27FEB15

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L., 2/27/2015

Page 47 of 59 AEH-11-PSEUDO-02

Proc Glimmix Analysis of Survival and Interactions of Species, Formulation, and Exposure Concentration

Overall Model: Juvenile Mussel Survival for each species

The GLIMMIX Procedure

form=SDP sps=HGE

Model Inforr	nation
Data Set	WORK.SURVIVAL
Response Variable (Events)	tdead
Response Variable (Trials)	tot
Response Distribution	Binomial
Link Function	Logit
Variance Function	Default
Variance Matrix	Diagonal
Estimation Technique	Maximum Likelihoo
Degrees of Freedom Method	l Residual
Class Level Information	0/1
Class Levels Values	200 400
conc 6 0 50 100 200	500 400
Number of Observations Re	ad 24
Number of Observations Us	ed 24
Number of Events	241
Number of Trials	960
and a stand of the standard day and the standard day of the standard d	
Dimensions	
Covariance Parameters 1	
Columns in X 6	
Columns in Z 0	
Subjects (Blocks In V) 1	
Max Obs per Subject 24	
Optimization Info	rmation
Optimization Technique	Newton-Raphson
Parameters in Optimization	fame and a second second second second second second second second second second second second second second se
Lower Boundaries	0
Upper Boundaries	0
Fixed Effects	Not Profiled

 $file: \label{eq:likelihood} file: \label{eq:likelihood}$

Page 48 of 59

AEH-11-PSEUDO-02

Iteration History											
iteration	Restarts	Evaluations	Objective Function	Change	Max Gradient						
0	0	4	65.737660283		2.275718						
1	0	3	65,11468968	0.62297060	0,165189						
2	0	3	65.111946057	0,00274362	0,00111						
3	0	3	65.111945935	0,00000012	5,124E-8						

Convergence criterion (GCONV=1E-8) satisfied.

Fit Statistics				
-2 Log Likelihood	130 22			
AIC (smaller is better)	142 22			
AIGC (smaller is better)	147 17			
BIC (smaller is better)	149 29			
CAIC (smaller is better)	155 29			
HQIC (smaller is better)	144 10			
Pearson Chl-Square	40 37			
Pearson Chi-Square / DF	2 24			

Effect	cone	Estimate	Standard Error	D۶	t Value	Pr > t
conc	0	-2.0043	0.3660	18	-5.48	<.0001
conc	50	-1.3477	0.2926	18	-4.61	0,0002
conc	100	-1.3099	0.2894	18	-4.53	0.0003
conc	200	-0.6466	0.2493	18	-2,59	0.0183
conc	300	-0.4842	0,2438	18	-1.99	0.0624
conc	400	-1.1322	0.2758	18	-4.11	0.0007
Resi	Í	2,2430				

Type III Tests of Fixed Effects

 Effect
 Num DF
 Den DF
 F Value
 Pr > F

 conc
 6
 16
 16.54
 <.0001</td>

Odds Retio Estimates											
conc conc Estimate DF 95% Confidence Limits											
0	400	0.418	18	0.160	1.095						
50	400	0.806	18	0.346	1.876						
100	400	0.837	18	0,361	1.939						
200	400	1.625	18	0.744	3.549						
300	400	1.912	18	0.882	4.142						

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L.. 2/27/2015

Page 49 of 59 AEH-11-PSEUDO-02

SAS Output

	conc Least Squares Means												
conc	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper	Mean	Standard Error Mean	Lower Mean	Uppe Mear	
0	-2.0043	0,3660	18	-5.48	<.0001	0.05	-2.7733	-1.2354	0.1188	0.03830	0.05879	0.2252	
50	-1.3477	0,2926	18	-4.61	0.0002	0.05	-1 9625	-0.7329	0.2063	0.04791	0.1232	0.3246	
100	-1.3099	0,2894	18	-4.53	0.0003	0.05	-1.9180	-0.7018	0,2125	0.04844	0.1281	0.3314	
200	-0,6466	0.2493	18	-2.59	0.0183	0.05	-1 .1704	-0.1229	0.3438	0.05624	0.2368	0.4693	
300	-0,4842	0.2438	18	-1.99	0.0624	0.05	-0.9964	0. 02 791	0.3813	0.05751	0.2696	0,5070	
400	-1.1322	0.2758	18	-4.11	0,0007	Q.05	-1.7116	-0.5529	0.2438	0.05083	0.1530	0.3652	

