Roller Sliding in Wind Turbine Gearbox High-Speed-Shaft Bearings

4th Conference for Wind Power Drives 2019, Aachen, March 13, 2019

NREL/PR-5000-73428

David Vaes, SKF Jon Keller, National Renewable Energy Laboratory Pietro Tesini, SKF Yi Guo, National Renewable Energy Laboratory

Photo by Jonathan Keller, NREL 49037

Overview

- Background
- Measurement setup
- Numerical model building and verification
- Transient load conditions
- Conclusions

Background

Background: Premature Failures with White Etching Cracks

During recent years several countermeasures have been taken

20 mm

- Since introduction of blackoxidising, no serial failure case reported by gearbox original equipment manufacturer
- Some failures still reported today by after market and end users:
 - Proper statistics are missing.

Premature Bearing Failures: Understanding the Drivers

Critical Operating Conditions in Wind Gearboxes

- The exact combination of drivers that explains the failures in wind gear units is not yet understood:
 - Limits of current solutions are not fully understood
 - A better understanding of critical operating conditions in wind gearboxes still required
- Simulations and measurements complete each other.

Simulation

 Requires a detailed set of boundary conditions

Cons

- Requires tuning of model
 parameters
- Disturbances are negligible
 - Possibility of in-depth analysis of roller kinematics.

Measurement

- Provides data in complexPros operating conditions
 - Only requires to process the measured signals
- Limited number of output
 Cons parameters
 - Measurement disturbances and input uncertainties.

Photo from SKF

Illustration from SKF

Illustration from SKF

Measurement Setup

Photo by Jonathan Keller, NREL 49037

Gearbox Instrumentation

Winergy PEAB 4410.4 Gearbox and SKF Cylindrical Roller Bearings

- Instrumentation focused on high-speed shaft, bearings, and lubricant:
 - Shaft speed
 - Cage speed Sliding
 - Roller speed
 - Shaft torque and bending
 - Stray current
 - Bearing temperatures
 - Air temperature and humidity
 - Lubricant temperatures and moisture content
 - LogiLube and Poseidon lubricant monitoring and routine oil samples
 - SKF iMX8 system.

Photo by Mark McDade, NREL 49050

Turbine and Meteorological (Met) Tower Instrumentation

GE 1.5 SLE turbine:

- Blade flap and edge bending
- Blade pitch angles
- Rotor azimuth and speed
- Main shaft torque and bending
- Active and reactive power
- Nacelle yaw
- Tower bending and torsion
- Wind vane offset

M5 met tower:

Transformina ENERGY

- Air temperatures and humidity
- Wind speed and direction

And more...GPS time stamped.

Roller and Cage-Speed Measurement

Cage-speed measurement:

- Pin passage detected by proximity sensor
- One speed measurement per cage revolution.

diagnetized Roller

Roller-speed measurement:

- Magnetized roller
- Changing magnetic field detected by coil next to the bearing
- Position of magnetized roller determined by cage pin.

Photos by Jonathan Keller, NREL 40979 and 40981

Cage Pin

Numerical Model Building and Verification

Illustration by NREL

Measurement Limitations and Processing

- Mean cage speed during each revolution is available
- Instantaneous roller speed is available but highly disturbed
- Operating bearing clearance is unknown (bearing inner ring temperature often not available)

Postprocessing of the measurement is necessary:

- 1. Select time intervals where the cage speed is constant
- 2. Use several cage revolutions to filter the disturbance of the roller speed
- 3. Select best measured intervals.

Measurement Screening

1. Systematic detection of all cage-speed plateaus:

Final selection, based on most interesting and diverse operating conditions to increase the validity of the semiempirical model.

rpm = revolutions per minute | s = seconds | deg = degree

2. Least-squares fit of a piece-wise approximation of the roller speed:

SK

Effect of Temperature on Roller Speed: "Down Slope"

- At lower operating temperature, the rollers decelerate significantly more in unloaded zone
- Higher temperature → lower viscosity → less drag losses on rollers in unloaded zone → slower deceleration

Effect of Temperature and Oil Viscosity – Overview

- A significantly larger temperature difference is measured on bearing B than on bearing A:
 - Bearing B has much smaller radial clearance and a larger loaded zone than bearing A
- Slower deceleration of the rollers in unloaded zone at increasing temperature (lower oil viscosity)
- Drag losses increase with the size of the roller (larger projected surface of the rollers).

