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Background: Premature Failures with White Etching Cracks
HS-S

HIS-S
LS-P

• During recent years several 
countermeasures have been 
taken

• Since introduction of black-
oxidising, no serial failure 
case reported by gearbox 
original equipment 
manufacturer 

• Some failures still reported 
today by after market and 
end users:
– Proper statistics are 

missing.

Early cracks occur 
commonly within the 

first 1–3 years of 
operational time 

(<10% of the 
calculated rating life).

Photos from SKF

LS-P = Low-Speed Planet
HS-S = High-Speed Shaft
HIS-S = High Intermediate-Speed Shaft

Illustration from SKF 
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Premature Bearing Failures: Understanding the Drivers

‘Cyclic’ Stresses
and Loading

Rolling Contact 
Fatigue

‘Accelerated’ Fatigue (Premature Spalling)

Higher ‘Stresses’ Lower ‘Material Strength’

WEC in bearing test 
exposed to additional 

tensile stresses.

WEC in bearing test 
exposed to short heavy 

loads.

White Etching Cracks (WECs) Occurrence in Bearings

Structural Stresses
(Sub-Surface)

Frictional Stresses and Wear
(Surface, Near-Surface)

Hydrogen
(Surface and Sub-Surface)

WEC in larger bearing 
rolling contact fatigue.

WEC in bearing test 
exposed to water stand-

still corrosion.

WEC in bearing 
exposed to electrical 

currents.

WEC in bearing test 
running under mixed 

friction and slip.

WEC in bearing test 
that was hydrogen 

charged.

Short Heavy Loads

Standstill Corrosion Electrical Current

Role of lubricant and tribochemistry

Low Film and Slip

Photos from SKF  
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• The exact combination of drivers that explains the failures in wind gear 
units is not yet understood:
- Limits of current solutions are not fully understood
- A better understanding of critical operating conditions in wind gearboxes still 

required
• Simulations and measurements complete each other.

Critical Operating Conditions in Wind Gearboxes

Simulation
• Requires a detailed set of 

boundary conditions
• Requires tuning of model 

parameters
• Disturbances are negligible
• Possibility of in-depth 

analysis of roller kinematics.

Measurement
• Provides data in complex 

operating conditions
• Only requires to process the 

measured signals
• Limited number of output 

parameters
• Measurement disturbances and 

input uncertainties.

Photo from SKF 

Illustration from SKF 

Illustration from SKF  

Cons

ConsPros

Pros



Measurement Setup
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• Instrumentation focused on high-speed shaft, bearings, and lubricant:
- Shaft speed

- Cage speed

- Roller speed

- Shaft torque and bending

- Stray current

- Bearing temperatures

- Air temperature and humidity

- Lubricant temperatures and moisture content

- LogiLube and Poseidon lubricant monitoring and routine oil 
samples

- SKF iMX8 system.

Winergy PEAB 4410.4 Gearbox and SKF Cylindrical Roller Bearings
Gearbox Instrumentation

Photo by Mark McDade, NREL 49050

Sliding

Source: Keller, J. and S. Lambert, Gearbox Instrumentation for the Investigation of Bearing Axial Cracking, NREL/TP-5000-70639, 2018.
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GE 1.5 SLE turbine:
• Blade flap and edge bending

• Blade pitch angles

• Rotor azimuth and speed

• Main shaft torque and bending

• Active and reactive power

• Nacelle yaw

• Tower bending and torsion

• Wind vane offset

M5 met tower:
• Air temperatures and humidity

• Wind speed and direction

And more…GPS time stamped.

Turbine and Meteorological (Met) Tower 
Instrumentation

Photo by Dennis Schroeder, NREL 21884

GE 1.5 SLE
ESS Mk 6 controller

M5 
Met 

Tower

Photo by Dennis Schroeder, NREL 49409
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Roller and Cage-Speed Measurement
Cage-speed measurement:
• Pin passage detected by 

proximity sensor
• One speed measurement per 

cage revolution.

Roller-speed measurement:
• Magnetized roller
• Changing magnetic field detected 

by coil next to the bearing
• Position of magnetized roller 

determined by cage pin.

Cage Pin

Magnetized
Roller

Photos by Jonathan Keller, NREL 40979 and 40981

Illustration from SKF  



Numerical Model Building and 
Verification

Illustration from SKF  

Illustration by NREL  
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Bearing B

Bearing A

• Mean cage speed during each revolution is available

• Instantaneous roller speed is available but highly disturbed

• Operating bearing clearance is unknown (bearing inner ring temperature often not available)

Measurement Limitations and Processing

Processed Rolling Element (RE) Speed vs. Averaged 
at Stationary, Fully Loaded Operating Condition
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Postprocessing of the measurement is necessary:

1. Select time intervals where the cage speed is 
constant

2. Use several cage revolutions to filter the 
disturbance of the roller speed

3. Select best measured intervals.
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Measurement Screening
1. Systematic detection of all cage-speed plateaus:
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2. Least-squares fit of a piece-wise approximation of the roller speed:

Azimuth [deg] 
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3. Systematic selection based on error:
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Azimuth [deg] 

Final selection, based on 
most interesting and diverse 

operating conditions to 
increase the validity of the 

semiempirical model.

rpm = revolutions per minute | s = seconds | deg = degree
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• At lower operating temperature, the rollers decelerate significantly more in unloaded zone

• Higher temperature  lower viscosity  less drag losses on rollers in unloaded zone 
slower deceleration

Effect of Temperature on Roller Speed: “Down Slope” 
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• A significantly larger temperature difference is measured on bearing B than on bearing A:
– Bearing B has much smaller radial clearance and a larger loaded zone than bearing A

• Slower deceleration of the rollers in unloaded zone at increasing temperature (lower oil 
viscosity)

• Drag losses increase with the size of the roller (larger projected surface of the rollers).