conc	conc	Estimate	Standard Error	DF	t Value	Pr > [t]	Alpha	Lower	Upper	Odds Ratio	Lower Confidence Limit for Odds Ratio	Upper Confidence Limit for Odds Ratio
50	0	0.6566	0.4686	18	1.40	0.1781	0.05	-D.3279	1.6 411	1.928	0.720	5.16 1
100	0	0.6944	0.4666	18	1.49	0.1540	0.05	-0,2869	1.6747	2.003	0.751	5.337
200	0	1.3577	0.4428	18	3.07	0.0067	0.05	D.4273	2.2881	3.887	1.533	9.856
300	0	1.5201	0.4398	18	3.46	0.0028	0.05	0.5962	2,4440	4,573	1.815	11.519
400	0	0.8721	0,4583	18	1.90	0.0732	0.05	-0.09070	1.8349	2.392	0,913	6.264

Ele:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L.. 2/27/2015

Page 50 of 59

AEH-11-PSEUDO-02

Proc Glimmix Analysis of Survival and Interactions of Species, Formulation, and Exposure Concentration

Overall Model: Juvenile Mussel Survival for each species

The GLIMMIX Procedure

form≓SDP sps≃PPB

Model Inform	ation			
Data Set	WORK.SURVIVAL			
Response Variable (Events)	tdead			
Response Variable (Trials)	tot			
Response Distribution	Binomial			
Link Function	Logit			
Variance Function	Default			
Variance Matrix	Diagonal			
Estimation Technique	Maximum Likellhood			
Degrees of Freedom Method	Residual			
Class Levels Values Conc 8 0 50 100 200 Number of Observations Red Number of Observations Use Number of Events Number of Trials	300 400 ad 24			
Dimensions				
Covariance Parameters 1				
Columns in X 6				
Columns in Z 0				
Subjects (Blocks In V) 1				
Max Obs per Subject 24				
Optimization Infor	mation			
Optimization Technique	Newton-Raphson			
Parameters in Optimization	6			
Lower Boundaries	0			
Upper Boundaries	0			
Fixed Effects	Not Profiled			

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L... 2/27/2015

Page 51 of 59

AEH-11-PSEUDO-02

		Iterat	ion History		
Iteration	Restarts	Evaluations	Objective Function	Change	Max Gradient
0	0	4	87,302268545		3.345498
1	0	3	86.019228322	1.28304022	0.200947
2	0	3	86.016091534	0.00313679	0.000929
3	0	3	86.016091475	0,00000006	2.02E-8

Convergence criterion (GCONV=1E-8) satisfied.

Fit Statistics	
-2 Log Likelihood	172.03
AIC (smaller is better)	184.03
AICC (smaller is better)	188.97
BIC (smaller is better)	191.10
CAIC (smaller is better)	197.10
HQIC (smaller is better)	185.91
Pearson Chi-Square	81,57
Pearson Chi-Square / DF	4.53

	Parameter Estimatos										
Effect	conc	Estimate	Standard Error	DF	t Value	Pr > t					
conc	0	-0.7885	0.3631	18	-2.17	0.0435					
conc	50	1.7B45	0.4797	18	3.7 2	0.0016					
conc	100	1.4663	0.4312	18	3,40	0.0032					
conc	200	1,0010	0.3796	18	2.64	0.0168					
cone	300	1.4663	0.4312	18	3.40	0,0032					
conc	400	0.3795	0 3427	18	1.11	0,2827					
Resi		4,5315			•						