Clearance as Function of Temperature Difference of Bearing Rings

SKF Numerical Modelling

The model is designed by two SKF proprietary software.

Linear rotational damping torque is applied to both the cage and the rollers.

- Cage-roller interaction
- Drag losses not automatically modeled.

Analytical Model Predicts Roller and Cage Sliding

Roller Free Body Diagram

Illustration by NREL

Primary Governing Equations

- $F_{ij} F_o + F_v Q_{cg} = 0$ Tangential
- $Q_i Q_o + F_c = 0$ Radial

$$M_i - M_o + \frac{1}{2}\mu_{cg}DQ_{cg} = J\omega_c \frac{d\omega_r}{d\phi} \quad \text{Torsional}$$

Source: Guo, Y. and J. Keller. Forthcoming. Analytic Formulations of Rolling Element Bearing Sliding in Wind Turbine Gearboxes, Mechanism and Machine Theory.

Roller dynamics model (analytical):

• Harris roller dynamics model

Lubricant hydrodynamics model based on:

- Bercea cage friction model
- Dowson and Higginson lubricant model

Parametric Studies To Verify Model Parameters

Example in BEAST: Influence of Rotational Damping

Example in Analytical Model: Influence of Temperature

Verification of Simulation Results

Measurements at Transient Conditions

Transforming ENERGY

Transient Conditions – Emergency Stop

700

600

 Torque oscillations at drivetrain 1st eigenfrequency

Transforming ENERGY

- Oscillations result in cage and roller dynamics
- Rotor side more sensitive to torque oscillations than generator side
- Roller speed measurements unreliable at low speed conditions.
- At brake engagement roller speed reduces to about 80% slip and accelerates back in about 1.5 seconds.

21:49:10

21:49:20

Mar 04, 2018

21:49:00

Rotor Side

Measured

Theoretical

Transient Conditions – LVRT (50% Drop for 300 milliseconds)

- Torque oscillations at drivetrain 1st eigenfrequency after Low-Voltage Ride Through (LVRT)
- Load oscillations resulting in cage
 and roller dynamics
- Roller speed reduces to about 50% slip and accelerates back in about 0.5 seconds.

Transformina ENERGY

Roller Speed at "Curtailment"

• Operating at low load results in much higher slip levels.

Future Steps and Conclusions

Photo by Dennis Schroeder, NREL 49418

HYD/

Ongoing Steps

- Repeat the procedure for the cage speed at low load. The proximity sensor is not affected by the same disturbance as the induction coil.
- Simulation of transient conditions (i.e., when measurement cannot be efficiently filtered from noise).
- Use simulation results to evaluate critical conditions for the bearings (e.g., by power slip density or cumulative frictional energy).

Conclusions

- Measurement of roller and cage speed gives useful insight in the bearing kinematics at different operating conditions:
 - Low load/curtailment
 - Emergency stop
 - LVRT
- High roller slip and accelerations have been measured at these events
- BEAST model has been built and shown to be able to accurately predict roller and cage behaviour at different loads and temperature
- Next steps:
 - Apply and validate the models at special events
 - Evaluate the roller slip losses at special events.

Thank you for your attention!

Vaes, D., Y. Guo, P. Tesini and J. Keller. 2019. Investigation of Roller Sliding in Wind Turbine Gearbox High-Speed Shaft Bearings (Technical Report). NREL/TP-5000-73286. National Renewable Energy Laboratory (NREL), Golden, CO (US). http://www.nrel.gov/docs/fy19osti/73286.pdf

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office and CRADAs 16-608 with SKF GmbH and 17-694 with Flender Corporation. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