Effect of Temperature and Oil Viscosity – Overview
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min = minute | µm = micrometers

Temperature Difference of Bearing Rings
Clearance as Function of

Temperature Difference of Bearing Rings

Bearing A

Bearing B
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The model is designed by two SKF proprietary software.

SKF Numerical Modelling

SKF BEAST SKF SimProExpert

QJ bearing replaced by 
nonlinear stiffness.

• Transient multibody 
dynamic solver

• Detail contact calculation, 
elastohydrodynamic layer 
lubrication

• Cage-roller interaction

• Drag losses not 
automatically modeled.

Linear rotational damping torque is applied 
to both the cage and the rollers.

Illustrations from SKF  
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Analytical Model Predicts Roller and Cage Sliding

Roller dynamics model (analytical):
• Harris roller dynamics model

Lubricant hydrodynamics model based on:
• Bercea cage friction model
• Dowson and Higginson lubricant model

0i o cQ Q F− + =

0ij o v cgF F F Q− + − =

1
2

r
i o cg cg c

dM M DQ J
d
ωµ ω
φ

− + =

Tangential

Radial

Torsional

Primary Governing Equations

Cage

Source: Guo, Y. and J. Keller. Forthcoming. Analytic Formulations of Rolling Element 
Bearing Sliding in Wind Turbine Gearboxes, Mechanism and Machine Theory.

Frictional Energy Loss

Roller Free Body Diagram

Illustration by NREL  
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Parametric Studies To Verify Model Parameters
Example in BEAST: Influence 

of Rotational Damping
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Example in Analytical Model: 
Influence of Temperature
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Nms = newtonmeter-second | rad = radian
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Verification of Simulation Results
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Torque = 7,930 Nm, 
TOR ~ 41oC,  Toil = 45oC
δB = 5𝜇𝜇m, δA = 95𝜇𝜇m 

Azimuth [rad] 

Torque = 7,930 Nm, 
TOR ~ 63oC,  Toil = 63oC
δB = 30𝜇𝜇m, δA = 145𝜇𝜇m

Azimuth [rad] 

Torque = 9,520 Nm, 
TOR ~ 57oC,  Toil = 41oC
δB = 20𝜇𝜇m, δA = 145𝜇𝜇m 

Input

Nm = newtonmeters | TOR = Outer ring temperature | Toil  = Oil supply temperature  | δ = Clearance

Roller Speeds Roller Speeds Roller Speeds



Measurements at Transient 
Conditions

kW = kilowatt | LSS = Low-speed shaft | HSS = High-speed shaft | kNm = kilonewtonmeter
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Drivetrain Conditions during Emergency Stop
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Transient Conditions – Emergency Stop
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• Torque oscillations at drivetrain 1st

eigenfrequency
• Oscillations result in cage and roller dynamics
• Rotor side more sensitive to torque oscillations 

than generator side
• Roller speed measurements unreliable at low 

speed conditions.
• At brake engagement roller speed reduces to 

about 80% slip and accelerates back in about 
1.5 seconds.

Rotor Side Generator Side
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Transient Conditions – LVRT (50% Drop for 300 milliseconds)
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Roller speed at LVRT: RS

Measured

Theoretical• Torque oscillations at drivetrain 1st

eigenfrequency after Low-Voltage 
Ride Through (LVRT)

• Load oscillations resulting in cage 
and roller dynamics

• Roller speed reduces to about 50% 
slip and accelerates back in about 
0.5 seconds.

Rotor Side Generator Side
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• Operating at low 
load results in much 
higher slip levels.

Roller Speed at “Curtailment”
1500 kW 250 kW

Rotor Side

Generator Side
Inboard



Future Steps and Conclusions

Photo by Dennis Schroeder, NREL 49418
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• Repeat the procedure for the cage speed at low load. The proximity sensor is not affected by the 
same disturbance as the induction coil.

• Simulation of transient conditions (i.e., when measurement cannot be efficiently filtered from noise).
• Use simulation results to evaluate critical conditions for the bearings (e.g., by power slip density or 

cumulative frictional energy).

Ongoing Steps
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• Measurement of roller and cage speed gives useful insight in the bearing kinematics at 
different operating conditions:
– Low load/curtailment
– Emergency stop
– LVRT

• High roller slip and accelerations have been measured at these events
• BEAST model has been built and shown to be able to accurately predict roller and cage 

behaviour at different loads and temperature
• Next steps:

– Apply and validate the models at special events
– Evaluate the roller slip losses at special events.

Conclusions
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Thank you for your attention!
Vaes, D., Y. Guo, P. Tesini and J. Keller. 2019. Investigation of Roller Sliding in Wind Turbine 
Gearbox High-Speed Shaft Bearings (Technical Report). NREL/TP-5000-73286. National 
Renewable Energy Laboratory (NREL), Golden, CO (US). 
http://www.nrel.gov/docs/fy19osti/73286.pdf
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