Type III Tests of Fixed Effects

Effect	Num DP	Den DF	F Value	Pr > F
conc	6	18	\$.31	0.0002

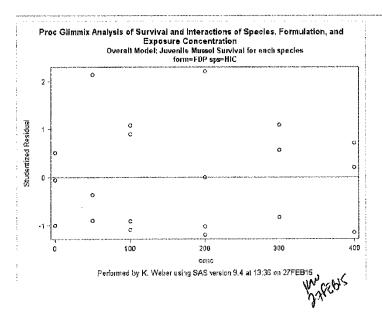
conc	conc	Estimate	DF	95% Confidence Limits			
0	400	0,311	18	0.109	0,888		
50	400	4.076	18	181	14.062		
100	400	2,965	18	0,932	9,430		
200	400	1.862	18	0.636	5.452		
300	400	2.965	18	0.932	9,430		

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_I., 2/27/2015

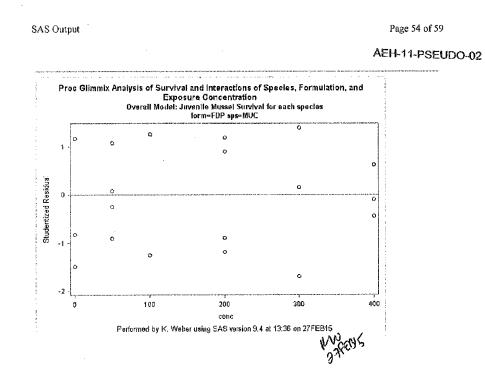
Page 52 of 59

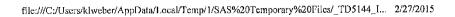
SAS Output

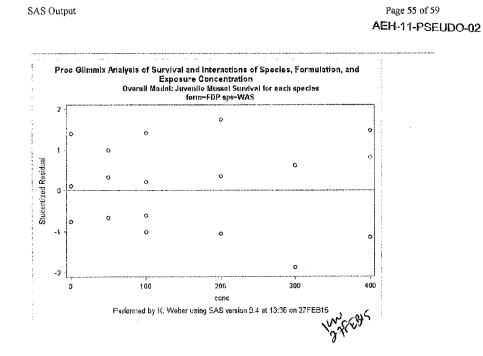
AEH-11-PSEUDO-02


				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			res Mean					
conc	Estimate	Standard Error	DF	t Value	Pr >  t]	Alpha	Lower	Upper	Mean	Standard Error Mean	Lower Mean	Upper Mean
0	-0.7885	0,3631	18	-2.17	0.0435	0.05	-1,5513	-0.02566	0.3125	0.07801	0,1749	0.4936
50	1.7845	0,4797	18	3.72	0.0016	0.05	0.7767	2,7923	0.8562	0.05904	0.6850	0.9423
100	1.4663	0.4312	18	3.40	0.0032	0.05	0.5605	2.3722	0.8125	0.06569	0,6366	0.9147
200	1.0010	0.3796	18	2.64	0.0168	0.05	0,2034	1,7985	0.7312	0.07461	0,5507	0.8580
300	1,4663	0.4312	18	3.40	0.0032	0.05	0,5605	2.3722	0.8125	0,06589	0.6366	0.9147
400	0.3795	0,3427	18	1.11	0,2827	0.05	-0.3404	1.0994	0,5938	0,08265	0.4157	0.7501

conc	conc	Estimate	Standard Error	DF	t Value	Pr>	Alpha	Lower	Upper	Odds Ratio	Lower Confidence Límit for Odds Ratio	Upper Confidence Limit for Odds Ratio
50	0	2.5729	0.6016	18	4.28	0.0005	0.05	1.3090	3.8369	13.104	3.703	46.380
100	0	2.2548	0.5637	18	4.00	0.0008	0.05	1.0705	3.4390	9.533	2.917	31.157
200	0	1.7894	0.5253	18	3.41	0.0031	0.05	0.6858	2.8930	5.986	1.985	18.048
300	0	2.2548	0.5637	18	4.00	0.0008	C.05	1.0705	3,4390	9.533	2.917	31.157
400	0	1.1679	0.4992	18	2,34	0.0310	C.05	0.1191	2.2168	3,215	1.126	9,178


file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L... 2/27/2015


Page 53 of 59


AEH-11-PSEUDO-02



file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_1... 2/27/2015

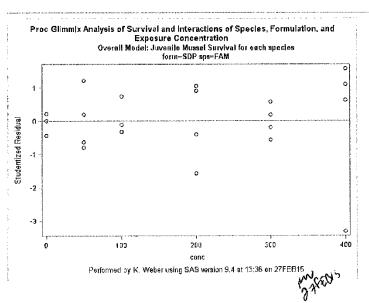






file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L., 2/27/2015




Page 56 of 59 AEH-11-PSEUDO-02

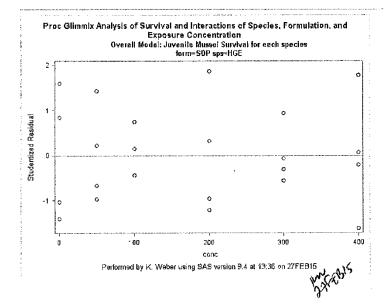


file;///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L... 2/27/2015

SAS Output

Page 57 of 59

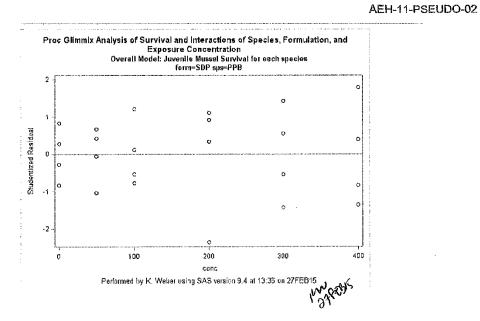



AEH-11-PSEUDO-02

file;///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L.. 2/27/2015

## SAS Output

## Page 58 of 59






file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_L., 2/27/2015

SAS Output

Page 59 of 59



FF #	
Item No. 3	
Pg <u>59</u> of <u>59</u>	

file:///C:/Users/klweber/AppData/Local/Temp/1/SAS%20Temporary%20Files/_TD5144_I... 2/27/2015

DM 'LOG; CLEAR; OUTPUT; CLEAR;'; * CLEAR LOG AND OUTPUT;

FOOTNOTE1 'Performed by K. Weber using SAS version ' "&SYSVER" ' at ' "&SYSTIME" ' on ' "&SYSDATE";

options ls=97 ps=54 formdlim='-' pageno = 1 nocenter nodate nosource2;

title1 h=1.5 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile mussels 1 title2 h=1.5 'Statistical analysis of juvenile mussel recovery and suvival after'; title2 h=1.5 'exposure to various concentrations of Pf-CL145A'; title3 h=1.5 'SAS v. 9.4 Analysis completion date: 27 February 2014 Analysis prepared by: KLW'; * SAS ver 9.4 Analysis propared by: KLW AEH-11-PSEUDO-02 *Variable Names: * sps = three letter code for juvenile mussel species BLS = Black sandshell (Ligumia recta) FAM = Fatmucket (Lampsilis siliquoidea) WAS = Washboard (Megalonaias nervosa) HGE = Higgins eye (Lampsilis higginsii) PPB = Plain pocketbook (Lapsilis cardium) HIC = Hickorynut (Obovaria olivaria) MUC = Mucket (Actinonaias ligamentina) * form = formulation (FDP [freeze dried powder] vs. SDP [spray dried powder]) conc = concentration (in mg/L) $0 = control (0 mg/_)$ 50 = 50 mg/L active ingredient 100 = 100 mg/L active ingredient 200 = 200 mg/L active ingredient 300 = 300 mg/L active ingredient 400 = 300 mg/L heat deative * cham = exposure chamber ID i.e., 3A5 = test system (1, 2, or 3), Block ID (A or B), and Position in Block (1 - 12) * tot = total number of juvenile mussels placed in chamber prior to exposure (= 40) * rec = number of recovered juvenile mussels during assessment * via = number of viable juvenile mussels from the recovered mussels * dead = number of dead juvenile mussels (= rec - via) * unrec = number of animals not recovered during the assessment (= tot - rec) * tdead = number of dead + number of unrecovered data survival; set Pseudo02.survival; pctsurv = (tot-tdead)/tot*100; pctmort = tdead/tot*100; pctrec = rec/tot*100; run:

proc sort data=survival; by sps form conc; run; proc print data=survival; title4 h=1 'All Juvenile Mussel Survival Data'; run; title1 h=2 'Juvenile Mussel Recovery'; title2 h=1.5 'Study Number AEH-11-PSEUDO-02 '; title3 h=1.5 'Percent recovery for each species'; proc sort data = survival; by form sps conc; run; proc means data = survival;

Item No.

by form; class sps; var rec potreo; run; title1 h=2 'Juvenile Mussel Recovery'; title2 h=1.5 'Study Number AEH-11-PSEUD0-02 ; title3 h=1.5 'Percent recovery for each species by treatment group'; proc means data = survival; by form ; class sps conc; var rec pctrec; run; proc sort data=survival; by sps form cone; run; proc univariate data = survival plots noprint; title1 h=2 Juvenile Mussel Survival'; title2 h=1.5 'Study Number AEH-11-PSEUD0-02 '; class sps conc; var potsurv; probplot potsurv; run: title1 h=2 Juvenile Mussel Survival'; title2 h=1.5 'Study Number AEH-11-PSEUD0-02 ; title3 h=1.5 'Mean survival for each species ; proc means data = survival; by sps form; class conc; var potsurv; run; title1 h=2 'Juvenile Mussel Survival'; title2 h=1.5 'Study Number AEH-11-PSEUD0-02 ; title3 h=1.5 'Mean survival for each species'; proc sort data=survival; by sps form conc; run; proc sgplot data = survival; vbox pctsurv/group=conc; by sps; run; title1 h=2 'Juvenile Mussel Survival'; title2 h=1.5 'Study Number AEH-11-PSEUD0-02 '; title3 h=1.5 'Mean survival for each formulation'; proc sort data=survival; by form conc; run; proc means data = survival; by form: class conc; var potsurv; run: proc sort data=survival; by form cone; run; proc sgplot data = survival; vbox potsurv/group=conc; by form; run;

title1 h=2 'Juvenile Mussel Survival';

AEH-11-PSEUDO-02

Page 2 of 3

title3 h=1.5 'Mean survival for each formulation without BLS'; data surv; set survival; If sps = "BLS" then delete; run; proc sort data=surv; by form cone; run; proc means data = surv; by form; class conc; AEH-11-PSEUDO-02 var petsurv; run; proc sgplot data = surv; vbox potsurv/group=conc; by form; run; title1 h=2 'Juvenile Mussel Survival'; title2 h=1.5 'Study Number AEH-11-PSEUD0-02 '; Title 'Proc Glimmix Analysis of Survival and Interactions of Species, Formulation, and Exposure Concer proc sort data=survival; by form sps conc; run; proc glimmix data = survival; title4 'Overall Model: Juvenile Mussel Survival for each species'; by form sps; class conc; model tdead/tot = conc / d = bin link = logit moint s or; lsmeans conc / pdiff = control('0') cl ilink or; random _residual_; output out=outsurv pred=p resid=r student=student; run; proc sgplot data=outsurv; scatter y=student x=conc; by form sps; refline O/axis=y; matter rung

title2 h=1.5 'Study Number AEH-11-PSEUD0-02 ';

FF # Item No Pa

```
DM 'LOG; CLEAR; OUTPUT; GLEAR;'; * GLEAR LOG AND OUTPUT;
1
2
    FOCTNOTE1 'Performed by K. Weber using SAS version ' "&SYSVER" ' at ' '&SYSTIME" ' on '
3
3 ! "&SYSDATE";
4
    options ls=97 ps=54 formdlim='.' pageno = 1 nocenter nodate nosource2;
5
6
    title1 h=1.5 'Effects of Pseudomonas fluorescens (Pf-CL145A) to newly metamorphosed juvenile
7
7 | mussels from seven different unionid species';
    title2 h=1.5 'Statistical analysis of juvenile mussel recovery and suvival after';
8
    title2 h=1.5 'exposure to various concentrations of Pf-CL145A';
9
10 title3 h=1.5 'SAS v. 9.4 Analysis completion date: 27 February 2014 Analysis prepared
10 1 by: KLW';
11
    /************************
12
    * SAS ver 9.4 Analysis prepared by: KLW * Analysis completion date: 27 February 2015
13
                                                                     AEH-11-PSEUDO-02
14
15
16
    17
17 | ***********
18 *Variable Names:
18 1
19 * sps = three letter code for juvenile mussel species
19 1
20 *
               BLS = Black sandshell (Ligumia roota)
20 1
21 *
               FAM = Fatmucket (Lampsilis siliquoidea)
21 1
               WAS = Washboard (Negalonaias nervosa)
22 *
22 |
   *
                HGE = Higgins eye (Lampsilis higginsii)
23
23 |
24 *
               PPB = Plain pocketbook (Lapsilis cardium)
24 !
               HIC = Hickorynut (Obovaria olivaria)
25 *
25 I
                MUC = Mucket (Actinonaias ligamentina)
26 *
26 |
27 * form = formulation (FDP [freeze dried powder] vs. SDP [spray dried powder])
27 (
                *
28 + conc = concentration (in mg/L)
28 l
29 *
                0 = control (0 mg/L)
29 1
                50 = 50 mg/L active ingredient
30 *
30 I
31 *
                100 = 100 mg/L active ingredient
31 1
                200 = 200 mg/L active ingredient
32 *
32 1
                300 = 300 mg/L active ingredient
33 *
33 1
                400 = 300 mg/L heat deative
34 *
34 I
                *
                                                                       FF # \)
35 * cham = exposure chamber ID
                                                                       Item No.
```

657

Pg of

```
35 I
36 *
                i.e., 3A5 = test system (1, 2, or 3), Block ID (A or B), and Position in Block
36 1 (1 - 12)
37 * tot = total number of juvenile mussels placed in chamber prior to exposure (= 40)
37 1
38 * rec = number of recovered juvenile mussels during assessment
38 I
39 * via = number of viable juvenile mussels from the recovered mussels
39 1
40 * dead = number of dead juvenile mussels (= rec - via)
40 I
41 * unrec \approx number of animals not recovered during the assessment (= tot - rec)
                                                                             AEH-11-PSEUDO-02
41 !
42 * tdead = number of dead + number of unrecovered
42 !
               *
43 | ***********
    data survival; set Pseudo02.survival;
44
45
    pctsurv = (tot-tdead)/tot*100;
    pctmort = tdead/tot*100;
46
47
    potrec = rec/tot*100;
48
    run;
NOTE: There were 168 observations read from the data set PSEUD002.SURVIVAL.
NOTE: The data set WORK.SURVIVAL has 168 observations and 13 variables.
NOTE: DATA statement used (Total process time):
                        0.03 seconds
      real time
                        0.01 seconds
      opu time
49
    proc sort data=survival; by sps form conc; run;
50
NOTE: There were 168 observations read from the data set WORK.SURVIVAL.
NOTE: The data set WORK.SURVIVAL has 168 observations and 13 variables.
NOTE: PROCEDURE SOAT used (Total process time):
                        0.00 seconds
      real time
      opu time
                        0.00 seconds
51 proc print data=survival; title4 h=1 'All Juvenile Mussel Survival Data'; run;
NOTE: Writing HTML Body file: sashtml.htm
NOTE: There were 168 observations read from the data set WORK.SURVIVAL.
NOTE: PROCEDURE PRINT used (Total process time):
      real time
                        2.12 seconds
      opu time
                        0.56 seconds
    title1 h=2 'Juvenile Mussel Recovery';
52
     title2 h=1.5 'Study Number AEH-11-PSEUD0-02 ';
53
    title3 h=1.5 'Percent recovery for each species';
54
     proc sort data = survival; by form sps cone; run;
55
NOTE: There were 168 observations read from the data set WORK, SURVIVAL.
NOTE: The data set WORK.SURVIVAL has 168 observations and 13 variables.
```

Page _____ of ___

NOTE: PROCEDURE SORT used (Total process time):

```
0.00 seconds
      real time
     opu time
                         0.00 seconds
56
    proc means data = survival;
57
    by form;
    class sos;
58
    var rec potreo;
59
60
    run;
NOTE: There were 168 observations read from the data set WORK.SURVIVAL.
NOTE: PROCEDURE MEANS used (Total process time):
      real time
                         0.06 seconds
      cpu time
                         0.03 seconds
                                                                                AEH-11-PSEUDO-02
61
62
    title1 h=2 'Juvenile Mussel Recovery';
    title2 h=1.5 'Study Number AEH-11-PSEUDC-02 ';
63
    title3 h=1.5 'Percent recovery for each species by treatment group';
64
65
    proc means data = survival;
    by form ;
66
    class sps conc;
67
68
    var rec potrec;
    run;
69
NOTE: There were 168 observations read from the data set WORK.SURVIVAL.
NOTE: PROCEDURE MEANS used (Total process time):
      real time
                         0.07 seconds
      opu time
                         0.09 seconds
70
71
     proc sort data=survival; by sps form cone; run;
NOTE: There were 168 observations read from the data set WORK.SURVIVAL.
NOTE: The data set WORK.SURVIVAL has 168 observations and 13 variables.
NOTE: PROCEDURE SORT used (Total process time):
                         0.00 seconds
      real time
                         0.00 seconds
      cpu time
72 proc univariate data = survival plots noprint;
     title1 h=2 'Juvenile Mussel Survival';
73
     title2 h=1.5 'Study Number AEH-11-PSEUD0-02 ';
74
     class sps conc;
75
76
     var potsurv;
77
     probplot potsurv;
78
     run;
NOTE: PROCEDURE UNIVARIATE used (Total process time):
                          4.32 seconds
      real time
      opu time
                          0.68 seconds
                                                                          Page 3 of 7
79
```

659

```
80 title1 h=2 'Juvenile Mussel Survival';
81
    title2 h=1.5 'Study Number AEH-11-PSEUD0-02 ';
82
    title3 h=1.5 'Mean survival for each species';
    proc means data = survival;
83
    by sps form;
84
85
    class conc;
    var potsurv;
86
87
    run;
NOTE: There were 168 observations read from the data set WORK.SURVIVAL.
NOTE: PROCEDURE MEANS used (Total process time):
                         D.06 seconds
     real time
     opu time
                         0.04 seconds
                                                                                 AEH-11-PSEUDO-02
88 title1 h=2 'Juvenile Mussel Survival';
   title2 h=1.5 'Study Number AEH-11-PSEUD0-02 ';
89
90
    title3 h=1.5 'Mean survival for each species';
   proc sort data=survival; by sps form conc; run;
91
NOTE: Input data set is already sorted, no sorting done.
NOTE: PROCEDURE SORT used (Total process time):
                         0.00 seconds
     real time
                         0.00 seconds
     cpu time
92 proc sgplot data = survival;
93
    vbox petsurv/group=cone;
94
    by sps;
95
    run;
NOTE: PROCEDURE SGPLOT used (Total process time):
                       1.28 seconds
     real time
     opu time
                         0.23 seconds
NOTE: There were 168 observations read from the data set WORK.SURVIVAL.
96
    title1 h=2 'Juvenile Mussel Survival';
97
    title2 h=1.5 'Study Number AEH-11-PSEUD0-02 ';
98
99 title3 h=1.5 'Mean survival for each formulation';
100 proc sort data=survival; by form conc; run;
NOTE: There were 168 observations read from the data set WORK.SURVIVAL.
NOTE: The data set WORK.SURVIVAL has 168 observations and 13 variables.
NOTE: PROCEDURE SORT used (Total process time):
                         0.01 seconds
     real time
      cpu time
                         0.01 seconds
101 proc means data = survival;
102 by form;
103 class conc;
104 var potsurv;
105 run;
```

Page 4 of 7

NOTE: There were 168 observations read from the data set  $\ensuremath{\mathsf{WORK}}\xspace.\ensuremath{\mathsf{SURVIVAL}}\xspace.$ NOTE: PROCEDURE MEANS used (Total process time): 0.03 seconds real time 0.01 seconds cpu time 106 proc sort data=survival; by form cond; run; NOTE: Input data set is already sorted, no sorting done. NOTE: PROCEDURE SORT used (Total process time): 0.00 seconds real time opu time 0.00 seconds AEH-11-PSEUDO-02 107 proc sgplot data = survival; 108 vbox pctsurv/group=cone; 109 by form; 110 run; NOTE: PROCEDURE SGPLOT used (Total process time): real time 0.29 seconds 0.03 seconds cou time NOTE: There were 168 observations read from the data set WORK.SURVIVAL. 111 112 title1 h=2 'Juvenile Mussel Survival'; 113 title2 h=1.5 'Study Number AEH-11-PSEUD0-02 '; 114 title3 h=1.5 'Mean survival for each formulation without BLS'; 115 data surv; set survival; 116 If sps = "BLS" then delete; 117 run; NOTE: There were 168 observations read from the data set WORK.SURVIVAL. NOTE: The data set WORK.SURV has 144 observations and 13 variables. NOTE: DATA statement used (Total process time): real time 0.00 seconds 0.00 seconds cpu time 118 proc sort data=surv; by form conc; run; NOTE: There were 144 observations read from the data set WORK.SURV. NOTE: The data set WORK.SURV has 144 observations and 13 variables. NOTE: PROCEDURE SORT used (Total process time): 0.01 seconds real time 0,01 seconds opu time 119 proc means data = surv; 120 by form; 121 class conc; 122 var potsurv; 123 run;

NOTE: There were 144 observations read from the data set WORK.SURV.

Page <u>5</u> of <u>7</u>

AEH-11-PSEUDO-02
ation, and
not centered. not centered. not centered.

Page 6 of 7

NOTE: Convergence criterion (GCONV=1E-8) satisfied. NOTE: The above message was for the following BY group:

- form≕SDP sps=BLS NOTE: The model does not contain an intercept, Columns of X are scaled only and not centered.
- NOTE: Convergence criterion (GCONV=1E-8) satisfied.
- NOTE: The above message was for the following BY group: form≕SDP_sps≕FAM
- NOTE: The model does not contain an intercept. Columns of X are scaled only and not centered.
- NOTE: Convergence criterion (GCONV=1E-8) satisfied.
- NOTE: The above message was for the following BY group: form=SDP sps=HGE
- NOTE: The model does not contain an intercept. Columns of X are scaled only and not centered.
- NOTE: Convergence criterion (GCCNV=1E-B) satisfied.
- NOTE: The above message was for the following BY group: form=SDP sps=PPB
- NOTE: The data set WORK.OUTSURV has 168 observations and 16 variables.
- NOTE: PROCEDURE GLIMMIX used (Total process time):
  - real time 0.42 seconds 0.32 seconds cpu time
- 142 proc sgplot data=outsurv; 143 144
- scatter y=student x=cono;
- 145 by form sps;
- refline O/axis=y; 146
- 147 run;
- NOTE: PROCEDURE SGPLOT used (Total process time): real time 0.79 seconds 0.14 seconds cpu time

NOTE: There were 168 observations read from the data set WORK.OUTSURV.



FF# Item No.

AEH-11-PSEUDO-02



ISSN 2331-1258 (online) http://dx.doi.org/10.3133/ofr20151066